
ar
X

iv
:1

20
9.

59
03

v3
 [

cs
.L

O
]

 3
 J

un
 2

01
3

Interaction and observation: categorical

semantics of reactive systems trough dialgebras

Vincenzo Ciancia⋆

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Consiglio Nazionale delle Ricerche

Pisa, Italy

Abstract. We use dialgebras, generalising both algebras and coalge-
bras, as a complement of the standard coalgebraic framework, aimed at
describing the semantics of an interactive system by the means of reac-
tion rules. In this model, interaction is built-in, and semantic equivalence
arises from it, instead of being determined by a (possibly difficult) un-
derstanding of the side effects of a component in isolation. Behavioural
equivalence in dialgebras is determined by how a given process inter-
acts with the others, and the obtained observations. We develop a tech-
nique to inter-define categories of dialgebras of different functors, that in
particular permits us to compare a standard coalgebraic semantics and
its dialgebraic counterpart. We exemplify the framework using the CCS
and the π-calculus. Remarkably, the dialgebra giving semantics to the
π-calculus does not require the use of presheaf categories.

1 Introduction

A system is called interactive when its semantics depends upon interaction with
a surrounding environment. The semantics does not just yield a value (or not
at all), but rather it consists in the denotation of the behaviour of the system
itself, usually described either by reaction rules or by a labelled transition system
(LTS). The difference is illustrated by the following example, defining a reaction
rule for the synchronisation of two parallel processes in a process calculus (the
rule on the left) or the LTS variant (the three rules on the right):

a.P ‖ ā.Q → P ‖ Q a.P
a

−→ P ā.P
ā

−→ P
P

a
−→ P ′ Q

ā
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

Here a.P is a process waiting for a signal on channel a, whose continuation is
P . Similarly, ā.P sends a signal on a, while P ‖ Q is the parallel composition of
two processes. The reaction rule may be read as “whenever two processes can

⋆ The research leading to these results was partially supported by the EU FET 7FP
Collaborative Project n. 600708 (QUANTICOL), the PAR FAS 2007-2013 (TRACE-
IT) project, and the EU 7FP projects n. 256980 (NESSoS), n. 257930 (Aniketos), n.
295354 (SESAMO).

http://arxiv.org/abs/1209.5903v3

synchronise, they do, and evolve into the parallel composition of their continua-
tions”. The LTS rules may be read as: “whenever a process can send or receive a
signal, it evolves into its continuation, and has a side effect on the environment”.
Two processes with complementing side effects interact by the last rule.

LTSs are widely used for modelling the semantics of interactive systems,
since they come equipped with bisimilarity, a form of behavioural equivalence
that specifies when the semantics of two processes is the same. Coalgebras gen-
eralise LTSs and have a standard definition of bisimilarity, coinciding with kernel
equivalence of morphisms under mild assumptions. Many formalisms received a
coalgebraic treatment. This becomes increasingly harder as the complexity of
the calculus grows, depending on the general question of what are side effects in
a specific calculus. For example, dealing with name allocation in the π-calculus
requires the use of presheaf categories (see e.g. [1]).

In this work, we seek for a setting where reaction rules are the main object of
study, and side effects or labels are not needed at all to define behavioural equiv-
alence. We use a generalisation of coalgebras, namely dialgebras, to represent a
rule system as an object in a category, so that kernel equivalence can be used
as a notion of behavioural equivalence. To appreciate the difference, consider a
function f : X → P(L×X). It specifies an LTS with states in X describing, for
each state x, the non-deterministic choices at x, the side effects of each choice,
and the resulting state. In LTSs, and coalgebras, elements are observed in iso-
lation. In contrast, an example of a dialgebra is f : X ×X → P(X). The value
of f(x, y) is meant to describe the possible (non-deterministic) outcomes of an
interaction between x and y. Elements are not observed in isolation, but rather
their mutual interactions define the semantics.

Categories of dialgebras were first studied under the name of generalised al-
gebraic categories (see e.g. [2,3]). These structures have been used in computer
science for the specification of data types [4,5]. A systematic study of dialgebras,
patterned after [6], was done in [7]. Applications to a compositional calculus
for software components were proposed in [8]. In [9], we modelled asynchronous
process calculi as isolated machines that can be fed with input tokens by an
external observer, using dialgebras to generalise Mealy machines. In this paper
we aim at a more intensional characterisation, tailored to reaction rules, ob-
tained by studying interaction between pairs of systems rather than the relation
between their input and output. Our work diverts from previous research, as
we take a “local” approach. Instead of studying a whole category of dialgebras,
one just considers objects that are reachable by morphisms from the particular
dialgebra being studied. This approach addresses the issue, previously unsolved,
that a final dialgebra fails to exist, so there is no universal semantic domain for
the whole class of considered objects. To obviate to this, in §2, we study the
bisimilarity quotient of a specific system, showing that it exists under mild con-
ditions. The bisimilarity quotient is sufficient to provide a canonical semantics
to an interactive system up-to behavioural equivalence, by the means of a canon-
ical epimorphism. Indeed, a universal model is also useful to compare different
systems of the same type. However, this is not typical in coalgebraic program

semantics, as different systems have different types, representing different kinds
of side effects. In dialgebraic program semantics, just like in the coalgebraic case,
working with different systems requires the use of categorical comparisons. In
§4, we develop techniques to do so in the local perspective.

In §5 we provide two examples: the Calculus of Communicating Systems and
the π-calculus. The simplicity of the former allows us to cleanly illustrate our
framework, including the comparisons of §4, used to prove the equivalence of
the coalgebraic and dialgebraic semantics. On the other hand, the dialgebraic
semantics of the π-calculus provides an important insight: using reaction rules,
one does not need to understand what are the side effects of programs, as in-
teraction is sufficient to characterise their behaviour. Thus, the semantics of the
calculus is given as a dialgebra in Set, without the need to resort to presheaf
categories to describe bisimilarity; but nevertheless, we are able to prove that
standard dialgebraic bisimilarity coincides with early bisimilarity. It is also worth
notice that the close relationship between the two calculi permits us to define
the dialgebra for the π-calculus by just changing one rule from the dialgebra
for the CCS. This is possible since both systems can be described by the means
of binary interactions and non-deterministic observations ; that is, they use the
same functors. We introduce these two simple functors in §3, together with a
characterisation theorem for the associated behavioural equivalence.

Related work. The most widely known framework for the categorical seman-
tics of reactive systems is the so-called “contexts as labels” approach [10,11,12].
Roughly, an LTS is derived from reaction rules adopting unary contexts as labels;
bisimilarity of such LTS serves as behavioural equivalence. Nevertheless,minimal
contexts need to be carefully selected in order to obtain a sensible equivalence
relation; the obtained semantics depends on this choice, and is not directly spec-
ified by the reaction rules themselves. The resulting categorical framework is
highly non-trivial. Dialgebras, in contrast, provide a simple setting in which to
study reactive systems. However, compositionality, which is a foundational rea-
son to use contexts as labels, and certainly a desired feature, has not yet been
investigated for dialgebras (more on this in the conclusions). For the time being,
dialgebras complement algebras and coalgebras, rather than bialgebras.

2 Dialgebras

A coalgebraic semantics can be interpreted as the discerning power of an observer
that can see all the actions done by a process. In contrast, dialgebras endow
the observer with the ability to interact with the system. The passive observer
becomes an entity which runs experiments and observes the results. By this
change of point of view, we can represent e.g. input as an experiment in which
the observer feeds a system with a value [9], or we can represent interaction as
a binary experiment involving two processes as we do in the current paper.

We restrict all our definitions to the category Set, but indeed the theory of
dialgebras can be developed in any category.

Definition 1. Given two functors F, B : Set → Set, a (F, B)-dialgebra is a pair
(X, f) where X is the carrier set or underlying set and f : FX → BX is a
function. A (F, B)-dialgebra homomorphism from (X, f) to (Y, g) is a function
h : X → Y such that g ◦ Fh = Bh ◦ f , as depicted in Figure 1. Dialgebras and
their homomorphisms form the category Dialg(F, B).

X

Y

h

FX BX

FY BY

Fh Bh

f

g

Fig. 1. A dialgebra homomorphism.

Roughly, F is the syntax of experiments, of which the function f is the se-
mantics, yielding a set of elements in a type of observed results B. The crucial
feature of dialgebras is that, since they form a category, they have a standard
notion of equivalence coming from kernels of morphisms. Notice that dialgebras
conservatively extend algebras (Dialg(F, Id)) and coalgebras (Dialg(Id, T)).

Definition 2. Given a (F, B)-dialgebra (X, f), dialgebraic bisimilarity ∼f⊆ X×
X is defined by x ∼f y ⇐⇒ ∃(Y, g).∃h : (X, f) → (Y, g).h(x) = h(y).

Notice that in Definition 2 we use the kernel of h as a function. Thus, we
do not require kernels (pullbacks of a function with itself) in Dialg(F, B). The
“extensional” definition that we provide is applicable to any kind of dialgebra
(independently from F and B), and it avoids the machinery of relation liftings
(which are used in [5]). We now study epi-mono factorisations of dialgebras.

Proposition 1. If F and B preserve monos whose domain is empty, the cate-
gory Dialg(F, B) has unique epi-mono factorisations. Otherwise, it has epi-mono
factorisations of morphisms whose domain does not have an empty carrier.

Proposition 1 guarantees that bisimilarity is determined by the epimor-
phisms. In coalgebras, the kernel of the unique morphism into the final object
(if any) coincides with bisimilarity. For simple functors F, e.g., F(X) = X ×X ,
even when B is bounded, a final dialgebra does not exist1.

Example 1. Let F(X) = X×X and B(X) = Pfin(X) (the finite power set of X).
Suppose there is a final dialgebra (Z, z). Consider the dialgebra (Z+1, f) where
f(x, y) = z(x, y) if x, y ∈ Z, f(x, ∗) = f(∗, x) = {∗} if x ∈ Z, and f(∗, ∗) = ∅.

1 A final dialgebra still exists when B preserves the terminal object [7]. However, this
makes the category of dialgebras not very interesting, as the final dialgebra has just
one element, thus all the elements of any system are bisimilar.

Consider the final map h : (Z + 1, f) → (Z, f). Here we get to a contradiction:
h restricted to Z must be the identity, therefore injective and surjective. To see
this, consider that (Z, z) embeds into (Z + 1, f) by the identity function, and
that the identity of (Z, z) must factor through such embedding and h, by finality.
Thus, there is x ∈ Z such that h(x) = h(∗). Then h is not a dialgebra homo-
morphism: we have z(Fh(∗, x)) = z(h(∗), h(x)) = z(h(∗), h(∗)) = z(Fh(∗, ∗)),
while Bh(f(∗, x)) = {h(∗)} 6= ∅ = Bh(f(∗, ∗)). Intuitively, the element ∗ behaves
differently from every other element of Z, but Z ought to encompass all the
possible behaviours, which is a contradiction. Similarly, for any X , define the di-
algebra g(x, x) = {x}, g(x, y) = ∅ if x 6= y. Since X is arbitrary, and no different
elements are bisimilar, the cardinality of a final dialgebra is unbounded.

Final semantics is a well-established way to define behavioural equivalence
of systems. In the absence of a final object in Dialg(F, B), we can still define
behavioural equivalence by reasoning in terms of quotients of a system. Recall
that a quotient of an object X in a category is the canonical representative of
an equivalence class of epimorphisms from X , under the equivalence relation
f : X → Y ≡ g : X → Z if and only if there is an isomorphism i : Y → Z such
that i ◦ f = g. In Set, the quotients of an object form a set.

Definition 3. The bisimilarity quotient of a dialgebra (X, f) is the wide pushout
(Q, q) (if it exists) of the cone of quotients of (X, f) in Dialg(F, B). We call the
diagonal z : (X, f) → (Q, q) the canonical map of (X, f).

Proposition 2. Let (Q, q) be the bisimilarity quotient of (X, f) and z the canon-
ical map. For all x, y ∈ X, x is bisimilar to y if and only if z(x) = z(y). There-
fore, when the bisimilarity quotient exists, bisimilarity is an equivalence relation.

When the bisimilarity quotient exists, the canonical map can be considered
the semantics of a system. Although z is canonical, it is not necessarily the unique
z : (X, f) → (Q, q): bisimilarity classes may be interchangeable in dialgebras.

Example 2. Consider the dialgebra g defined in Example 1; the dialgebra has no
non-trivial quotients, so it coincides with its bisimilarity quotient. However all
the isomorphisms of the carrier set are dialgebra homomorphisms. The bisimi-
larity classes are the same, but for the identity of the sole element of each class.

For a different example, in the semantics of a symmetric process calculus
such as the pure variant of CCS, the bisimilarity classes of an element, and of
the element obtained by replacing all the input or output actions in it with the
complementary ones, can be interchanged.

Clearly, when a final object exists, the epi-mono factorisation of the final
morphism yields the bisimilarity quotient. A bisimilarity quotient may exist also
in the absence of a final object. Here is a sufficient condition.

Proposition 3. When F preserves wide (small) pushouts of epimorphisms, that
is, colimits of an arbitrary small cone of epis, the bisimilarity quotient exists.

The dialgebraic semantics of CCS in §5.2 is an example where the bisimilarity
quotient exists, but there is no final dialgebra (by Example 1).

3 Interaction and observation

In this section we introduce two functors F and B that can be used to give
dialgebraic semantics to interactive, non-deterministic calculi.

Definition 4. The interaction and observation functors are defined as F(X) =
X + (X ×X) and B(X) = P(X), respectively.

As elements of X and X×X are syntactically disjoint, we use them to denote
elements of F(X), avoiding labels for the coproduct. An element of FX is either
x ∈ X , representing an experiment about a process in isolation, or (x, y) ∈ X×X ,
an experiment where two processes are allowed to interact. Elements of B are sets
of processes, that are the possible non-deterministic outcomes of an experiment.
We write x → z and (x, y) → z for z ∈ f(x) and z ∈ f(x, y), respectively.

Proposition 4. The functors F and B preserve monos from the empty set. F pre-
serves wide pushouts of epis. Therefore Dialg(F, B) has epi-mono factorisations,
and each dialgebra in the category has a bisimilarity quotient.

Theorem 1 provides a characterisation of bisimilarity in Dialg(F, B).

Theorem 1. Let (X, f) be an (F, B)-dialgebra. An equivalence relation R ⊆
X × X is the kernel of h : (X, f) → (Y, g) for some h, Y , g, if and only if,
for all (x1, x2), (y1, y2) ∈ R and z1 ∈ X, we have: x1 → z1 =⇒ ∃z2.x2 →
z2 ∧ (z1, z2) ∈ R, and, (x1, y1) → z1 =⇒ ∃z2.(x2, y2) → z2 ∧ (z1, z2) ∈ R. As a
corollary, the bisimilarity quotient of (X, f) is the largest such relation.

4 Comparing dialgebras

Categories of algebras or coalgebras of different functors may be compared by
mapping one category into the other by composition with an appropriate natural
transformation [6]. In §4.1 we generalise this technique to dialgebras (of which
algebras and coalgebras are special cases). The problem has first been studied
in [7]. Here we improve on it by adding an intermediate “container” functor G,
whose role is crucial, e.g., for §5.3. In §4.2 we discuss the limitations of this
method in the setting of dialgebras, and refine the construction.

4.1 Comparing categories of dialgebras

Consider Set endofunctors F, B, F′, B′. One can specify functor K : Dialg(F, B) →
Dialg(F′, B′) using G : Set → Set and two natural transformations λ : F′ → GF

and µ : GB → B
′, as illustrated by the diagram in Figure 2.

Notice that dialgebras come equipped with the “underlying set” or “forgetful”
functor UF,B : Dialg(F, B) → Set defined as UF,B(X, f) = X , UF,B(h : (X, f) →
(Y, g)) = h; this allows us to state that K is concrete.

F
′X

F
′Y

GFX

GFY

GBX

GBY

B
′X

B
′Y

F
′h GFh GBh B

′h

λX

λY

µX

µY

Gf

Gg

FX

FY

BX

BY

Fh Bh

f

g

X

Y

h

Fig. 2. Comparing categories of dialgebras using natural transformations.

Theorem 2. Two natural transformations λ : F′ → GF and µ : GB → B
′ deter-

mine a functor K : Dialg(F, B) → Dialg(F′, B′) as K(X, f) = (X,µX ◦ Gf ◦ λX),
K(h : (X, f) → (Y, g)) = h. K is concrete, that is: UF′,B′ ◦ K = UF,B.

As a consequence of K being concrete, we have the following corollary.

Corollary 1. If x, y ∈ X are bisimilar in (X, f) then they are so in K(X, f).

4.2 Comparing dialgebras

The framework of §4.1 is more restrictive than necessary. Observe that λ and
µ have to be defined for each set X . But when comparing say, two different
semantics of a language, we are only interested in the two dialgebras, and in the
objects that may be reached from them by an epimorphism. Considering this
subclass of objects, in the definition of λ and µ, we could use specific features of
a given dialgebra (e.g. exploit the fact that the underlying set X is the carrier
of an algebra, or refer to specific elements of X). In this light, we now restrict
our attention to natural transformations between functors whose codomain is
Set, but whose domain is not. The framework appears complicated at first;
however, Theorem 3 allows us to specify such natural transformations by single
functions, called bisimulation invariants, that serve as an “adaptation layer”
between dialgebras of different type. Although proofs in this section require
quite a bit of categorical reasoning, defining a bisimulation invariant is not a
difficult task by itself and encapsulates the complexity of the framework in a
simple definition. We shall support this claim in §5.3, which proves equivalence
of the dialgebraic and coalgebraic semantics of CCS.

Let E be the subcategory of epimorphisms of Dialg(F, B). Given a dialgebra
(X, f), consider the coslice category (X, f)/E. Its objects are arrows in E whose
domain is (X, f). Its arrows are commuting morphisms of E. Our framework is
parametrised by a full subcategory of (X, f)/E having the following properties.

Definition 5. Let R(X,f) be a full subcategory of (X, f)/E, such that: for each
object h of (X, f)/E there is at least one object h′ of R(X,f) with a commuting
arrow k : h → h′; the identity id (X,f) is an object.

By the first condition, R(X,f) contains enough epimorphisms to characterise
bisimilarity: whenever x and y are identified by a morphism h, there is h′ in the
category that identifies them. The second condition embeds the object (X, f) into

R(X,f). The purpose of R(X,f) is to serve as a domain for functors into Set, so that
natural transformations between them may be more specific, while preserving
bisimilarity of the object (X, f). A natural transformation in this setting may
make explicit reference to (X, f). Notice that the maps composing such a natural
transformation depend on dialgebra morphisms, not objects, by definition of
R(X,f). Using a subcategory of (X, f)/E further relaxes proof obligations; e.g., in
Proposition 5 we only consider morphisms whose kernels are congruences with
respect to the parallel operator. The following definition casts Set endofunctors
into functors from R(X,f) to Set.

Definition 6. For each F : Set → Set, define its lifting F̄ : R(X,f) → Set as
F̄ = F ◦ UF,B ◦ cod, where cod : (X, f)/E → E is the codomain functor, mapping
objects (arrows in Dialg(F, B)) to their codomains, and arrows to themselves.

Spelling out the definition, F̄ acts on objects as F̄(p : (X, f) → (Y, g)) = F (Y)
and on arrows as F̄ (k) = k. Next, we prove that natural transformations indexed
by R(X,f) may be specified by single functions, obeying to a condition that we call
bisimulation invariance. Notice that, since R(X,f) is a full subcategory containing
the identity of a coslice category, each arrow h : (X, f) → (Y, g) can be regarded
as both an object of R(X,f) and an arrow in the same category from id (X,f) to h

itself. In the following, we refer to the arrow as ĥ to avoid confusion.

Definition 7. Given two functors F, G : R(X,f) → Set, consider a function k :
F(id (X,f)) → G(id (X,f)). Call k bisimulation invariant with respect to (X, f)

and R(X,f) from F to G if and only if, for all x1, x2 ∈ X, and for each arrow ĥ :

id (X,f) → h in R(X,f), we have Fĥ(x1) = Fĥ(x2) =⇒ Gĥ(k(x1)) = Gĥ(k(x2)).
In the following we call k simply invariant when (X, f), R(X,f), F and G are

clear from the context. Such a property of a function may seem difficult to prove.
However, it is actually easier to show invariance of a given function with respect
to the lifted versions of two functors, than naturality of a transformation in Set

between the same functors. One needs to prove commutativity just for a given
class of morphisms (those in R(X,f)), which are also guaranteed to preserve and
reflect bisimilarity. The fundamental property of invariants is Theorem 3, that
depends on F preserving epis. This holds for the lifting F̄ of a Set endofunctor,
as all Set endofunctors preserve epis, and so do cod and U used in Definition 6.

Theorem 3. Consider two functors F, G : R(X,f) → Set, with F preserving epis.
There is a one-to-one correspondence between natural transformations δ : F → G

and invariants from F to G. Each natural transformation δ is uniquely determined
by δid(X,f), which is invariant; conversely, for each invariant k there is a unique
natural transformation δ such that δid(X,f) = k.

We can restate Theorem 2 in terms of natural transformations λ, µ between
functors from R(X,f) to Set; this is described by the diagram in Figure 3.

Theorem 4. Given an (F, B)-dialgebra (X, f), a category R(X,f) as in Definition
7, a functor G, and two invariants λ from F̄′ to GF̄, µ from GB̄ to B̄′, consider the
(F′, B′)-dialgebra (X, fλ,µ) where fλ,µ = µ ◦ Gf ◦ λ. Whenever two elements are
bisimilar in (X, f), then they are bisimilar in (X, fλ,µ).

F̄′(id) = F
′X

F̄′(h) = F
′Y

GF̄(id) = GFX

GF̄(h) = GFY

GB̄(id) = GBX

GB̄(h) = GBY

B̄′(id) = B
′X

B̄′(h) = B
′Y

F̄′h = F
′h GF̄h = GFh GB̄h = GBh B̄′h = B

′h

λid

λh

µid

µh

Gf

Gg

Fig. 3. Comparing dialgebras using functors from R(X,f) to Set. Here id is id(X,f).

5 Examples

5.1 The coalgebraic semantics of CCS

The Calculus of Communicating Systems (CCS) is a simple process calculus,
formalising a fundamental aspect of computation: communication between par-
allel processes. In the pure variant only synchronisation is considered, that is,
the exchanged data is not taken into account. We briefly recall the LTS (thus,
coalgebraic) semantics of CCS here. The interested reader may refer to [13] for
more details. The syntax is described by the grammar:

P ::=
∑

i∈I

αi.Pi | P1 ‖ P2 | (νa)P α ::= τ | a | ā

where I is a finite set, and a ranges over a countable set of channels C. Elements
of P are processes, or agents. Elements of α are atomic actions, or prefixes, or
guards. CCS features operators for denoting: parallel composition (P1 ‖ P2); re-
striction of a channel x which becomes private to P ((νa)P); non-deterministic
guarded choice among a finite set of action-prefixed processes (

∑

i∈I αi.Pi), usu-
ally written as a1.P1 + . . .+ an.Pn. Special cases of the choice construct are the
empty process ∅ which is the sum of zero processes, and the action prefix α.P ,
which is the sum of one process. Notice that choice is commutative by construc-
tion. The actions α are: the internal step (τ); the act of receiving a signal on
channel a (the action a); sending a signal on a channel (ā). We omit recursion for
simplicity; including it does not change the presented results. Channels are also
called names. Free names fn(−) are defined by induction, as usual, for processes
and labels. The only binding construct is (νa)P , in which name a is bound. In
the following, let X be the set of CCS processes.

Definition 8. Structural congruence is the minimal congruence ≡⊆ X ×X in-
cluding α-conversion of a in (νa)P ; commutative monoid axioms for the parallel
operator with respect to 0; the equations (νa)(P ‖ Q) ≡ ((νa)P) ‖ Q, (νa)∅ ≡ ∅,
(νa)(νb)P ≡ (νb)(νa)P for all P , Q, a /∈ fn(Q) and b.

The labelled transition system for CCS is presented in Figure 4. The set
L of labels is just the set of prefixes α. We write x

α
−→ y as a shorthand for

(α, y) ∈ g(x). An LTS with labels from L can be represented as a pair (X, f)
where f is a function2 from X to P(L×X). Let (X, g) be the LTS for CCS.

α.P +Q
α

−→ P (pre)
a /∈ fn(α) P

α
−→ P ′

(νa)P
α

−→ (νa)P ′

(res)
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(par)

P
c̄

−→ P ′ Q
c

−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

(syn)
P ≡ Q P ′ ≡ Q′ P

α
−→ P ′

Q
α

−→ Q′

(str)

Fig. 4. The LTS describing the operational semantics of CCS.

Definition 9. CCS bisimilarity is the greatest symmetric relation ∼g⊆ X ×X

such that, if x ∼g y and x
α

−→ x′, there is y′ such that y
α

−→ y′ and x′ ∼g y′.
Notice that we are defining bisimilarity in one specific system (e.g. CCS), not

between states of different systems. This corresponds to a standard categorical
notion once recognised that LTSs are P(L×−)-coalgebras.

Definition 10. Given a functor T : Set → Set, a T-coalgebra is a pair (X, f :
X → TX) where X is a set. A homomorphism of coalgebras from (X, f) to
(Y, g) is a function h : X → Y such that g ◦ h = Th ◦ f . T-coalgebras and their
morphisms form the category Coalg(T).

Definition 11. Given a T-coalgebra (X, f), coalgebraic bisimilarity ∼f⊆ X×X
is defined by x ∼f y ⇐⇒ ∃(Y, g).∃h : (X, f) → (Y, g).h(x) = h(y).

It is well-known that under suitable conditions on T (that the functor for
LTSs respects) bisimilarity as in Definition 11 coincides with other coalgebraic
notions (see e.g. [14]). We do not discuss the details, but we note that for LTSs
and the one for CCS in particular, the relations from Definition 9 and 11 coincide.

5.2 A dialgebraic semantics of CCS

In §5.1, we have seen the coalgebraic semantics of CCS. Now we describe it as
an (F, B)-dialgebra for the functors of Definition 4.

Definition 12. Let X be the set of CCS processes. The dialgebra (X, f) for
CCS is the least function obeying to the rules in Figure 5.

We briefly comment on the rules. The first group deals with processes in
isolation: rule (tau) permits internal computation actions to be executed; Rule

2 Here P(X) is the (co-variant) power set of X. In coalgebras it is typical to assume
a cardinality bound on the size of the subsets, as the functor P does not have a final
coalgebra. Indeed, in all the systems we define, P can be replaced by a bounded
variant, as all our transition sets are finite or countable. Since we do not use the
final coalgebra in this paper, the distinction is immaterial here.

τ.P + Q → P (tau)
P → P ′

(νa)P → (νa)P ′
(res)

P → P ′

P ‖ Q → P ′ ‖ Q
(par1)

(P,Q) → R

P ‖ Q → R
(int)

(P,Q) → R a /∈ fn(Q)

((νa)P,Q) → (νa)R
(hid)

(P,Q) → R

(P ‖ S,Q) → S ‖ R
(par2) (ā.P + S, a.Q + T) → P ‖ Q (syn)

(P,Q) → R

(Q,P) → R
(sym)

P → R P ≡ Q,R ≡ S

Q → S
(str1)

(P,Q) → R P ≡ S,Q ≡ T, R ≡ U

(S,T) → U
(str2)

Fig. 5. The dialgebra for CCS.

(res) allows a process in the scope of a restriction to progress; Rule (par1)
allows one component in a parallel composition to progress independently from
the others; Rule (int) allows any possible interaction between two processes to
also happen between internal components of a process in isolation.

The second group of rules defines the semantics of interaction. Rule (hid)
permits interaction between a process P in the scope of a restriction, and any
other process Q, provided that a is not known by Q. Recall that the restricted
name a can always be α-converted to one which is fresh in Q. Rule (par2) allows
parallel components of a process P to interact with Q independently from each
other. Rule (syn) implements synchronisation between two processes.

Rules (sym), (str1), (str2) simplify the definition; alternatively, one can add
variants of the other rules taking into account the effects of these three schemes.

5.3 Comparing the coalgebraic and dialgebraic semantics of CCS

In this section, we use Theorem 4 to compare the semantics for CCS from Defi-
nition 12 to bisimilarity in the well-known labelled transition system.

First, we attempt to give some intuition on the constructions of §4. Consider
defining a coalgebra (X, f ′) for the functor of §5.1 out of the dialgebra for CCS
of §5.2. We can employ “witness processes” such as a.0 in experiments such
as (x, a.0). For each x′ ∈ f(x, a.0), we let f ′(x) contain the labelled transition
(ā, x′). The idea sounds promising, but in the process we need to refer to spe-
cific elements of X , namely the witness processes, thus to the specific set X of
elements. Natural transformations are not allowed to depend upon an object in
this way; therefore, we need the the theory of §4.

The dialgebra of §5.2 describes processes as they interact, with no explicit
notion of side effect. The coalgebra of §5.1 describes processes in isolation, and
their side effects. It is not difficult to imagine how the two kinds of semantics
can be compared. In one direction, starting from the coalgebra, we may define a
(F, B)-dialgebra on the same carrier; for processes in isolation, we run one step of
the LTS, and then turn all the τ transitions into observed results; for interaction
between pairs of elements, we run one step of the LTS on each element, and

let interaction happen whenever an input (or an output) is matched by the
complementing action. In the other direction, starting from the dialgebra, we
may define a T-coalgebra, by letting τ transitions correspond to the observations
that are made on a process in isolation, and by running experiments in which
we let a process and a “witness process” such as a.∅ interact. The resulting
transitions are labelled with a corresponding action, e.g., ā in our case.

In the rest of the section we closely implement the above plan. From now on,
we let (X, f), (X, g), and the functors F, B be the dialgebra and the coalgebra
for CCS, and the functors from §3; we let T(X) = P(L ×X). Below, we define
three invariants λ, µ, δ, that we shall use to instantiate Theorem 4 twice. In one
direction, we will define the coalgebra µ ◦ Tf ◦ λ out of the dialgebra f . In the
other direction, we will get the dialgebra δ ◦ Fg ◦ idFX from g.

Definition 13. We define δ : FTX → BX, λ : X → TFX, µ : TBX → TX as:

δ(e) =

{x | (τ, x) ∈ p} if e = p ∈ TX

{x ‖ y | ∃a ∈ C. ((a, x) ∈ p1 ∧ (ā, y) ∈ p2)∨ if e = (p1, p2) ∈ TX × TX

∨ ((ā, x) ∈ p1 ∧ (a, y) ∈ p2)}

λ(x) = {(τ, x)} ∪ {(a, (x, ā.∅)) | a ∈ C} ∪ {(ā, (x, a.∅)) | a ∈ C}

µ(q) = {(l, x) | ∃q′.(l, q′) ∈ q ∧ x ∈ q′}

Notice how the definition of δ uses the fact that X is also the carrier of the
initial algebra, therefore the parallel composition x ‖ y is defined. An appropriate
choice of R(X,g) makes δ an invariant. Also, the definition of λ uses specific
elements of X , such as ā.∅. On the other hand, µ is independent of X and
extends to a natural transformation from TB to T.

Proposition 5. Let E be the subcategory of Dialg(F, B) of epis whose domain
is (X, f), and E′ the subcategory of Dialg(Id, T) of epis whose domain is (X, g).
Let R(X,f) be the coslice (X, f)/E, and R(X,g) be the full subcategory of (X, g)/E′

whose objects h commute with the parallel operator, that is, h(x) = h(x′)∧h(y) =
h(y′) =⇒ h(x ‖ y) = h(x′ ‖ y′). Then:

– R(X,g) obeys to Definition 5;
– id FX is invariant for (X, g) and R(X,g) from F̄ to F Īd = F̄;
– δ is invariant for (X, g) and R(X,g) from FT̄ to B;
– λ is invariant for (X, f) and R(X,f) from Īd to TF̄;
– µ is invariant for (X, f) and R(X,f) from TB̄ to T̄.

In Proposition 5, R(X,g) contains only homomorphisms that commute with the
parallel operator, strengthening the hypothesis for invariance, which facilitates
the proof. We can now use Theorem 4, twice. Let G = F; we obtain the (F, B)-
dialgebra (X, gidFX ,δ) where f idFX ,δ = δ ◦ Fg. Similarly, let G = T; then we derive
the (Id, T)-dialgebra, that is, T-coalgebra, (X, fλ,µ) with fλ,µ = µ ◦ Tf ◦ λ.

So far, we have mapped the dialgebra of CCS into a coalgebra, and the
coalgebra into an (F, B)-dialgebra. However, no link is established between f and
gid,δ, or g and fλ,µ. We conclude the paper by proving coincidence of the two
semantics. For this, we need the following lemma.

Lemma 1. For all channels a and elements x, y, z, the following holds: x
τ

−→

y ⇐⇒ x → y; x
a

−→ y ⇐⇒ (x, ā.∅) → y; x
ā

−→ y ⇐⇒ (x, a.∅) → y; (x, y) →

z ⇐⇒ ∃b, x′, y′.z ≡ x′ ‖ y′ ∧ ((x
b

−→ x′ ∧ y
b̄

−→ y′) ∨ (x
b̄

−→ x′ ∧ y
b

−→ y′)).

Proposition 6. Let (X, f) and (Y, g) be the dialgebra and the coalgebra for
CCS. We have that f = gidFX ,δ and g = fλ,µ. Therefore, bisimilarity in (X, f)
and in (X, g) is the same.

5.4 The π-calculus

The π-calculus [15] is a very well known extension of CCS. The calculus takes
network mobility into account by the means of fresh name generation and com-
munication. Bisimilarity in the π-calculus is non-standard, since it requires side
conditions on freshness of names that do not permit one to compare labels just
syntactically. A coalgebraic semantics is possible by switching from the category
Set to presheaves (see e.g. [1]). In this section we provide a dialgebraic semantics
to the calculus. Remarkably, the dialgebra we define lives in Set; the difference
from the semantics of CCS is just to add data passing in the rule for synchro-
nisation. We give a very brief summary of the calculus here. The reader may
consult e.g., [16] for further information. The π-calculus features data passing,
and fresh name creation. Channels and data coincide, giving to the calculus its
expressive power. The syntax is as follows.

P ::=
∑

i∈I

αi.Pi | P1 ‖ P2 | (νa)P α ::= τ | a(x) | āx

Again, we do not introduce recursion, as it does not add to the presentation and
complicates proofs. In the syntax, a, x, y range over a countable set of channel
names. The prefix a(x) reads x from channel a. Therefore, x is bound in a(x).P .
The prefix āx sends x on channel a. The other constructs have the same informal
meaning as in the CCS, and share the same syntax. We adopt the early semantics
of the calculus. For space reasons, we omit the definition of the corresponding
transition system, which is widely available (see e.g. [16], Definition 1.3.2). We
just mention that the transitions may have four kinds of labels: τ , āb, ab, ā(x),
corresponding to silent actions, output of b on channel a, input of b on a, and
bound output, where b is a fresh name. Synchronization with a process doing
bound output may only take place when b is fresh in the receiving process,
which is obtained by α-conversion of b.

The close syntactic resemblance between CCS and the π-calculus is reflected
in the dialgebraic semantics we propose, as we only need to change one rule to
switch from one semantics to the other. The formal definition uses structural
congruence, which is the same as Definition 8, with the addition of α-conversion
of variable x for processes under the scope of an input a(x).

Definition 14. Let X be the set of π-calculus terms. Define the (F, B)-dialgebra
(X, f) importing the rules of Definition 12, where Rule (syn) is replaced by

(āb.P + S, a(y).Q+ T) → P ‖ Q[b/y] (com)

Rule (com) models data passing in the usual way. Combined with Rule (hid), it
implicitly handles scope extrusion, which is one of the most difficult bits of the π-
calculus semantics. For example, for x fresh in Q, we have ((νx)āx.P, a(y).Q) →
(νx)(P ‖ Q[x/y]), by first applying (hid) and then (com). Such a simple treat-
ment of scope extrusion is inherited from the reactive system for the π-calculus
that we are mimicking (see [16], Definition 1.2.12). The dialgebraic definition
adds to it a non-trivial notion of bisimilarity, that we ought to relate to the
standard definition. A direct comparison, as in §5.3, is not obvious, as the coal-
gebraic semantics lives in a presheaf category, whereas the dialgebraic semantics
is defined in Set. However, we are able to reuse well known results for the π-
calculus to obtain a characterisation theorem. Dialgebraic semantics is easier to
compare to strong barbed equivalence, defined below, than to bisimilarity. We use
the observability predicate P ↓µ, for µ in the form a or ā, that holds whenever
P can perform a communication action a(x) or āx, respectively. In turn, strong
barbed equivalence is defined in terms of strong barbed bisimilarity.

Definition 15. Strong barbed bisimilarity is the largest symmetric relation
.
∼

such that whenever P
.
∼ Q, P ↓µ =⇒ Q ↓µ, and P

τ
−→ P ′ =⇒ ∃Q′.Q

τ
−→ Q′

with P ′ .
∼ Q′. We say that processes P and Q are strong barbed equivalent,

written P ≃ Q, if for all R, P ‖ R
.
∼ Q ‖ R.

Theorem 5. Dialgebraic bisimilarity coincides with strong barbed equivalence.
Finally, Theorem 2.2.9 in [16] proves that strong barbed equivalence coincides

with strong early bisimilarity3. Thus, as a corollary, we get that dialgebraic
bisimilarity coincides with early bisimilarity.

6 Conclusions and future work

The most important difference between coalgebras and dialgebras is that there
is no final dialgebra, therefore no universal model. This forces one to reason in
terms of quotients. The locality which is intrinsic to the definition of a dialgebra
deserves in our opinion a more thorough investigation in various directions.

A fundamental problem is to spell out an inductive definition principle, in
order to obtain simpler definitions, and compositionality. A conjecture on how
to generalise the use of distributive laws [17] from bialgebras to dialgebras has
been formulated in [18], and will be developed in future work.

Logical aspects should also be considered. The interplay between adequate
logics for dialgebras, and equational logic on terms, may lead to new insights on
algebraic and coalgebraic specifications.

3 Therein, it is shown that the matching prefix of the π-calculus is not required for
this result to hold, thus we omit it for simplicity.

Another matter is the implementation and verification of dialgebras. Coal-
gebras have an associated partition refinement procedure that computes the
bisimilarity quotient of a system, by the means of iteration along the termi-
nal sequence of the functor T. A generalisation of this procedure to dialgebras
appears in [18], and will be explained and enhanced in future work.

Finally, an open question is the definition of a proof principle for dialgebras,
generalising induction and coinduction.

References

1. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: 12th Annual
Symposium on Logic in Computer Science (LICS), IEEE (2001) 93–104

2. Trnková, V., Goralćık, P.: On products in generalized algebraic categories. Com-
mentationes Mathematicae Universitatis Carolinae 010(1) (1969) 49–89

3. Admek, J.: Limits and colimits in generalized algebraic categories. Czechoslovak
Mathematical Journal 26(1) (1976) 55–64

4. Hagino, T.: A Categorical Programming Language. PhD thesis, University of
Edinburgh (1987)

5. Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras. Electronic
Notes in Theoretical Computer Science 44(1) (2001) 289 – 307

6. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1) (2000) 3 – 80

7. Voutsadakis, G.: Universal dialgebra: unifying algebra and coalgebra. Far East
Journal of Mathematical Sciences 44(1) (2010) 1–53

8. Madeira, A., Martins, M.A., Barbosa, L.: Models as arrows: the role of dialgebras.
7th Conference on Computability in Europe, Sofia, Bulgaria (2011) 144–153

9. Ciancia, V.: Interaction and observation, categorically. In: 4th Interaction and
Concurrency Experience. Volume 59 of EPTCS. (2011) 25–36

10. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
11th International Conference on Concurrency Theory (CONCUR). Volume 1877
of LNCS., Springer (2000) 243–258

11. Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer
Science 274 (March 2002) 183–230

12. Sassone, V., Sobocinski, P.: Deriving bisimulation congruences using 2-categories.
Nordic Journal of Computing 10(2) (2003) 163–186

13. Milner, R.: A Calculus of Communicating Systems. Springer (1982)

14. Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods in Com-
puter Science 7(1) (2011)

15. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I. Infor-
mation and Computation 100(1) (1992) 1–40

16. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, New York, NY, USA (2001)

17. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: 12th
Annual Symposium on Logic in Computer Science (LICS), IEEE (1997) 280–291

18. Blok, A.: Interaction, observation and denotation: A study of dialgebras for pro-
gram semantics. Master’s thesis, University of Amsterdam (2012)

A Proofs

Proof. (Proposition 1) Consider a dialgebra homomorphism h : (X, f) → (Y, g) and
the diagram of Figure 1. First notice that the epimorphisms in Dialg(F, B) are just the
epimorphisms in Set that are dialgebra morphisms. Since Set has epi-mono factorisa-
tions, we can factor every arrow j in the diagram, including h itself, as jm ◦ je where
je is epic, and jm is monic. Call X ′ the codomain of he. We are going to endow X ′

with a dialgebra structure (X ′, f ′) so that he is a dialgebra morphism from (X, f) to
(X ′, f ′).

Since all set functors preserve all epis, and all monos except possibly those with an
empty domain, assume that either F and B preserve the monos with an empty domain,
or that X 6= ∅. In the latter case, X ′ 6= ∅ as there are no arrows whose codomain
is the empty set. Thus, Fhe epic, and Fhm monic. Then by uniqueness of epi-mono
factorisations, Fh = F(hm◦he) = Fhm◦Fhe is the epi-mono factorisation of Fh. Similarly
Bh = Bhm ◦ Bhe is the unique factorisation of Bh. Consider the pushout P of fe, Fhe,
and the injection f ′

e : FX ′ → P . There is an unique commuting arrow p : P → BY .
Call p′ : FX → P the diagonal of the pushout. All the arrows we mentioned except p
are epi. Similarly, consider the pullback Q of gm, Bhm. There is a unique commuting
arrow q : FX → Q. Also consider the projection g′m : Q → BX ′ of the pullback, and the
diagonal q′ : Q → BX. All the arrows in this sub-diagram except q are mono. We have
two morphisms r = p ◦ p′ and s = q′ ◦ q that commute with the outer square, therefore
they are equal. Now factor p = pm ◦ pe and q = qm ◦ qe. Then r = pm ◦ pe ◦ p′ with
pe ◦ p′ epi. Also s = q′ ◦ qm ◦ qe with q′ ◦ qm mono. Therefore we have two epi-mono
factorisations of the arrow r = s, thus there is an isomorphism i : cod(pe) → dom(qm).
The composite f ′ = g′m ◦ qm ◦ i ◦ pe ◦ f ′

e is an arrow from FX ′ to GX ′. It is easy to
see that he is a dialgebra homomorphism from (X, f) to (X ′, f ′). Commutativity is by
diagram chasing, and uniqueness by Fhe epi.

Proof. (Proposition 2) If k(x) = k(y) then x and y are bisimilar by definition. Con-
versely, given a homomorphism h such that h(x) = h(y), by epi-mono factorisations we
can assume h is epic (X is certainly non-empty since we assume an element x); w.l.o.g.
assume h is a quotient (as bisimilarity is the same in a class of isomorphic epis). Thus,
there is an epi h′ such that h′ ◦ h = k, thus k(x) = k(y). As bisimilarity is the kernel
of a morphism, it is an equivalence.

Proof. (Proposition 3) Call P the cocone of epimorphisms from (X, f). First, observe
that P is a small diagram, that is, its objects and morphisms form sets. This is since
the cone of of X in Set forms a set S, and P can be at most as large as the product
S × BXFX (the possible quotients are as many as the dialgebras whose carrier is a
quotient of X in Set). Since Set is cocomplete, the pushout Q of the morphisms in
P exists in Set. It is not difficult to see that the category of (F, B)-dialgebras has all
colimits that the base category (Set in our case) has and F preserves (see Theorem
14 in [7]). Therefore if F preserves wide pushouts, there is a pushout (Q, q) of P as a
diagram in Dialg(F, B). The carrier is Q; the dialgebra map q is the unique commuting
morphism from FQ, which is a pushout of all the Fh for h in P , to BQ, that forms a
commuting diagram with all the dialgebras that are codomains of morphisms in P .

Proof. (Proposition 4) F preserves the initial object and B sends it into 1. Therefore
they both preserve the specified monos. By relying on the fact that all epi split, it is

easy to see that F preserves binary pushouts of epis, even though it fails to preserve
pushouts in general. Since F also preserves filtered colimits, it preserves wide pushouts
of epis.

Proof. (Theorem 1) For one direction of the proof, let R be the kernel of h : (X, f) →
(Y, g). First, let (x1, x2) ∈ R, and consider the case x1 → z1. By commutativity we
have Bh ◦ f = g ◦ Fh, thus by definition of F, P(h)(f(x1)) = g(h(x1)) = g(h(x2)) =
P(h)(f(x2)), that is {h(z1)|x1 → z1} = {h(z2)|x2 → z2}, from which, for the specific
z1 that we introduced, there is a z2 such that x2 → z2 and h(z1) = h(z2), that is,
(z1, z2) ∈ R. Similarly, let (x1, x2), (y1, y2) ∈ R, with (x1, y1) → z1. By commutativity
and by definition of F we have P(h)(f(x1, y1)) = g(h(x1), h(y1)) = g(h(x2), h(y2)) =
P(h)(f(x2, y2)). Therefore, there is z2 such that (x2, y2) → z2 with (z1, z2) ∈ R.

For the other direction of the proof, assume a dialgebra (X, f), and an equivalence
relation R as in the thesis. We shall define a dialgebra (Y, g) and homomorphism
h : (X, f) → (Y, g) such that (x1, x2) ∈ R ⇐⇒ h(x1) = h(x2). Let Y = X/R (the
quotient of X by R). Let [x] denote the equivalence class of x, and define h(x) = [x],
therefore identifying exactly the processes that are equivalent by R. To conclude the
proof, we need to define a commuting dialgebra. Let g : FY → BY be defined by
g([x]) = {[z]|(x, x′) ∈ R ∧ z ∈ f(x′)}, g([x], [y]) = {[z]|(x, x′) ∈ R ∧ (y, y′) ∈ R ∧
z ∈ f(x′, y′)}. The commutativity requirement on h is now reduced to prove that
g([x]) = {[z]|z ∈ f(x)} and g([x], [y]) = {[z]|z ∈ f(x, y)}. This follows immediately by
the hypotesis on R.

Proof. (Theorem 2) For all dialgebra morphisms h, the diagram in Fig 2 commutes. The
middle square commutes since h is a dialgebra homomorphism and G is a functor. The
left and right ones by naturality of λ and µ. Therefore h is a dialgebra homomorphism
from K(X, f) to K(Y, g). K is concrete by definition and easily checked to be a functor.

Proof. (Theorem 3) Consider any object h : (X, f) → (Y, g) of R(X,f). We show that
δh is uniquely determined by δid(X,f)

. Consider the commuting square

F(id(X,f))

Fh

G(id(X,f))

Gh

Fĥ Gĥ

δid(X,f)

δh

Since ĥ is epic, and F preserves epis, a commuting δh is uniquely determined by δid(X,f)
:

by commutativity, for all x ∈ F(id (X,f)), we have δh(Fĥ(x)) = Gĥ(δid(X,f)
(x)). If id (X,f)

is invariant, this equation defines a function δh. Conversely, if δ is natural, then δid(X,f)

is invariant by definition.

Proof. (Theorem 4) Since λ and µ are invariant, they determine corresponding natural
transformations by Proposition 3. If two elements x1 and x2 are bisimilar in (X, f), then
there is a morphism of (F, B)-dialgebras h : (X, f) → (Y, g) such that h(x1) = h(x2). By
epi-mono factorisations (Proposition 1), we can assume w.l.o.g. that h is epic, and by
the condition in Definition 5 we can also assume that it is an object of R(X,f) (formally

one sees that there is an object in the subcategory that identifies x1 and x2). Let
g′ = µh ◦ Gg ◦ λh. Notice that (Y, g′) is an (F′, B′)-dialgebra. Consider the diagram in
Figure 3 and the equations therein. These equations hold by Definition 6. The diagram
commutes: the middle square since h is a dialgebra homomorphism and G a functor, the
left and right ones by naturality of λ and mu. From commutativity of the perimeter,
we see that h is also a morphism of (F′, B′)-dialgebras from (X, fλ,µ) to (Y, g′), therefore
x1 and x2 are bisimilar in (X, fλ,µ).

Proof. (Proposition 5) Note that R(X,g) respects the conditions in Definition 5 because
both the required identity and the final coalgebra (that is, the final (Id, T)-dialgebra)
are included in it. The result on the identity function being invariant is obvious.

For δ, suppose FTh(e1) = FTh(e2). By definition of F, this implies either e1 = p, e2 =
p′ or e1 = (p1, p2), e2 = (p′1, p

′

2), where p, p′, p1, p2, p
′

1, p
′

2 ∈ TX.
When e1 = p, e2 = p′, we have Th(p) = Th(p′). Thus Bh(δ(p)) = {h(x) | (τ, x) ∈

p} = {x|(τ, x) ∈ Th(p)} = {x|(τ, x) ∈ Th(p′)} = Bh(δ(p′)).
In the other case, we have Bh(δ(p1, p2)) = {h(x ‖ y) | Γ (p1, p2, x, y)} where Γ

is a shorthand for the defining condition of the set. Consider the set of pairs S =
{(h(x), h(y)) | Γ (p1, p2, x, y)}. Under the hypothesis FTh(e1) = FTh(e2), we have S =
{(x, y) | Γ (Th(p1), Th(p2), x, y)} = {h(x), h(y) | Γ (p′1, p

′

2, x, y)}. We shall prove that if
this equality holds, then Bh(δ(p1, p2)) = Bh(δ(p′1, p

′

2)). The equality implies that, for
all x, y such that Γ (p1, p2, x, y), there are x′, y′ such that Γ (p1, p2, x

′, y′), and h(x) =
h(x′), h(y) = h(y′). Therefore, by how we chose the objects of R(X,g), we have h(x ‖
y) = h(x′ ‖ y′).

The cases for λ and µ are handled similarly.

Proof. (Lemma 1) The proof is a simple induction on the derivation. Notice that the
rules dealing with structural congruence permit us to prove equality of the destination
states; otherwise this lemma would hold only up-to structural congruence. We only
show the most complicated part of the proof, which is the right to left direction of

the last case. Suppose x
b

−→ x′ and y
b̄

−→ y′, so we have finite derivations for these
transitions. We construct a finite derivation of (x, y) → z by induction on the sum
of the lengths of the two derivations. The base case is when the last rule of both
derivations is (pre); then we can apply Rule (syn) from Figure 5 and obtain the thesis.

Otherwise, we look at the last step in the derivation of x
b

−→ x′. If either (res), (par)
or (str) from Figure 4 is used, we apply the inductive hypothesis to the transitions
in the premises, obtaining a derivation of a transition in the dialgebra, and then we
conclude the derivation of (x, y) → z either by Rule (hid), (par2) or (str2) from Figure
5, respectively. For (hid) to be applied correctly, we may assume that all bound names
are sufficiently fresh, because of α-conversion. When Rule (pre) is the last rule used to

derive x
b

−→ x′, we construct the derivation of (x, y) → z by applying Rule (sym), and
then by applying the inductive hypothesis (notice that the argument is symmetric in
the polarity of a label (input or output).

Proof. (Proposition 6) Let us look at equality of (X, g) and (X, fλ,µ). We have f(λ(x)) =
{(τ, f(x))}∪{(a, f(x, ā.∅)) | a ∈ C}∪{(ā, f(x, a.∅)) | a ∈ C}. Then, by Lemma 1, this set

is equal to {x′ | x
τ

−→ x′} ∪ {(a, {x′ | x
a

−→ x′}) | a ∈ C} ∪ {(ā, {x′ | x
ā

−→ x′} | c ∈ C}.
Then it is immediate that fλ,µ(x) = µ(Tf(λ(x))) = g(x). For equality of (X, f)
and (X, gid,δ), we have δ(Fg(x)) = {x | x

τ
−→ x′}, which by Lemma 1 is equal to

{x | x → x′} = f(x). The binary case is analogous, using the last case of Lemma 1.

Proof. (Theorem 5) We need to establish some facts before the main proof.

First, notice that using Theorem 2.2.9 in [16] and well-known properties of the π-
calculus (in particular, compositionality under parallel contexts), Definition 15 can be
given a coinductive flavour. The formal statement is as follows. Strong barbed equiv-
alence is the greatest symmetric relation R that falls under the hypothesis: whenever
PRQ, we have P ↓µ =⇒ Q ↓µ, and for all R1RR2, we have P ‖ R1

τ
−→ P ′ =⇒

∃Q′.Q ‖ R2
τ

−→ Q′ ∧ P ′RQ′. To see that ≃ falls under this condition, let
e
∼ be strong

bisimilarity in the π-calculus, and observe that P ≃ Q =⇒ P
e
∼ Q =⇒ ∀R1

e
∼

R2.P ‖ R1
e
∼ Q ‖ R2 =⇒ ∀R1

e
∼ R2.(P ‖ R1

τ
−→ P ′ =⇒ ∃Q′.Q ‖ R2

τ
−→ Q′ ∧ P ′ e

∼
Q′) =⇒ ∀R1 ≃ R2.(P ‖ R1

τ
−→ P ′ =⇒ ∃Q′.Q ‖ R2

τ
−→ Q′ ∧P ′ ≃ Q′). For the other

direction, given PRQ, for all R, we show that P ‖ R
.
∼ Q ‖ R, by definition of R, with

R1 = R2 = R.

Furthermore, we use the fact that dialgebraic bisimilarity for the π-calculus is a con-
gruence with respect to parallel composition: P ∼ Q =⇒ ∀R.P ‖ R ∼ Q ‖ R. This
is proved by induction on the rules, using Theorem 1; the most important case of the
proof is to see that, when P ∼ Q, (P ‖ R,S) → T =⇒ (Q ‖ R,S) → U and T ∼ U .
This is immediate from Rule (par2) in the semantics.

Finally, the proof uses a variant of the harmony lemma ([16], Lemma 1.4.15); our
statement is P

τ
−→ R ⇐⇒ P → R where P → R is our dialgebraic semantics. The

proof of this fact reuses the standard harmony lemma as follows. First assume Lemma
1.4.15 in [16], asserting that the reductions in the π-calculus ([16], Table 1.3) coincide
with τ transitions. Then show that P → R can be proved in the dialgebraic semantics
if and only if the same reduction can be proved in the standard π-calculus reduction
system. This is done by a straightforward case analysis.

After these preliminary steps, we need to show that ≃ is the same as the bisimilarity
quotient ∼f (in the following, just ∼) of the dialgebra (X, f) for the π-calculus. We
proceed by proving first that ∼ is included in ≃, then the reverse inclusion.
First, let us see that ∼ is included in ≃ by using our characterization of ≃. Let us

assume P ∼ Q. First we look at the “barbs”. Let P ↓ā, thus P
āx
−→ P ′ for some x and

P ′. Then (P, a(x).∅) → P ′. By Theorem 1, (Q,a(x).∅) → Q′ with P ′ ∼ Q′. Then Q ↓ā.
Similarly for the case P ↓a.

Next, consider an arbitrary process R, with P ‖ R
τ

−→ P ′. We show Q ‖ R ∼ Q′ with
P ′ ∼ Q′. One of three possibilities holds: (1) R

τ
−→ R′′ with P ′ = P ‖ R′′; (2) P

τ
−→ P ′′

with P ′ = P ′′ ‖ R; (3) P and R synchronize. In Case 1, we have Q ‖ R
τ

−→ Q ‖ R′′,
thus we use compositionality of ∼ with respect to parallel composition. In Case 2, by
the harmony lemma, we have P → P ′′, and by Theorem 1, Q → Q′′ with P ′′ ∼ Q′′.
Then by compositionality with respect to parallel composition we get the thesis. In
Case 3, we have (P,R) → P ′. By Theorem 1 we have (Q,R) → Q′ with P ′ ∼ Q′.
Applying Rule (int) in the definition of the dialgebra, Q ‖ R → Q′. By the harmony
lemma Q ‖ R

τ
−→ Q′, proving the thesis.

For the second half of the proof, consider P1 ≃ P2, with P1 → R1. Applying the
harmony lemma, P1

τ
−→ R1, thus there is R2 such that P2

τ
−→ R2 and R1 ≃ R2. The

thesis follows by the harmony lemma.

Finally, let P1 ≃ P2, Q1 ≃ Q2, with (P1, Q1) → R1. Without loss of generality, assume
P1 is sending data and Q1 is receiving (the other case is symmetric). Let us import
notation from [16], shortening (νx1) . . . (νxn) as (νx̃) where x̃ is the set of channels

x1, . . . , xn. By induction on the rules, it is easy to see that P1 ≡ (νx̃)((āx.P ′

1 +M1) ‖
N1), Q1 ≡ (νỹ)((a(x).Q′

1 + S1) ‖ T1), with R1 ≡ (νx̃)(νỹ)(P ′

1 ‖ N1 ‖ Q′

1 ‖ T1), where,
importantly, a /∈ x̃ ∪ ỹ, x /∈ fn(Q1) ∪ ỹ, and besides, “all fresh names are sufficiently
fresh”, that is: x̃ ∩ ỹ = ∅, fn(P1) ∩ ỹ = ∅, fn(Q1) ∩ x̃ = ∅. Notice that we deliberately
chose to use x in Q1; by doing so, under the previous assumptions, we can avoid
writing the substitution in Q′

1 explicitly. By rule (int) and the harmony lemma, we
have P1 ‖ Q1

τ
−→ R1, thus by ≃ we have P2 ‖ Q2

τ
−→ R2 with R1 ≃ R2. Furthermore,

P1 ‖ a(x).0
τ

−→ (νx̃)(P ′

1 ‖ N1), thus P2 ‖ a(x).0
τ

−→ U with U ≃ (νx̃)P ′

1 ‖ N1,
similarly Q2 ‖ āx.0

τ
−→ V with V ≃ (νỹ)Q′

1 ‖ T1, therefore R2 ≃ U ‖ V .
We need to see that (P2, Q2) → R2; we shall do this by proving that P2 ≡

(νz̃)((āx.P ′

2 +M2) ‖ N2) and Q2 ≡ (νt̃)((a(x).Q′

2 + S2) ‖ T2), with freshness assump-
tions similar to the ones for P1 andQ2, and that U ≃ (νz̃)(P ′

2 ‖ N2), V ≃ (νt̃)(Q′

2 ‖ T2).
For this, we can use barbs and specially crafted contexts. Let d, e be names that

are fresh in all the entities mentioned so far. Consider D = a(m).((d̄d.0 + m̄m.0) ‖
x(n).ēe.0). Roughly, the parallel component that reads on channel x is used to detect
when the name m received on a is equal to x. This can also be done using matching,
that we did not include precisely because of this property. This idea comes from [16]
(see the remarks before the proof of Theorem 2.2.9). We have P1 ‖ D

τ
−→ (νx̃)(P ′

1 ‖
N1) ‖ ((d̄d.0 + x̄x.0) ‖ x(n).ēe.0) ↓d̄

τ
−→ (νx̃)(P ′

1 ‖ N1) ‖ ēe.0 ↓ē /↓d̄ (where /↓µ means
that the observable µ is not present). Thus by P1 ≃ P2 we have P2 ‖ D

τ
−→ W ↓d̄

with W ≃ U ‖ ((d̄d.0 + k̄k.0) ‖ x(n).ēe.0), where k is a name (received on channel
a) that we want to prove equal to x. Indeed, it suffices to observe that in the empty
context, by ≃, W

τ
−→ W ′ ↓ē /↓d̄ which is only possible if k = x. We also see that

P2 ‖ a(m).d̄d.0
τ

−→ W ′′ ≃ U ‖ d̄d.0. From this, and inspection of the rules of the
π-calculus, one concludes that P2 is in the requested form. Similarly for Q2.

	Interaction and observation: categorical semantics of reactive systems trough dialgebras

