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Abstract. Probabilistic automata (PA) are a prominent compositional concur-
rency model. As a way to justify property-preserving abstractions, in the last
years, bisimulation relations over probability distributions have been proposed
both in the strong and the weak setting. Different to the usual bisimulation rela-
tions, which are defined over states, an algorithmic treatment of these relations
is inherently hard, as their carrier set is uncountable, even for finite PAs. The
coarsest of these relation, weak distribution bisimulation, stands out from the oth-
ers in that no equivalent state-based characterisation is known so far. This paper
presents an equivalent state-based reformulation for weak distribution bisimula-
tion, rendering it amenable for algorithmic treatment. Then, decision procedures
for the probability distribution-based bisimulation relations are presented.

1 Introduction

Weak probabilistic bisimilarity is a well-established behavioural equivalence on prob-
abilistic automata (PA) [20]. However, it is arguably too fine [6, 9]. As an example,
consider the two automata in Fig. 1, where a single visible step, embedding a proba-
bilistic decision is depicted on the left, while on the right this is split into a visible step
followed by an internal, thus invisible probabilistic decision of the very same kind (in-
dicated by τ ). Intuitively, an observer should not be able to distinguish between the two
automata. However, they are not weak probabilistic bisimilar. ≈
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Fig. 1. Distribution bisimilarity

Markov Automata are a compositional behavioural
model for continuous time stochastic and nonde-
terministic systems [5, 8, 9] subsuming Interactive
Markov Chains (IMC) [12] and Probabilistic Au-
tomata. Markov automata weak bisimilarity has been
introduced as an elegant and powerful way of abstracting from internal computation
cascades, yielding the coarsest reasonable bisimilarity [5]. It is a conservative exten-
sion of IMC weak bisimilarity, and also extends weak probabilistic bisimilarity on PA.
But different from standard bisimulation notions, Markov automata weak bisimulations
are defined as relations on subprobability distributions instead of states. Translated back
to the PA setting, this weak distribution bisimilarity enables to equate automata such as
the ones in Fig. 1. The equivalence of these two systems rests on the ability to relate dis-
tributions. If we are only allowed to relate states, we must fail to prove bisimilarity since
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we would need to require the presence of a state bisimilar to state on the left. This in-
dicates that weak distribution bisimilarity is coarser than weak probabilistic bisimilarity
on PA. It can be regarded as the symmetric version [8] of weak probabilistic forward
similarity [20], the coarsest precongruence preserving trace distributions [16, 17]. The
idea of distribution bisimilarity can also be instantiated in the strong setting [11], where
internal computations are not abstracted from.

In this paper, we present decision algorithms for distribution bisimilarities in the
strong and weak sense. Strong distribution bisimilarity requires only a minor adapta-
tion of the polynomial time decision algorithm for strong probabilistic bisimilarity [1].
However, a decision algorithm for weak distribution bisimilarity cannot follow the tra-
ditional partition refinement approach directly. This is caused by the uncountability of
the underlying carrier set, which here is the set of all distributions over the automaton’s
state space. The key contribution of this paper is an equivalent reformulation of weak
distribution bisimulation in a state-based manner. This makes it eventually amenable
to an algorithmic treatment. To arrive there, we have to tweak the usual approach to
state-based characterisations of bisimulations: instead of all, only specific transitions of
one state must be matched by its bisimilar counterpart. To identify those transitions, we
introduce the concept of behaviour preserving transitions.

Based on this state-based characterisation, we then adapt the standard partition re-
finement algorithm [2, 14, 18] to decide weak bisimilarity. The algorithm successively
refines the current equivalence relation by checking the conditions of the state-based
characterisations. identifying the set of preserving transitions, the overall complexity of
the algorithm is exponential.

The main contribution of this paper is a state-based characterisation of weak distri-
bution bisimilarity, and a decision algorithm based on it. We develop our findings in the
setting of probabilistic automata, they however carry over to Markov automata weak
bisimilarity, where only the notion of maximal progress, inherited from IMC, requires
technical care.

Organisation of the paper. After the preliminaries in Sec. 2, we introduce in Sec. 3
the state-based characterisation of the weak bisimilarity in the context of probabilistic
automata. We devote Sec. 4 to prove the equivalence between state-based and
distribution-based weak bisimilarities. We describe in Sec. 5 the decision procedure
and we conclude the paper by Sec. 6 with a discussion on related and future work and
by Sec. 7 with some general remarks.

2 Preliminaries

For a set X , we denote by SubDisc(X) the set of discrete sub-probability distributions
over X . Given ρ ∈ SubDisc(X), we denote by |ρ| the probability mass ρ(X) of a
subdistribution, by Supp(ρ) the set { x ∈ X | ρ(x) > 0 }, by ρ(⊥) the value 1− ρ(X)
where⊥ /∈ X , and by δx, where x ∈ X∪{⊥}, the Dirac distribution such that ρ(y) = 1
for y = x, 0 otherwise; δ⊥ represents the empty distribution such that ρ(X) = 0. We
call a distribution ρ full, or simply a probability distribution, if |ρ| = 1. The set of all
discrete probability distributions over X is denoted by Disc(X).
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The lifting L(B) ⊆ SubDisc(X)×SubDisc(X) [15] of an equivalence relation B on
X is defined as: for ρ1, ρ2 ∈ SubDisc(X), ρ1 L(B) ρ2 if and only if for each C ∈ X/B,
ρ1(C) = ρ2(C). We define the distribution ρ := ρ1 ⊕ ρ2 by ρ(s) = ρ1(s) + ρ2(s)
provided |ρ| ≤ 1, and conversely we say ρ can be split into ρ1 and ρ2. Since ⊕ is
associative and commutative, we may use the notation

⊕
for arbitrary finite sums.

Similarly, we define ρ := ρ1 	 ρ2 by ρ(s) = max{ρ1(s) − ρ2(s), 0}. For notation
convenience, for a state s, we denote by ρ	 s the distribution ρ	 δs.

It is often convenient to consider distributions as relations over X × R
≥0 and thus

explicitly denote the distribution μ by the relation { (s : ps) | s ∈ X, ps = μ(s) }.
A Probabilistic Automaton (PA) [20] A is a quadruple (S, s̄, Σ,D), where S is a

finite set of states, s̄ ∈ S is the start state, Σ is the set of actions, and D ⊆ S ×
Σ×Disc(S) is a probabilistic transition relation. The set Σ is partitioned into two sets
H = {τ} and E of internal (hidden) and external actions, respectively; we refer to s̄
also as the initial state and we let s,t,u,v, and their variants with indexes range over S
and a, b over actions. In this work we consider only finite PAs, i.e., automata such that
S and D are finite.

A transition tr = (s, a, μ) ∈ D , also denoted by s a−→ μ, is said to leave from state
s, to be labelled by a, and to lead to μ, also denoted by μtr . We denote by src(tr)
the source state s, by act(tr) the action a, and by trg(tr) the target distribution μ. We
also say that s enables action a, that action a is enabled from s, and that (s, a, μ) is
enabled from s. Finally, we denote by D(s) the set of transitions enabled from s, i.e.,
D(s) = { tr ∈ D | src(tr) = s }, and similarly by D(a) the set of transitions with
action a, i.e., D(a) = { tr ∈ D | act(tr) = a }.

Weak Transitions. An execution fragment of a PA A is a finite or infinite sequence of
alternating states and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted
by first(α), and, if the sequence is finite, ending with a state denoted by last(α), such
that for each i > 0 there exists a transition (si−1, ai, μi) ∈ D such that μi(si) > 0.
The length of α, denoted by |α|, is the number of occurrences of actions in α. If α is
infinite, then |α| = ∞. Denote by frags(A) the set of execution fragments of A and
by frags∗(A) the set of finite execution fragments of A. An execution fragment α is a
prefix of an execution fragment α′, denoted by α � α′, if the sequence α is a prefix
of the sequence α′. The trace trace(α) of α is the sub-sequence of external actions of
α; we denote by ε the empty trace. Similarly, we define trace(a) = a for a ∈ E and
trace(τ) = ε.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(D) such that for
each finite execution fragment α, σ(α) ∈ SubDisc(D(last(α))). Note that by using
sub-probability distributions, it is possible that with some non-zero probability no tran-
sition is chosen after α, that is, the computation stops after α. A scheduler is deter-
minate [2] if for each pair of execution fragments α, α′, if trace(α) = trace(α′) and
last(α) = last(α′), then σ(α) = σ(α′). A scheduler is Dirac if for each α, σ(α) is a
Dirac distribution. Given a scheduler σ and a finite execution fragment α, the distribu-
tion σ(α) describes how transitions are chosen to move on from last(α). A scheduler σ
and a state s induce a probability distribution μσ,s over execution fragments as follows.
The basic measurable events are the cones of finite execution fragments, where the cone
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of α, denoted by Cα, is the set {α′ ∈ frags(A) | α � α′ }. The probability μσ,s of a
cone Cα is recursively defined as:

μσ,s(Cα) =

⎧
⎪⎨

⎪⎩

0 if α = t for a state t �= s,

1 if α = s,

μσ,s(Cα′ ) ·
∑

tr∈D(a) σ(α
′)(tr) · μtr (t) if α = α′at.

Standard measure theoretical arguments ensure that μσ,s extends uniquely to the σ-
field generated by cones. We call the resulting measure μσ,s a probabilistic execution
fragment of A and we say that it is generated by σ from s. Given a finite execution
fragment α, we define μσ,s(α) as μσ,s(α) = μσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is
the probability of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to μ ∈ Disc(S) labelled
by a ∈ Σ, denoted by s a

=⇒c μ, if there exists a scheduler σ such that the following
holds for the induced probabilistic execution fragment μσ,s: (1) μσ,s(frags

∗(A)) = 1;
(2) for each α ∈ frags∗(A), if μσ,s(α) > 0 then trace(α) = trace(a) (3) for each state
t, μσ,s({α ∈ frags∗(A) | last(α) = t }) = μ(t). In this case, we say that the weak
combined transition s a

=⇒c μ is induced by σ.
We remark that trace(α) = trace(a) is equivalent to trace(α) = ε for a = τ and

trace(α) = a for a ∈ E. Moreover, the first two conditions can be equivalently replaced
by μσ,s({α ∈ frags∗(A) | trace(α) = trace(a) }) = 1.

Given a set of allowed transitions Ǎ ⊆ D , we say that there is an allowed weak
combined transition [13] from s to μ with label a respecting Ǎ, denoted by s a�Ǎ

=⇒c μ,
if there exists a scheduler σ inducing s a

=⇒c μ such that for each α ∈ frags∗(A),
Supp(σ(α)) ⊆ Ǎ.

Albeit the definition of weak combined transitions is somewhat intricate, this defini-
tion is just the obvious extension of weak transitions on labelled transition systems to
the setting with probabilities. See [21] for more details on weak combined transitions.

Example 1. As an example of weak combined transition, consider the probabilistic au-
tomaton depicted in Fig. 2 and the probability distribution μ = {( : 3

4 ), ( 5 : 1
4 )}. It

is immediate to verify that the weak combined transition 1 τ
=⇒c μ is induced by the

Dirac determinate scheduler σ defined as follows: σ( 1 ) = δtr1
, σ( 1 τ 2 ) = δtr2

,
σ( 1 τ 3 ) = δtr3

, σ( 1 τ 2 τ 4 ) = σ( 1 τ 3 τ 4 ) = δtr4
, and σ(α) = δ⊥ for

each other finite execution fragment α. If we consider all transitions but tr2 as allowed
transitions Ǎ, then there is no scheduler inducing 1 τ�Ǎ

=⇒c μ. In fact, using this set of
allowed transitions, the maximal probability of reaching from 1 is 1

4 by the execu-
tion fragment 1 τ 3 τ 4 τ . �
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Fig. 2. A probabilistic automaton

We say that there is a weak (allowed) hy-
per transition from ρ ∈ SubDisc(S) to
μ ∈ SubDisc(S) labelled by a ∈ Σ, de-
noted by ρ a

=⇒c μ (ρ a�Ǎ
=⇒c μ), if there

exists a family of (allowed) weak com-
bined transitions {s a

=⇒c μs}s∈Supp(ρ)

({s a�Ǎ
=⇒c μs}s∈Supp(ρ)) such that μ =

⊕
s∈Supp(ρ) ρ(s) · μs.



76 C. Eisentraut et al.

3 Probabilistic Bisimulations

For non-stochastic systems, the idea of bisimulation can be formalised as a binary sym-
metric relation B over states where each pair of states (s, t) ∈ B satisfies that whenever
s a−→ s′ for some state s′, then there exists a state t′ such that t a−→ t′ and s B t.
Strong bisimilarity is the union of all such strong bisimulations. Bisimulation can be
seen as a game [7, 22, 23], and therefore one often calls s the challenger proposing a
transition and t the defender. Phrased differently, in a bisimulation, every transition of
a challenger must be matched by some transition of its corresponding defender. Weak
bisimulation and bisimilarity is defined analogously, but with the strong transition ar-
row a−→ replaced by its weak variant a=⇒ that in addition allows to perform arbitrary
sequences of τ actions before and after the action a is performed.

When translating the idea of bisimulation to probabilistic systems, it is generalised
in order to account for the probabilistic setting: Transitions −→ and =⇒ are replaced
by their combined variants −→c and =⇒c, and target states s′ and t′ become target
distributions μ and γ over states, respectively. Finally, target distributions must match
up to the lifting ofB to distributions (L(B)). For a detailed motivation of these adaptions
we refer the interested reader to [20]. Strong and weak probabilistic bisimulation can
then be defined as follows.

Definition 1 (Strong and Weak Probabilistic Bisimulations). For a probabilistic au-
tomaton A = (S, s̄, Σ,D), a symmetric relation B over S is a probabilistic bisimula-
tion, if each pair of states (s, t) ∈ B satisfies for every a ∈ Σ: s

a� μ implies t
a� γ for

some γ ∈ Disc(S) and μ L(B) γ.

We call B strong, if � = −→c and weak if � = =⇒c. The union of all strong (weak)
bisimulation relations is called strong (weak) bisimilarity. For a uniform presentation,
our definitions differ from the standard in the challenger’s transition, which usually
chooses a strong and not combined transition. The resulting bisimilarities can, however,
be shown to be identical.

It is worthwhile to observe that weak probabilistic bisimulation is often considered
too fine when it comes to intuitively unobservable behavioural differences [6, 9]. This
has been already illustrated in Fig. 1, where weak probabilistic bisimulation fails to
equate the automata on the left and the right hand side. We are going to shed some
more light on this.

Example 2. (Weak Probabilistic Bisimulation is Too Fine) Consider again the PA de-
picted in Fig. 2, where non-circular shaped states are supposed to have pairwise distinct
behaviour. Intuitively, the observable behaviour of state 1 cannot be distinguished from
that of state 6 : whenever the action c happens, or likewise, any of the non-round states
is reached, this happens with the same probability for both 1 and 6 . In [20], this in-
tuition of what the coarsest reasonable notion of observability is, has been formalised
as trace distribution precongruence, that has been proven equivalent [16] to the notion
of weak probabilistic forward similarity. The latter relates states to probability distri-
butions over states. However, weak probabilistic bisimilarity distinguishes between the
two states, as already the first transition of 1 to the distribution γ =

(
1
2δ 2

)
⊕

(
1
2δ 3

)

cannot be matched by 6 . The reason is that the only distribution reachable from 6 is
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μ =
(
3
4δ 4

)
⊕

(
1
4δ 5

)
. Clearly, for μ L(B) γ to hold, all states 2 , 3 , 4 and 5 must

be equivalent. However, this cannot be the case, as for example 5 cannot perform any
transition, while state 4 can perform a transition labelled with c. This means that al-
though, 1 and 6 show the same observable behaviour with the same probability, they
are distinguished by weak probabilistic bisimilarity.

Notably, all the distributions δ 1 ,
(
3
4δ 4

)
⊕
(
1
4δ 5

)
, and γ are pairwise trace distribu-

tion precongruent (and weak probabilistic forward similar). �

With these motivations in mind, several probabilistic bisimulation variants defined on
probability (sub)distributions over states have been introduced for the strong setting [11]
and for the weak setting [5, 8, 9]. For the weak setting, there currently exist three dif-
ferent variations, however, two of them essentially coincide [6]. We will recall these
notions in the following. Again, our definitions differ from the original definitions for
the sake of a uniform presentation, which allows to highlight differences and similarities
clearly.

Definition 2 (Strong and Weak Probabilistic Distribution Bisimulations). For a PA
A = (S, s̄, Σ,D), a symmetric relation B over SubDisc(S) is a probabilistic distribu-
tion bisimulation, if each pair of subdistributions (μ, γ) ∈ B satisfies |μ| = |γ| and for
every a ∈ Σ

(a) μ
a� μ′ implies γ

a� γ′ for some γ ∈ SubDisc(S) and μ′ B γ′.
(b) μ = μ1⊕μ2 implies γ = γ1 ⊕ γ2 for some γ1, γ2 ∈ SubDisc(S) such that μi B γi

for i ∈ {1, 2}.

As before, we obtain the strong and weak variants by replacing � by −→c and =⇒c

respectively; the corresponding bisimilarities are defined as the union of all respective
bisimulations.

As shown in [11] (for strong) and [8] (for weak), these distribution-based bisimilar-
ities are indeed reformulations of their state-based counterparts, in so far that for two
states s and t, the distributions δs and δt are bisimilar in the distribution-based bisimu-
lations, if and only if s and t are bisimilar in the respective state-based counterparts.

The weak bisimilarities defined in [9] and [5] (for Markov automata) coincide [6],
if restricted to probabilistic automata, but do not correspond to any known state-based
bisimilarity. We can define them as follows.

Definition 3 (Weak Distribution Bisimulation). For a PA A = (S, s̄, Σ,D), a sym-
metric relation B over SubDisc(S) is a weak distribution bisimulation, if each pair of
subdistributions (μ, γ) ∈ B satisfies |μ| = |γ| and for every a ∈ Σ

(a) μ a
=⇒c μ

′ implies γ a
=⇒c γ

′ for some γ′ ∈ SubDisc(S) and μ′ B γ′.
(b) μ = μ1 ⊕ μ2 implies γ τ

=⇒c γ1 ⊕ γ2 for some γ1, γ2 ∈ SubDisc(S) such that
μi B γi for i ∈ {1, 2}.

The union of all weak distribution bisimulation relations is called weak distribution
bisimilarity, denoted by ≈. It is an equivalence relation and the coarsest weak distribu-
tion bisimulation relation. Two PAs are weak distribution bisimilar if the Dirac distri-
butions of their initial states are weak distribution bisimilar in the direct sum of the two
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PAs, i.e., in the automaton whose components are the disjoint union of the components
of the two automata. We project the relation ≈ to states (denoted ≈δ) as follows. We
say that two states s, t are related by ≈δ ⊆ S × S, if and only if δs ≈ δt.

The strength of this definition is the introduction of a weak transition in Condi-
tion (b). As already noted in [8], this is in fact the only difference to weak probabilistic
distribution bisimulation (Def. 2).

While in Ex. 2 we have argued that the distributions γ =
(
1
2δ 2

)
⊕

(
1
2δ 3

)
and

μ =
(
3
4δ 4

)
⊕

(
1
4δ 5

)
are not weak probabilistic bisimilar in the PA of Fig. 2, they

satisfy μ ≈ γ, because γ τ
=⇒c μ, which is effectively the only transition of γ, and it thus

directly satisfies Condition (a) and (b) of Def. 3.
So while distribution-based bisimulations give rise to coarser and more natural no-

tions of equality, they also have severe drawbacks. A distribution-based bisimulation re-
lation that is to be constructed in order to prove two systems bisimilar is much harder to
define than for a state-based relation: For state-based bisimulations only the set of reach-
able states must be considered and suitably related pairwise. In contrast for distribution-
based systems the potentially uncountable set of all reachable distributions needs to be
considered. This gets problematic when it comes to algorithmic checks for bisimilarity,
for example, in the context of verification of systems and state-space minimisation by
bisimulation quotienting. Standard partition refinement approaches usually applied in
this context seem infeasible here, as even for finite state space, the problem space (i.e.,
the reachable distributions) is uncountable.

For the strong and weak distribution-based bisimilarities according to Def. 2 the
above issue is not a problem, since they can be reduced to the state-based setting. For
weak distribution bisimilarity according to Def. 3, the situation is more complicated as
no state-based characterisation is known, and it is by far not obvious how to arrive at
such a characterisation. To approach this, we will now give an intuitive explanation why
the fact that weak probabilistic bisimilarity is too distinctive seems rooted in the fact
that it is a naturally state-based relation, and then explain how to overcome the problem
while maintaining the state-based bisimulation approach as far as possible.

For the discussion that follows, we assume a generic underlying notion of observa-
tion equivalence such as a trace distribution-based equivalence. We call a state s be-
haviourally pivotal, if s τ−→ μ implies that s and μ are not observation equivalent, i.e.,
μ is not able to perform μ τ=⇒c ρ such that s and ρ are observation equivalent.

Ex. 2. (cont’d) (Behaviourally Pivotal States) Assume again that all non-round states of
the PA in Fig. 2 induce pairwise distinct behaviour (for example each state can only per-
form a different external action). Then state 4 is behaviourally pivotal, since none of
its internal successor distributions δ and δ can behaviourally match the other, and thus
cannot preserve the behaviour of s. Trivially, also 5 is behaviourally pivotal, since it
has no successors. In contrast, all other states are not behaviourally pivotal, as for each
of them the behaviour is fully preserved by one of its respective τ -successor distri-
butions. In particular, state 2 is not behaviourally pivotal since its behaviour is fully
preserved by δ 4 via transition 2 τ−→ δ 4 . �
Consider the probability distribution μ =

(
3
4δ 4

)
⊕

(
1
4δ 5

)
over behaviourally piv-

otal states. From the perspective of the individual behaviour of the single states in its
support, this distribution is different from the distribution γ =

(
1
2δ 2

)
⊕

(
1
2δ 3

)
over
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non-pivotal states. For example, from the perspective of an observer, 3 ∈ Supp(γ)
can perform the transition to with at most probability 1

2 . In comparison, state 4 ∈
Supp(μ) can perform this transition with probability 1, while 5 ∈ Supp(μ) cannot
perform this transition at all.

However, as we have discussed in Ex. 2, both distributions as such can be regarded as
observation equivalent. Weak probabilistic bisimilarity, however, focusing on state-wise
behaviour, needs to distinguish between μ and γ regardless of the fact that distribution
γ, consisting only of non-pivotal states, can by no means be noticed by an observer, as
it is merely skipped over on the way from 1 to μ.

From the discussion so far, we will now derive necessary steps to recast Def. 3 in
a state-based setting. As we have seen, the fact that weak probabilistic bisimilarity
is arguably too fine is mainly due to the fact that it is too much focused on single
state behaviour. More precisely, the problem is that it treats behaviourally non-pivotal
states (e.g., 2 and 3 ) in the same way as pivotal states (e.g., 4 and 5 ). To overcome
this, a state-based characterisation of weak distribution bisimilarity will first of all iden-
tify pivotal states, and then, speaking from the game perspective on bisimulation, allow
the bisimulation challenger only to propose a challenging transition to a distribution
over pivotal states.

Example 3. When we want to show that 1 and 6 are weak distribution bisimilar, then
the challenger should not be allowed to propose the transition to γ =

(
1
2δ 2

)
⊕
(
1
2δ 3

)
,

which has non-pivotal states in its support (actually both states are non-pivotal). Instead,
it may only propose

(
3
4δ 4

)
⊕
(
1
4δ 5

)
.

In fact, our approach will not characterise pivotal states explicitly, but rather use a set
of distinguished internal transitions (s, τ, μ) ∈ D(τ) with the property that δs and μ
are behaviourally equivalent. We call such transitions preserving. As a state is pivotal
if it has no internal successor distribution that can fully mimic its behaviour, the set of
pivotal state then is exactly the set of all states that do not enable a preserving transition.

The technically crucial idea of our approach is to define the bisimulation relation B
over states and the set P of distinguished transitions simultaneously. The definitions of
B and P will be mutually dependent. This allows us to use the information from set P
to identify pivotal states when defining the bisimulation B. Vice versa, the information
provided from the bisimulation B allows us to determine when a state has a τ -successor
distribution, that is behaviourally equivalent. As it is technically more convenient, we
will not formally define the notion of pivotal states in the sequel, but directly work with
the notion of preserving transitions instead.

Definition 4 (Preserving Transitions). Let B be an equivalence relation on S. We call
an internal transition (s, τ, γ) ∈ D(τ) preserving with respect to B if whenever s a

=⇒c μ
then there exist μ′, γ′ such that μ τ�P

=⇒ c μ
′, γ a

=⇒c γ
′, and μ′ L(B) γ′.

We call a set P ⊆ D(τ) preserving with respect to B if it only consists of preserving
transitions.

Example 4. In Fig 2, transitions tr1, tr2, tr3 and tr5 are preserving, while all other
transitions are not. It is especially interesting to note that tr2 is preserving while the
other internal transition leaving 2 is not, as is not behaviourally equivalent to 2 .
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Given a set P of preserving transitions, we from now on call weak (hyper) transitions of
the form τ�P

=⇒ preserving weak (hyper) transitions, and τ�P
=⇒ c preserving weak combined

(hyper) transitions.

Definition 5 (State-Based Characterisation of Weak Distribution Bisimulation).
An equivalence relation B on S is called a state-based weak distribution bisimulation,
if there is a set P ⊆ D(τ) that is preserving with respect to B and whenever s B t,

1. if s a=⇒c μ for some μ, then t a=⇒c γ for some γ, such that there exists μ′ such that
μ τ�P

=⇒ c μ
′ and μ′ L(B) γ;

2. if s τ�P
=⇒ c μ for some μ, then t τ�P

=⇒ c γ for some γ, such that there exists μ′ such that
μ τ�P

=⇒ c μ
′ and μ′ L(B) γ.

We write s ≈s t if there exists a state-based weak distribution bisimulation relating
s and t.

s μ

μ′

γ γ′ L(B)

a

τP �

a

τ �P

C

C

C

s μ

μ′
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Fig. 3. Preserving transitions (left) and Condition 1 of state-based weak distribution bisimulation

In Fig. 3, preserving transitions and state-based weak distribution bisimulation are
explained graphically. Solid lines denote challenger transitions, dashed lines defender
transitions. Different to weak probabilistic bisimulation, the role of the defender in the
bisimulation game is no longer linked exclusively to transitions of t. Although the weak
allowed hyper transition from μ to μ′ originates from a successor distribution of s rather
than t, the defender can choose this transition. As a consequence, the defender does not
need to match the challenging distribution μ directly, but it is allowed to choose an arbi-
trary distribution μ′, which it is able to match, as long as μ τ�P

=⇒ c μ
′. In intuitive terms,

a transition (t, τ, ξ) is in P if t is non-pivotal; the existence of a transition μ τ�P
=⇒ c μ

′

(with μ �= μ′) means that μ must contain non-pivotal states, and thus, we liberate the
defender from its obligation to match μ by allowing it to match μ′ instead. At the same
time, if μ was a distribution exclusively over pivotal states, then no μ′ �= μ would exist
such that μ τ�P

=⇒ c μ′. Thus, the defender is forced to match exactly distributions over
pivotal states. Intuitively, we want a transition s τ−→ γ to be contained in P , exactly if s
and γ allow the same observations, which in turn means that s is non-pivotal. Formally,
this is achieved by defining P completely analogous to the state-based characterisation
of weak distribution bisimulation. The only difference is that the role of the defender is
played by a distribution γ, instead of a state.

So far, we have left Condition 2 of Def. 5 unmentioned, which expresses that if one
of two related states can perform transitions within P , then also the other state must be
able to match these transitions within P . This condition might come unexpected, and
we claim, that the condition can be dropped without affecting the resulting notion of
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bisimilarity. Yet, currently it is needed for the proof of Thm. 1, which establishes that the
distribution-based and the state-based characterisation of weak distribution bisimilarity
are indeed equivalent.

Example 5. (State-Based Weak Distribution Bisimulation) Consider again the PA de-
picted in Fig. 2 and suppose that states , , and are not weak bisimilar. The equiva-
lence relation B whose non-singleton classes are { 1 , 6 } and { 2 , 4 } is a state-based
weak distribution bisimulation, given P = {tr1, tr2, tr3, tr5}.

Checking the step condition for the pair ( 2 , 4 ) is trivial, so let us focus on the pair
( 1 , 6 ). Each weak combined transition 6 τ=⇒c μ enabled by 6 , can be matched by 1

by reaching μtr5
(via preserving transitions tr1, tr2, and tr3 chosen with probability 1)

and then behaving as in 6 τ
=⇒c μ. If we stay in 6 with non-zero probability, then we

remain in 1 with the same probability and the lifting condition is satisfied.
Now, consider the weak transition 1 τ

=⇒c μ enabled by 1 , where μ = {( 2 : 1
2 ),

( 3 : 1
2 )} (this is actually the ordinary transition tr1). 6 has no way to reach μ so it

needs help of 1 to match such a transition: 6 performs the transition 6 τ
=⇒c γ where

γ = {( 4 : 3
4 ), ( 5 : 1

4 )}, i.e., it performs tr5, while μ reaches γ by the preserving
weak hyper transition μ τ�P

=⇒ c γ by choosing with probability 1 preserving transitions
tr2 from 2 and tr3 from 3 and then stopping.

The transition 1 τ
=⇒c μ is not the only weak combined transition enabled by 1 .

It enables, for instance, the weak combined transition 1 τ=⇒c ρ where ρ = {( :
1
2 ), ( 3 : 1

2 )}. 6 matches this transition by enabling 6 τ
=⇒c φ where φ = {( :

1
2 ), ( 4 : 1

4 ), ( 5 : 1
4 )} that can be reached from ρ by the preserving weak hyper tran-

sition ρ τ�P
=⇒ c φ obtained by performing no transitions from and choosing tr3 (that

is preserving) with probability 1 and then stopping. There are several other transitions
enabled by 1 that can be matched in a similar way.

Finally, we want to remark that weak probabilistic distribution bisimulation given in
Def. 2 is obtained from Def. 5 by requiring P = ∅, since, when P = ∅, we have that
s τ�∅

=⇒c μ implies μ = δs as well as μ τ�∅
=⇒c μ

′ implies μ′ = μ.

4 Correctness of the Characterisation

The correctness of the state-based characterisation of weak distribution bisimilarity will
be formalised by Thm. 1. We obtain this equality in a slightly restricted setting where
we collapse probability 1 cycles, or maximal end components (mecs) [4], i.e., τ -cycles
where it is possible to return to each state of the cycle with probability 1. This restric-
tion, that is due to technical reasons, does not affect the general applicability of Thm. 1
since collapsing mecs preserves ≈δ , as stated by Lemma 1.

We will now define the restricted setting in which we will then establish the correct-
ness proof. Along the way, we will present insightful examples where the unrestricted
setting has caused unexpected difficulties. In the restricted setting, we will only consider
PAs, where no cyclic structure in the following sense exists.

Definition 6 (Maximal End Components). Given a PA A with set of states S, a maxi-
mal end component (mec) is a maximal set C ⊆ S such that for each s, t ∈ C: s τ

=⇒c δt
and t τ

=⇒c δs.
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The definition stems from [4]. The set of all mecs is a disjoint partitioning of S. Thus,
the relation =mec, where s =mec t if and only if s and t lie in the same mec, is an
equivalence relation on states. All states that lie in the same mec can mutually reach
each other with τ transitions with probability 11. It is thus straightforward to show that
such states are weak distribution bisimilar.

Lemma 1. s =mec t implies s ≈δ t.

Surprisingly, the presence of mecs in a PA leads to unexpected results. In general, it
is folklore knowledge that replacing the weak challenger transition s a=⇒c μ of weak
bisimulation by a strong challenger transition s a−→ μ leads to equipotent characterisa-
tions of the induced bisimilarities. For state-based weak distribution bisimilarity, this
is not the case. We will refer to this variation of Definition 5 as the strong challenger
characterisation in the sequel.

sv t

τ

τ, P

τ, P a

Example 6. (Strong Challenger Characterisation is Broken in the Presence of Mecs.)
Consider the automaton above. All transitions in this example are Dirac transitions. We
label two transitions with τ, P in order to express that they are elements of P , the set
of supposedly preserving transitions considering the strong challenger characterisation.
Note that, however, the transition from s to v is not a preserving transition in the
sense of the original definition with respect to any bisimulation relation B, since s

can reach with a weak a transition, whereas v cannot perform an a transition at
all. However, all conditions of the strong challenger characterisation are satisfied. The
only non-preserving strong transition s can perform is the one to t . Now it is enough
that t can reach v via preserving transitions, by using t τ−→ δs and s τ−→ δv. For
completeness, it is easy to check that the transition from t to s satisfies the conditions
to be a preserving transition. With this result, it is straightforward to construct two
bisimulations B1 and B2 (satisfying the strong challenger characterisation), where B1

is the reflexive, transitive and symmetric closure of the relation containing only the pair
( v , s ) and B2 accordingly containing ( s , t ). It is easy to check that for both B1 and
B2 our choice of preserving transitions satisfies the strong challenger characterisation.
If this characterisation now indeed was equivalent to ≈δ , the restriction of ≈ to states,
then also v ≈δ s and s ≈δ t would hold and thus, by transitivity, also v ≈δ t .
But clearly, this cannot hold, as t can perform an a-transition while v cannot.

These considerations led us to only consider mec-contracted PAs in the following.

Definition 7 (Mec-Contracted PA). A PA A is called mec-contracted, if for each pair
of states s, t ∈ S, s τ=⇒c δt and t τ=⇒c δs implies s = t.

Obviously, the quotient under =mec is a mec-contracted automaton, where the quotient
under =mec of a PA A is defined as follows:

1 Note that mecs are not necessarily bottom strongly connected components, as a mec may well
be escaped by τ transitions.
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Definition 8 (Quotient under =mec). Given a PA A = (S, s̄, Σ,D) and the equiv-
alence relation =mec on S, the quotient under =mec of A is the automaton A′ =
(S/=mec, [s̄]=mec , Σ,D/=mec) where D/=mec = { ([s]=mec , a, [μ]=mec) | (s, a, μ) ∈ D }
and [μ]=mec ∈ Disc(S/=mec) is the probability distribution defined for each C ∈ S/=mec

as [μ]=mec(C) = μ(C).

In the restricted setting we have introduced, the following theorem states that the state-
based characterisation (Def. 5) of weak distribution bisimulation is indeed equivalent
to the original distribution-based definition (Def. 3).

Theorem 1 (Equivalence of Characterisations). If A is a mec-contracted PA, then
for every t and t′ in S, t ≈δ t′ if and only if t ≈s t

′.

5 Decision Procedure

In this section we investigate algorithms for distribution bisimilarity that decide whether
two states of an automaton are equivalent. For strong and weak probabilistic distribu-
tion bisimilarity, we can rely on existing decision algorithms for the corresponding
state-based characterisations [1, 2]. If we want to relate a pair of distributions (μ, ν),
we can introduce two fresh states from which a transition with a fresh label goes to
distribution μ, respectively ν, and then check the bisimilarity of these two states with
the above mentioned algorithms tailored to the state-based setting. For weak distribu-
tion bisimilarity, we can proceed accordingly, provided we have a decision algorithm
for state-based weak distribution bisimilarity. In the rest of this section, we will devise
such an algorithm.

More precisely, the algorithm constructs S/≈s, the set of equivalence classes of
states under ≈s. In contrast to all known bisimulation variants, we cannot blindly apply
the standard partition refinement approach [2, 14, 18], since we potentially split equiv-
alence classes that should not be split as the result of a negative interference between
the set of preserving transitions and the current partitioning, as Ex. 7 will show. We
shortly repeat the general idea of partition refinement to illustrate the problems we face.
Partition refinement starts with an initial partition W, which only consists of a single
set (called a block) containing all states. Thus, all states are assumed to be pairwise
state-based weak distribution bisimilar. This assumption is then checked, and usually
there is a reason to split the block. Refining the partition then means we successively
split a block in two (or more) blocks, whenever it contains states still assumed state-
based weak distribution bisimilar in the previous iteration of the refinement loop, while
in the current iteration they violate any of the state-based weak distribution bisimula-
tion conditions. When no more splitting is possible, the algorithm has found the largest
state-based weak distribution bisimulation and returns that.

In our setting, we have to manipulate also the set of preserving transitions P , since
it depends on the equivalence relation induced by the partition. The obvious way is to
start initially with the set D(τ) of all internal transitions. Transitions are then elimi-
nated from this set, as soon as they violate Def. 4. However, as it turns out, the two
procedures, partition refinement and transition elimination, interfere negatively. Focus-
ing on Condition 1 of Def. 5, the challenging transition s a

=⇒c μ is only dependent on
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the transition relation underlying the given PA, but not on the current partition or P .
In contrast, Condition 2 demands s τ�P

=⇒ c μ. However, the existence of such transition
depends on P , which itself varies over the refinement process. As a consequence, we
can obtain false negatives, if P still contains a transition starting from s that will not
be contained in the final P , while the corresponding transition from t has already been
eliminated from P during an earlier refinement step.

Example 7. Let s τ−→ and s τ−→ and also t τ−→ and t τ−→ . Assume that states
and are not weak distribution bisimilar. Then, clearly, none of the transitions is

preserving. However, s and t are obviously weak distribution bisimilar. Assume the
transition t τ−→ has been eliminated from the candidate set P , but s τ−→ has not.
Then, when we check whether s and t satisfy the second condition of Def. 5, s τ�P

=⇒ c δ
holds, but t τ�P

=⇒ c δ does not. Thus, s and t will be erroneously split.

DECIDE(A)

1: A′ = QUOTIENT-UNDER-MEC(A)
2: W = ∅
3: for all P ⊆ D(τ ) do
4: W′ = QUOTIENT-WRT-PRES(A′, P )
5: W = JOIN(W,W′)
6: return W

QUOTIENT-WRT-PRES(A, P )

1: W = {S};
2: repeat
3: W′ = W;
4: if not CONSISTENCY(P,W) then
5: return ∅
6: (C, a, ρ) = FINDSPLIT(W, P );
7: W = REFINE(W, (C, a, ρ));
8: until W = W′

9: return W

If we remove Condition 2 from Def. 5, then we can show that the set P can be correctly
refined with respect to W. Since currently we have to maintain such condition, we adopt
a brute force approach, where we first fix P , and refine W according to the standard
partition refinement approach with respect to the set P .2

We repeat the refinement described for every possible set of preserving transitions.
This is done inside the for loop of the main procedure, DECIDE, of the algorithm. This
means we consider all subsets of D(τ), which, unfortunately, is of size in O(2|D|).

The partition refinement happens in procedure QUOTIENT-WRT-PRES, which is pa-
rameterised by P . This procedure is entirely unsurprising except for a consistency
check performed in procedure CONSISTENCY: During each refinement iteration of W
in QUOTIENT-WRT-PRES, we check whether the currently assumed set P actually still
satisfies Def. 4. If it does not, we stop refining and immediately return W = ∅.

After each call of QUOTIENT-WRT-PRES, in procedure DECIDE the returned par-
titioning W is joined with the previously computed partitioning W′. Procedure JOIN

computes the partitioning that results from the union of the two partitionings. Treat-
ing W and W′ as equivalence relations over S, it computes the reflexive, transitive and
symmetric closure of W ∪ W′. Thus, when QUOTIENT-WRT-PRES returns ∅ in order to
indicate that no weak distribution bisimulation exists for the current candidate P , this
result will not change W′.

2 In the following, we will treat W both as a set of partitions and as an equivalence relation,
wherever convenient, without further mentioning.
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As the algorithm is based on the state-based characterisation of weak distribution
bisimulation, we cannot apply the algorithm on arbitrary PAs directly, but only on mec-
contracted. Therefore, we have to transform every input PA into a mec-contracted PA
before further processing. This is done in Line 1 of procedure DECIDE, where pro-
cedure QUOTIENT-UNDER-MEC is applied. This procedure computes the quotient PA
with respect to =mec. Clearly, this quotient is mec-contracted by definition. Deciding
=mec is very efficient [3]. Lemma 1 guarantees the soundness of this approach with
respect to deciding ≈δ .

5.1 Matching Weak Transitions, Consistency Checking, and Splitting

Before we provide explanations of the procedures FINDSPLIT and REFINE, we first
discuss how to construct matching weak transitions. The following enables us to effec-
tively compute the existence of two matching weak transitions.

Proposition 1 (cf. [13, Prop. 3]). Given a PA A, two sub-probability distributions
ρ1, ρ2 ∈ SubDisc(S) such that |ρ1| = |ρ2| > 0, two actions a1, a2 ∈ Σ, two sets
Ǎ1, Ǎ2 ⊆ D of transitions, and an equivalence relation W on S, the existence of
μ1, μ2 ∈ SubDisc(S) such that

ρ1
a1�Ǎ1
=⇒ c μ1, ρ2

a2�Ǎ2
=⇒ c μ2, and μ1 L(W) μ2

can be checked in polynomial time.

The proof that this check, that we denote by P (W, ρ1, a1, Ǎ1, ρ2, a2, Ǎ2), can be per-
formed in polynomial time relies on the construction of a generalised flow problem, that
in turn can be encoded into an LP-problem of polynomial size spanned by the param-
eters ρ1, ρ2, a1, a2, Ǎ1, Ǎ2, and W. Details are given in [13] whose Prop. 3 considers
ρ′1, ρ

′
2 ∈ Disc(S); the above proposition follows by choosing the normalised distribu-

tions ρ′i = ρi/|ρi| for i = 1, 2. An exponential algorithm solving this task has been
given in [2].

CONSISTENCY(P,W)

1: for all (s, τ, ρ) ∈ P do
2: for all (s, a, μ) ∈ T do
3: if P (W, μ, τ, P, ρ, a,D)

has no solution then
4: return false
5: return true

FINDSPLIT(W, P )

1: for all (s, a, ρ) ∈ T do
2: for all t ∈ [s]W do
3: if (s, a, ρ) ∈ TP then
4: if P (W, ρ, τ, P, δt, a, P ) has no

solution then
5: return ([s]W, a, ρ)
6: else
7: if P (W, ρ, τ, P, δt, a,D) has no

solution then
8: return ([s]W, a, ρ)
9: return (∅, τ, δ⊥)

Now we are ready to explain the remaining procedures. Following the same line as
for instance [2], QUOTIENT-WRT-PRES makes use of a sub-procedure REFINE, which
actually creates a finer partitioning, as long as there is a partition containing two states
that violate the bisimulation condition, which is checked for in procedure FINDSPLIT.
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More precisely, as in [2], procedure REFINE divides partition C into two new parti-
tions according to the discriminating behaviour a−→ μ, which has been identified by
FINDSPLIT before. We do not provide REFINE explicitly.

In FINDSPLIT, the sets T and TX ⊆ T contain all transitions and all candidate
preserving transitions, respectively, we have to match: T is the set of combined weak
transitions and TX is the set of combined candidate preserving weak transitions (de-
fined by a scheduler using only candidate transitions in X) for state-based weak distri-
bution bisimulation. Note that it is sufficient to use for T (TX ) the set of (preserving)
weak transitions defined by Dirac determinate schedulers (on preserving transitionsX),
which is a finite set (cf. [2, Prop. 3, 4]). Unfortunately, this set may be exponential,
which also gives rise to an overall exponential run-time complexity of the algorithm.

Both procedures FINDSPLIT and CONSISTENCY rely on Prop. 1. By verifying
P (W, μ, τ, P, δt, a,D) in their conditional statement, they check the corresponding
conditions from Def. 4 (preserving transitions) and Def. 5 (state-based characterisation
of weak distribution bisimulation), respectively.

6 Related Work

Recently, the problem of a decision algorithm for MA weak bisimilarity has been ad-
dressed by Schuster and Siegle [19]. The treatment uses the concept of tangible states,
which seems dual to our preserving transitions in the sense that a state is tangible if and
only if it has no outgoing preserving transitions. The algorithm presented is a nested
fixed-point computation with exponential time complexity. It iteratively refines a can-
didate state partition while iteratively enlarging the set of candidate tangible states. No
correctness proof is provided. A particular obstacle we see is that some of the crucial
correctness arguments need to be applied to candidate partitions which by construction
do not represent weak bisimulation relations (except for the last one, provided the algo-
rithm is correct). But these arguments are established to hold only in case the partitions
do indeed represent weak bisimulation relations.

7 Concluding Remarks

This paper has developed a decision algorithm for weak distribution bisimulation on
probabilistic automata. It can be extended straightforwardly to Markov automata. This
algorithm can be considered as the nucleus for extending the compositional specifica-
tion and reasoning means in use for IMC to the more expressive MA setting. Albeit
being a distribution-based relation, we managed to circumvent uncountability in the
carrier set by a state-based characterisation. The main obstacle has not been the issue
of finding an alternative characterisation of ≈δ and deriving a decision algorithm from
there. Rather, the formal proof that the characterisation is indeed equivalent to the one
of [9] has been very challenging. As Ex. 6 and Ex. 7 show, the pitfalls are hidden in
seemingly obvious places. The presented algorithm uses worst-case exponential time
and polynomial space, and we are investigating its theoretical and practical runtime
characteristics further.
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23. Thomas, W.: On the Ehrenfeucht-Fraı̈ssé game in theoretical computer science. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) TAPSOFT 1993. LNCS, vol. 668, pp. 559–568. Springer,
Heidelberg (1993)

http://arxiv.org/abs/1205.6192

	Deciding Bisimilarities on Distributions
	1Introduction
	2Preliminaries
	3Probabilistic Bisimulations
	4Correctness of the Characterisation
	5Decision Procedure
	5.1Matching Weak Transitions, Consistency Checking, and Splitting

	6Related Work
	7 Concluding Remarks
	References




