Skip to main content

One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Abstract

We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P 2.

This work has been supported by the European Social Fund within the project Support for Doctoral Studies at University of Latvia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47(0), 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Geffert, V.: An alternating hierarchy for finite automata. Theoretical Computer Science 445, 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hromkovič, J., Schnitger, G.: On the power of las vegas ii. two-way finite automata. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 433–442. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Kapoutsis, C.A.: Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 20–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Kapoutsis, C.A., Královič, R., Mömke, T.: An exponential gap between LasVegas and deterministic sweeping finite automata. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 130–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Kapoutsis, C.A., Královič, R., Mömke, T., Královic, R.: Size complexity of rotating and sweeping automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 275–286. ACM, New York (1978)

    Chapter  Google Scholar 

  10. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course Technology (2006)

    Google Scholar 

  11. Yakaryılmaz, A., Say, C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics & Theoretical Computer Science 12(4), 19–40 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balodis, K. (2013). One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics