
Confluence Reduction for Markov Automata

Mark Timmer, Jaco van de Pol, and Mariëlle Stoelinga?

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

{timmer, vdpol, marielle}@cs.utwente.nl

Abstract. Markov automata are a novel formalism for specifying sys-
tems exhibiting nondeterminism, probabilistic choices and Markovian
rates. Recently, the process algebra MAPA was introduced to efficiently
model such systems. As always, the state space explosion threatens the
analysability of the models generated by such specifications. We there-
fore introduce confluence reduction for Markov automata, a powerful
reduction technique to keep these models small. We define the notion of
confluence directly on Markov automata, and discuss how to syntacti-
cally detect confluence on the MAPA language as well. That way, Markov
automata generated by MAPA specifications can be reduced on-the-fly
while preserving divergence-sensitive branching bisimulation. Three case
studies demonstrate the significance of our approach, with reductions in
analysis time up to an order of magnitude.

1 Introduction

Over the past two decades, model checking algorithms were generalised to han-
dle more and more expressive models. This now allows us to verify probabilistic
as well as hard and soft real-time systems, modelled by timed automata, Markov
decision processes, probabilistic automata, continuous-time Markov chains, in-
teractive Markov chains, and Markov automata. Except for timed automata—
which incorporate real-time deadlines—all other models are subsumed by the
Markov automaton (MA) [14, 13, 12]. MAs can therefore be used as a seman-
tic model for a wide range of formalisms, such as generalised stochastic Petri
nets (GSPNs) [2], dynamic fault trees [9], Arcade [8] and the domain-specific
language AADL [10].

Before the introduction of MAs, the above models could not be analysed to
their full extent. For instance, the semantics of a (potentially nondeterministic)
GSPN were given as a fully probabilistic CTMC. To this end, weights had to
be assigned to resolve the nondeterminism between immediate transitions. As
argued in [20], it is often much more natural to omit most of these weights, retain-
ing rates and probability as well as nondeterminism, and thus obtaining an MA.
For example, consider the GSPN in Figure 1(a), taken from [13]. Immediate

? This research has been partially funded by NWO under grants 612.063.817 (SYRUP),
12238 (ArRangeer) and Dn 63-257 (ROCKS), and EU under 318490 (SENSATION).

1

p1

t1

t5

p2

p5

t2

t3

W = 1

p3

p4

p6 t4

W = 2

t6

µ

λ

(a)

s0 s1

s2 s3

s4 s5

s6

t4

t1 t1

t4

t2t2

2
31

3

λ

µtarget

τ

(b)

s2

s4 s5

s6

τ

τ

2
31

3

λ µtarget

τ

(c)

s4

s6s5
ττ

λ µ

target

(d)

Fig. 1. A GSPN and the corresponding unreduced and reduced state spaces.

transitions are indicated in black, Markovian transitions in white, and we as-
sume a partial weight assignment. The underlying MA is given in Figure 1(b),
where s0 corresponds to the initial situation with one token in p1 and p4. We
added a selfloop labelled target to indicate a possible state of interest s4 (having
one token in p3 and p4), and for convenience labelled the interactive transitions
of the MA by the immediate transition of the GSPN they resulted from (except
for the probabilistic transition, which is the result of t3 and t4 together).

Recently, the data-rich process-algebraic language MAPA was introduced to
efficiently specify MAs in a compositional manner [24]. As always, though, the
state space explosion threatens the feasibility of model checking, especially in
the presence of data and interleaving. Therefore, reduction techniques for MAs
are vital to keep the state spaces of these models manageable. In this paper we
introduce such a technique, generalising confluence reduction to MAs. It is a
powerful state space reduction technique based on commutativity of transitions,
removing spurious nondeterminism often arising from the parallel composition
of largely independent components. To the best of our knowledge, it is the first
technique of this kind for MAs. We give heuristics to apply confluence reduction
directly on specifications in the MAPA language, reducing them on-the-fly while
preserving divergence-sensitive branching bisimulation.

To illustrate confluence reduction, reconsider the MA in Figure 1(b) and
assume that t1 = t2 = t4 = τ , i.e., all action-labelled transitions, except for
the target-transition, are invisible. We are able to detect automatically that the
t1-transitions are confluent; they can thus safely be given priority over t4, with-
out losing any behaviour. Figure 1(c) shows the reduced state space, generated
on-the-fly using confluence reduction. If all weights are omitted from the specifi-
cation, an even smaller reduced state space is obtained (Figure 1(d)), while the
only change in the unreduced state space is the substitution of the probabilistic
choice by a nondeterministic choice.

Outline of the approach. First, we introduce the technical background of our
work (Section 2). Then, we define our novel notion of confluence for MAs (Sec-
tion 3). It specifies sufficient conditions for invisible transitions to not alter the

2

behaviour of an MA; i.e., if a transition is confluent, it could be given priority
over all other transitions with the same source state.

We formally show that confluent transitions connect divergence-sensitive
branching bisimilar states, and present a mapping of states to representatives to
efficiently generate a reduced MA based on confluence (Section 4). We discuss
how confluence can be detected symbolically on specifications in the MAPA lan-
guage (Section 5) and illustrate the significance of our technique using three case
studies (Section 6). We show state spaces shrinking by more than 80%, making
the entire process from MAPA specification to results more than ten times as
fast for some models.1

Related work. Confluence reduction for process algebras was first introduced
for non-probabilistic systems [7], and later for probabilistic automata [25]. Also,
several types of partial order reduction (POR) have been defined, both for non-
probabilistic [26, 21, 16] and probabilistic systems [11, 4, 3]. These techniques
are based on ideas similar to confluence, and have been compared to confluence
recently, both in a theoretical [17] and in a practical manner [18]. The results
showed that branching-time POR is strictly subsumed by confluence, and that
the additional advantages of confluence can be employed nicely in the context
of statistical model checking.

Compared to the earlier approaches to confluence reduction for process alge-
bras [7, 25], our novel notion of confluence is different in three important ways:

– It can handle MAs, and hence is applicable to a larger class of systems.
– It fixes a subtle flaw in the earlier work, by introducing an underlying classi-

fication of the interactive transitions. This way we guarantee closure under
unions, something that was not guaranteed before. It is key to the way we
detect confluence on MAPA specifications.

– We now do preserve divergences and hence minimal reachability probabili-
ties, incorporating a technique used earlier in [17].

Since none of the existing techniques is able to deal with MAs, we believe
that our generalisation—the first reduction technique for MAs abstracting from
internal transitions—is a major step forward in efficient quantitative verification.

2 Preliminaries

Definition 1 (Basics). A probability distribution over a countable set S is
a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. For S′ ⊆ S, let µ(S′) =∑

s∈S′ µ(s). We define spt(µ) = {s ∈ S | µ(s) > 0} to be the support of µ, and
write 1s for the Dirac distribution for s, determined by 1s(s) = 1.

We use Distr(S) to denote the set of all probability distributions over S, and
SDistr(S) for the set of all substochastic probability distributions over S, i.e.,

1 Due to space limitations, we discuss the notion of divergence-sensitive branching
bisimulation only on an intuitive level, deferring the formal definitions and proofs of
all our results to the appendices. These will be published in a technical report.

3

where 0 ≤
∑
s∈S µ(s) ≤ 1. Given a function f , we denote by f(µ) the lifting of

µ over f , i.e., f(µ)(s) = µ(f−1(s)), with f−1(s) the inverse image of s under f .
Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence

class of s induced by R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}. We denote the
set of all such equivalence classes by S/R. Given two probability distributions
µ, µ′ ∈ Distr(S) and an equivalence relation R, we write µ ≡R µ′ to denote that
µ([s]R) = µ′([s]R) for every s ∈ S.

An MA is a transition system in which the set of transitions is partitioned
into probabilistic interactive transitions (equivalent to the transitions of a PA),
and Markovian transitions labelled by the rate of an exponential distribution
(equivalent to the transitions of a CTMC). We assume a countable universe of
actions Act, with τ ∈ Act the invisible internal action.

Definition 2 (Markov automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, ↪−→, 〉, where

– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions;
– ↪−→ ⊆ S ×A×Distr(S) is the interactive transition relation;
– ⊆ S × R>0 × S is the Markovian transition relation.

If (s, a, µ) ∈ ↪−→, we write s
a
↪−→ µ and say that the action a can be executed from

state s, after which the probability to go to s′ ∈ S is µ(s′). If (s, λ, s′) ∈ , we
write s λ s′ and say that s moves to s′ with rate λ.

The rate between two states s, s′ ∈ S is rate(s, s′) =
∑

(s,λ,s′)∈ λ, and the
outgoing rate of s is rate(s) =

∑
s′∈S rate(s, s′). We require rate(s) <∞ for every

state s ∈ S. If rate(s) > 0, the branching probability distribution after this delay
is denoted by Ps and defined by Ps(s′) = rate(s,s′)

rate(s) for every s′ ∈ S.
By definition of the exponential distribution, the probability of leaving a

state s within t time units is given by 1 − e−rate(s)·t (given rate(s) > 0), after
which the next state is chosen according to Ps.

MAs adhere to the maximal progress assumption, prescribing τ -transitions to
never be delayed. Hence, a state that has at least one outgoing τ -transition can
never take a Markovian transition. This fact is captured below in the definition
of extended transitions.

Definition 3 (Extended action set). Let M = 〈S, s0, A, ↪−→, 〉 be an MA,
then the extended action set of M is given by Aχ = A ∪ {χ(r) | r ∈ R>0}.
Given a state s ∈ S and an action α ∈ Aχ, we write s −α→ µ if either

– α ∈ A and s
α
↪−→ µ, or

– α = χ(rate(s)), rate(s) > 0, µ = Ps and there is no µ′ such that s
τ
↪−→ µ′.

A transition s −α→ µ is called an extended transition. We write s −α,µ−−→ s′ if there
is an extended transition s −α→ µ such that µ(s′) > 0. We use s −α→ t to denote
s −α→ 1t, and write s→ t if there is at least one action α such that s −α→ t.

4

Example 4. Consider the MA M shown on the right.

s2s1 s3s0

s4 s5

4

3 a

22
3

2

1
3

a

τ

For this system, rate(s2, s1) = 3 + 4 = 7,
rate(s2) = 7 + 2 = 9, and Ps2 = µ such that
µ(s1) = 7

9 and µ(s3) = 2
9 . There are two

extended transitions from s2: s2 −a→ 1s3 (also
written as s2 −a→ s3) and s2 −

χ(9)−−→ Ps2 . ut

We define several notions for paths and connectivity. These are based on ex-
tended transitions, and thus may contain interactive as well as Markovian steps.

Definition 5 (Paths). Given an MA M = 〈S, s0, A, ↪−→, 〉,

– A path inM is a finite sequence πfin = s0 −a1,µ1−−−→ s1 −a2,µ2−−−→ . . . −an,µn−−−→ sn from
some state s0 to a state sn (n ≥ 0), or an infinite sequence πinf = s0 −a1,µ1−−−→
s1 −a2,µ2−−−→ s2 −a3,µ3−−−→ . . . , with si ∈ S for all 0 ≤ i ≤ n and all 0 ≤ i, re-
spectively. We use prefix(π, i) to denote s0 −a1,µ1−−−→ . . . −ai,µi−−−→ si, and step(π, i)
for the transition si−1 −ai−→ µi. When π is finite we define |π| = n and
last(π) = sn. We use finpathsM for the set of all finite paths in M, and
finpathsM(s) for all such paths with s0 = s.

– We denote by trace(π) the sequence of actions of π while omitting all τ -
actions, and use ε to denote the empty sequence.

Definition 6 (Connectivity). Given an MA M = 〈S, s0, A, ↪−→, 〉 and two
states s, t ∈ S, we write

– s� t (reachability) if there is a path from s to t;

– s� �t (joinability) if there is a state u such that s� u and t� u.

We define �� (convertibility) as the symmetric and transitive closure of �.

Since a single state is a path as well, all three connectivity relations are reflexive.
Additionally, the relation� is transitive (but not necessarily symmetric) and the
relation� �is symmetric (but not necessarily transitive). Note that, intuitively,
s �� t means that s is connected by extended transitions to t—disregarding
the orientation of these transitions. Clearly, s� t implies s� �t, and s� �t
implies s�� t. These implications in general do not hold the other way.

Example 7. The system in Example 4 has infinitely many paths, for example

π = s2 −
χ(9),µ1−−−−→ s1 −a,µ2−−→ s0 −

χ(2),1s1−−−−−→ s1 −a,µ2−−→ s4 −
τ,1s5−−−→ s5

with µ1(s1) = 7
9 and µ1(s3) = 2

9 , and µ2(s0) = 2
3 and µ2(s4) = 1

3 . We have

prefix(π, 2) = s2 −
χ(9),µ1−−−−→ s1 −a,µ2−−→ s0, and step(π, 2) = s1 −a→ µ2. Also, trace(π) =

χ(9) aχ(2) a. It is easy to see that s2 � s5, as well as s0 � �s2 and s5 �� s3.
However, s0 � s2 and s5 � �s3 do not hold. ut

5

s t2

t3

t1

τ
τ

b

t4

s1

s2

s4 s3

s5

τ

α
α

1
2

1
2

α

1
2

1
2

α
s t2

t3

τ

2
3

1
3

t4

s1

s2

s4 s3

s5

1
2

1
2

τ

α

1
2

1
2

α

7
8

1
8

α

Fig. 2. An MA (left), and a tree demonstrating the branching transition s
α

=⇒ µ (right).

2.1 Divergence-sensitive branching bisimulation

To prove our confluence reduction technique correct, we show that it preserves
divergence-sensitive branching bisimulation. Basically, this means that there is
an equivalence relation R linking states in the original system to states in the
reduced system, in such a way that their initial states are related and all related
states can mimic each other’s transitions and divergences.

More precisely, for R to be a divergence-sensitive branching bisimulation, it
is required that for all (s, t) ∈ R and every extended transition s −a→ µ, there
is a branching transition t

a
=⇒R µ′ such that µ ≡R µ′. The existence of such a

branching transition depends on the existence of a certain scheduler. Schedulers
resolve nondeterministic choices in an MA by selecting which transition to take
given a history; they are also allowed to terminate with some probability.

Now, a state t can do a branching transition t
a

=⇒R µ
′ if either (1) a = τ and

µ′ = 1t, or (2) there exists a scheduler that terminates according to µ′, always
schedules precisely one a-transition (immediately before terminating), does not
schedule any other visible transitions and does not leave the equivalence class [t]R
before doing an a-transition.

Example 8. Observe the MA in Figure 2 (left). We find that s
α

=⇒ µ, with

µ(s1) = 8
24 µ(s2) = 7

24 µ(s3) = 1
24 µ(s4) = 4

24 µ(s5) = 4
24

by the scheduling depicted in Figure 2 (right), assuming (s, ti) ∈ R for all ti. ut

In addition to the mimicking of transitions by branching transitions, we re-
quire R-related states to either both be able to perform an infinite invisible path
with probability 1 (diverge), or to both not be able to do so. We write s -div

b t
if two states s, t are divergence-sensitive branching bisimilar, and M1 -div

b M2

if two MAs are (i.e., if their initial states are so in their disjoint union).

3 Confluence for Markov automata

In [25] we defined three variants of probabilistic confluence: weak probabilistic
confluence, probabilistic confluence and strong probabilistic confluence. They
specify sufficient conditions for τ -transitions to not alter the behaviour of an MA.
The stronger notions are easier to detect, but less powerful in their reductions.

6

In a process-algebraic context, where confluence is detected heuristically over
a syntactic description of a system, it is most practical to apply strong confluence.
Therefore, in this paper we only generalise strong probabilistic confluence to
the Markovian realm. Although MAs in addition to interactive transitions may
also contain Markovian transitions, these are irrelevant for confluence. After all,
states having a τ -transition can never execute a Markovian transition due to the
maximal progress assumption. Hence, such transitions need not be mimicked.
For the above reasons, the original definition of confluence for PAs might seem
to still work for MAs. This is not true, however, for two reasons.

1. The old definition was not yet divergence sensitive and hence might lose
divergences; for MAs it could therefore erroneously enable Markovian tran-
sitions that were disabled in the presence of divergence due to the max-
imal progress assumption. Hence, it would not even preserve Markovian
divergence-insensitive branching bisimulation. We now improve on the def-
inition to resolve this issue, introducing τ -loops in the reduced system for
states having confluent divergence in the original system (inspired by the
way [17] deals with divergences). This not only makes the theory work for
MAs, it even yields preservation of divergence-sensitive branching bisimula-
tion, and hence of minimal reachability probabilities.

2. The old definition had a subtle flaw: earlier work relied on the assumption
that confluent sets are closed under unions [7, 25]. In practical applications
this was indeed a valid assumption, but for the theoretical notions of conflu-
ence this was not yet the case. We fix this flaw by classifying transitions into
groups, defining confluence over sets of such groups and requiring transitions
to be mimicked by a transition from their own group.

Additionally, we improve on the way equivalence of distributions is defined,
making it slightly more powerful and, in our view, easier to understand.

Confluence classifications and confluent sets. The original lack of closure
under unions was due to the requirement that confluent transitions are mimicked
by confluent transitions. When taking the union of two valid sets of confluent
transitions, this requirement was possibly invalidated. To solve this problem, we
classify the interactive transitions of an MA into groups—allowing overlap and
not requiring all interactive transitions to be in at least one group. Together,
we call such a set of groups P = {C1, C2, . . . , Cn} ⊆ P(↪−→) a confluence clas-
sification2. Now, instead of designating individual transitions to be confluent
and requiring confluent transitions to be mimicked by confluent transitions, we
designate groups in P to be confluent and require transitions from a group in P
to be mimicked by transitions from the same group.

2 We use s −a→C µ to denote that (s −a→ µ) ∈ C, and abuse notation by writing
(s −a→ µ) ∈ P to denote that s −a→C µ for some C ∈ P . Similarly, we subscript
reachability, joinability and convertibility arrows to indicate that they only traverse
transitions from a certain group or set of groups of transitions.

7

s tT

µ ν
C C

τ

a a

≡R

(a) (s −a→ µ) ∈ P.

s tT

µ ν

τ

a a

≡R

(b) (s −a→ µ) 6∈ P.

s

t uv w

τ τ

a b
τ

τ
τ ττ τ

(c) A simple state space.

Fig. 3. The confluence diagrams for s −τ→T t, and a simple state space. In (a,b): If the
solid transitions are present, then so should the dashed ones be.

For a set T ⊆ P to be Markovian confluent, first of all—like in the PA
setting [25, 3]—it is only allowed to contain invisible transitions with a Dirac
distribution. (Still, prioritising such transitions may very well reduce probabilis-
tic transitions as well, as we will see in Section 4.) Additionally, each transition
s −a→ µ enabled before a transition s −τ→T t should have a mimicking transition
t −a→ ν such that µ and ν are connected by T -transitions, and mimicking transi-
tions should be from the same group. The definition is illustrated in Figure 3.

Definition 9 (Markovian confluence). Let M = 〈S, s0, A, ↪−→, 〉 be an MA
and P ⊆ P(↪−→) a confluence classification. Then, a set T ⊆ P is Markovian
confluent for P if it only contains sets of invisible transitions with Dirac distri-
butions, and for all s −τ→T t and all transitions (s −a→ µ) 6= (s −τ→ t):{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R ν , if (s −a→ µ) 6∈ P

with R the smallest equivalence relation such that

R ⊇ {(s, t) ∈ spt(µ)× spt(ν) | (s −τ→ t) ∈ T }.

A transition s −τ→ t is Markovian confluent if there exists a Markovian confluent
set T such that s −τ→T t.

Note that µ ≡R ν requires direct transitions from the support of µ to the
support of ν. Also note that, even though a (symmetric) equivalence relation R
is used, transitions from the support of ν to the support of µ do not influence R.

Remark 10. Due to the confluence classification, confluent transitions are always
mimicked by confluent transitions. After all, transitions from a group C ∈ P are
mimicked by transitions from C. So, if C is designed confluent by T , then all
these confluent transitions are indeed mimicked by confluent transitions.

Although the confluence classification may appear restrictive, we will see
that in practice it is obtained naturally. Transitions are often instantiations of
higher-level constructs, and are therefore easily grouped together. Then, it makes
sense to detect the confluence of such a higher-level construct. Additionally, to
show that a certain set of interactive transitions is confluent, we can just take
P to consists of one group containing precisely all those transitions. Then, the
requirement for P -transitions to be mimicked by the same group reduces to the
old requirement that confluent transitions are mimicked by confluent transitions.

8

Properties of confluent sets. Since confluent transitions are always mimicked
by confluent transitions, confluent paths (i.e., paths following only transitions
from a confluent set) are always joinable.

Proposition 11. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, P ⊆ P(↪−→) a conflu-
ence classification for M and T a Markovian confluent set for P . Then,

s� �T t if and only if s��T t

Due to the confluence classification, we now also do have a closure result. Clo-
sure under union tells us that it is safe to show confluence of multiple sets of
transitions in isolation, and then just take their union as one confluent set. Also,
it implies that there exists a unique maximal confluent set.

Proposition 12. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, P ⊆ P(↪−→) a conflu-
ence classification for M and T1, T2 two Markovian confluent sets for P . Then,
T1 ∪ T2 is also a Markovian confluent set for P .

The next example shows why Proposition 12 would not hold without the use
of a confluence classification. It applies to the old notions of confluence as well.

Example 13. Consider the system in Figure 3(c). Without the requirement that
transitions are mimicked by the same group, the sets

T1 = {(s, τ, u), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}
T2 = {(s, τ, t), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}

would both be perfectly valid confluent sets. Still, T = T1 ∪ T2 is not an accept-
able set. After all, whereas t��T u, it fails to satisfy t� �T u. This property
was ascertained in earlier work by requiring confluent transitions to be mimicked
by confluent transitions or by explicitly requiring � �T to be an equivalence
relation. This is indeed not the case for T , as the diamond starting with s −τ→ t
and s −τ→ u can only be closed using the non-confluent transitions between t
and u, and clearly � �is not transitive. However, T1 and T2 do satisfy these
requirements, and hence the old notions were not closed under union.

By using a confluence classification and requiring transitions to be mimicked
by the same group, we ascertain that this kind of bad compositionality behaviour
does not occur. After all, for T1 to be a valid confluent set, the confluence clas-
sification should be such that s −τ→ t and its mimicking transition u −τ→ t are in
the same group. So, for s −τ→ t to be confluent (as prescribed by T2), also u −τ→ t
would need to be confluent. The latter is impossible, since the b-transition from
u cannot be mimicked from t, and hence T2 is disallowed. ut

The final result of this section shows that confluent transitions indeed connect
divergence-sensitive bisimilar states. This is a key result; it implies that confluent
transitions can be given priority over other transitions without losing behaviour.

Theorem 14. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, s, s′ ∈ S two of its states,
P ⊆P(↪−→) a confluence classification for M and T a Markovian confluent set
for P . Then,

s��T s
′ implies s -div

b s′.

9

4 State space reduction using confluence

We can reduce state spaces by prioritising confluent transitions, i.e., omitting
all other transitions from a state that also enables a confluent transition. Better
still, we aim at omitting all intermediate states on a confluent path altogether;
after all, they are all bisimilar anyway by Theorem 14. Confluence even dictates
that all visible transitions and divergences enabled from a state s can directly
be mimicked from another state t if s �T t. Hence, we can just keep following
a confluent path and only retain the last state. To avoid getting stuck in an
infinite confluent loop, we detect entering a bottom strongly connected compo-
nent (BSCC) of confluent transitions and choose a unique representative from
this BSCC for all states that can reach it. Since we showed that confluent join-
ability is transitive (Proposition 11), it follows immediately that all confluent
paths emanating from a certain state s always end up in one unique BSCC.

Formally, we use the notion of a representation map, assigning a representa-
tive state ϕ(s) to every state s, while making sure that ϕ(s) indeed exhibits all
behaviour of s due to being in a BSCC reachable from s.

Definition 15 (Representation map). Let M = 〈S, s0, A, ↪−→, 〉 be an MA
and T a Markovian confluent set for M. Then, a function ϕT : S → S is a
representation map for M under T if for all s, s′ ∈ S

– s�T ϕT (s)

– s→T s′ =⇒ ϕT (s) = ϕT (s′)

Note that the first requirements ensures that every representative is reachable
by all states it represents, while the second takes care that all T -related states
have the same representative. Together, they imply that every representative is
in a BSCC. Since all T -related states have the same BSCC, as discussed above,
it is indeed always possible to find such a representation map. We refer to [6] for
the algorithm we use to construct it in our implementation.

As representatives exhibit all behaviour of the states they represent, they can
be used for state space reduction. More precisely, it is possible to define the quo-
tient of an MA modulo a representation map. This system does not have any T -
transitions anymore, except for self-loops on representatives that have outgoing
T -transitions in the original system. These ensure preservation of divergences.

Definition 16 (M/ϕ). Given an MA M = 〈S, s0, A, ↪−→, 〉, a confluent set T
for M, and a representation map ϕ : S → S for M under T , the quotient of M
modulo ϕ is the smallest system M/ϕ = 〈ϕ(S), ϕ(s0), A, ↪−→ ϕ, ϕ〉 such that

– ϕ(S) = {ϕ(s) | s ∈ S};
– ϕ(s)

a
↪−→ϕ ϕ(µ) if ϕ(s)

a
↪−→ µ;

– ϕ(s) λ ϕ ϕ(s′) if λ =
∑
λ′∈Λ(s,s′) λ

′ and λ > 0,

where Λ(s, s′) is the multiset {|λ′ ∈ R | ∃s∗ ∈ S . ϕ(s) λ′
 s∗ ∧ ϕ(s∗) = ϕ(s′)|}.

10

Note that each interactive transition from ϕ(s) inM is lifted toM/ϕ by chang-
ing all states in the support of its target distribution to their representatives.
Additionally, each pair ϕ(s), ϕ(s′) of representative states in M/ϕ has a con-
necting Markovian transition with rate equal to the total outgoing rate of ϕ(s)
in M to states s∗ that have ϕ(s′) as their representative (unless this sum is 0).
It is easy to see that this implies ϕ(s) −χ(λ)−−→ϕ ϕ(µ) if and only if ϕ(s) −χ(λ)−−→ µ.

Since T -transitions connect bisimilar states, and representatives exhibit all
behaviour of the states they represent, we can prove the following theorem. It
shows that we indeed reached our goal of providing a reduction that is safe with
respect to divergence-sensitive branching bisimulation.

Theorem 17. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, T a Markovian confluent
set for M, and ϕ : S → S a representation map for M under T . Then,

M/ϕ -div
b M.

5 Symbolic detection of Markovian confluence

Although the definition of confluence in Section 3 is useful to show the correctness
of our approach, it is often not feasible to check in practice. After all, we want
to reduce on-the-fly to obtain a smaller state space without first generating the
unreduced one. Therefore, we use heuristics to detect Markovian confluence in
the context of the process-algebraic modelling language MAPA [24]. As these
heuristics only differ slightly from the ones in [25] for probabilistic confluence,
we discuss the basics and explain how the old techniques can be reused.

MAPA is data-rich and expressive, and features a restricted form: the Marko-
vian Linear Probabilistic Process Equation (MLPPE). Every MAPA specifica-
tion can be translated easily to an equivalent specification in MLPPE [24]. Hence,
it suffices to define our confluence-based reduction technique on this form.

The MLPPE format. An MLPPE is a process with global variables, inter-
active summands (each yielding a set of interactive transitions) and Markovian
summands (each yielding a set of Markovian transitions). Its semantics is given
as an MA, whose states are all valuations of the global variables. Basically, in
each state a nondeterministic choice is made between the summands that are
enabled given these values.

Each interactive summand has a condition (the guard) that specifies for which
valuations of the global variables it is enabled. If so, an action can be taken and
the next state (a new valuation for the global variables) is determined proba-
bilistically. The action and next state may also depend on the state. The Marko-
vian summands are similar, except that they contain a rate and a unique next
state instead of an action and a probabilistic next state. We assume an implicit
confluence classification P = {C1, . . . , Ck} that, for each interactive summand,
contains a group consisting of all transitions generated by that summand.

For a precise formalisation of the language and its semantics, we refer to [24].

11

Confluent summands. We check for confluent summands: summands that
are guaranteed to only yield confluent transitions, i.e., summands i such that
the set T = {Ci} is confluent. Whenever during state space generation such
a summand is enabled, all other summands can be ignored (continuing until
reaching a representative in a BSCC, as explained in the previous section). By
Proposition 12, the union of all confluent summands is also confluent.

Since only τ -transitions can be confluent, the only summands that might
be confluent are interactive summands having action τ for all valuations of the
global variables. Also, the next state of each of the transitions they generate
should be unique. Finally, we verify whether all transitions that may result from
these summands commute with all other transitions according to Definition 9.

We only need to check commutativity with all transitions possibly generated
by the interactive summands, as the Markovian summands are never enabled at
the same time as an invisible transition due to the maximal progress assumption.
We over-approximate commutativity by checking whether, when both summands
are enabled, they do not disable each other and do not influence each other’s
actions, probabilities and next states. After all, that implies that each transition
can be mimicked by a transition from the same summand (and hence also that it
is indeed mimicked by the same group of P). This can by formally expressed as
a logical formula (see [25] for the details). Such a formula can be checked by an
SMT solver, or approximated using heuristics. We implemented basic heuristics,
checking mainly whether two summands are never enabled at the same time
or whether the variables updated by one are not used by the other and vice
versa. Additionally, some laws from the natural numbers have been implemented,
taking for instance into account that x := x + 1 cannot disable x > 2. In the
future, we hope to extend this to more advanced theorem proving.

6 Case studies

We implemented confluence reduction in our tool SCOOP [23]. It takes MAPA
specifications as input, is able to perform several reduction techniques and can
generate state spaces in multiple formats, among which the one for the IMCA
tool for model checking MAs [19]. We already showed in [24] the benefits of
dead variable reduction. Here, we apply only confluence reduction, to focus on
the power of our novel technique. We present the size of the state spaces with
and without confluence reduction, as well as the time to generate them with
SCOOP and to subsequently analyse them with IMCA. That way, the impact
of confluence reduction on both MA generation and analysis becomes clear3.

We conjecture that the (quantitative) behavioural equivalence induced by
branching bisimulation leaves invariant the time-bounded reachability probabil-
ities, expected times to reachability and long-run averages computed by IMCA.
This indeed turned out to be the case for all our models. A logic precisely char-
acterising Markovian branching bisimulation would be interesting future work.

3 The tool (for download and web-based usage), all MAPA models and a test script
can be found on http://wwwhome.cs.utwente.nl/~timmer/scoop/papers/formats.

12

Original state space Reduced state space Reduction
Specification States Trans. SCOOP IMCA States Trans. SCOOP IMCA States Time
leader-3-7 25,505 34,257 4.7 103.8 4,652 5,235 5.8 5.2 82% 90%
leader-3-9 52,465 71,034 9.7 214.3 9,058 10,149 8.8 9.9 83% 92%
leader-3-11 93,801 127,683 18.1 431.7 15,624 17,463 16.4 16.7 83% 93%
leader-4-2 8,467 11,600 2.1 74.9 2,071 2,650 2.2 5.2 76% 90%
leader-4-3 35,468 50,612 9.0 369.3 7,014 8,874 7.6 22.4 80% 92%
leader-4-4 101,261 148,024 25.9 1,325.3 17,885 22,724 20.9 62.2 82% 94%
polling-2-2-4 4,811 8,578 0.7 3.7 3,047 6,814 0.7 2.3 37% 32%
polling-2-2-6 27,651 51,098 12.6 90.9 16,557 40,004 5.4 49.1 40% 47%
polling-2-4-2 6,667 11,290 0.9 39.9 4,745 9,368 0.9 26.2 29% 32%
polling-2-5-2 27,659 47,130 4.1 1,573.8 19,721 39,192 4.1 1,053.5 29% 33%
polling-3-2-2 2,600 4,909 0.4 7.1 1,914 4,223 0.5 4.8 26% 29%
polling-4-6-1 15,439 29,506 3.2 330.0 4,802 18,869 3.2 109.3 69% 66%
polling-5-4-1 21,880 43,760 5.4 815.0 6,250 28,130 5.3 317.5 71% 61%
processor-2 2,508 4,608 0.7 2.8 1,393 2,922 0.7 1.1 44% 49%
processor-3 10,852 20,872 3.1 66.3 6,011 13,240 3.2 19.8 45% 67%
processor-4 31,832 62,356 10.7 922.5 17,565 39,558 10.0 316.5 45% 65%

Table 1. State space generation and analysis using confluence reduction (on a 2.4 GHz 4 GB Intel
Core 2 Duo MacBook). Runtimes in SCOOP and IMCA are in seconds.

Leader election protocol. The first case study is a leader election protocol
(Algorithm B from [15]), used in [25] as well to demonstrate confluence reduction
for probabilistic automata. It uses asynchronous channels and allows for multiple
nodes, throwing dice to break the symmetry. We added a rate 1 to a node
throwing a die to get an MA model based on the original case study, making the
example more relevant and interesting in the current situation. We computed
the probability (with error bound 0.01) of electing a leader within 5 time units.
The results are presented in Table 1, where we denote by leader-i-j the variant
with i nodes and j-sided dice. The computed probability varies from 0.36 for
leader-4-2 to 0.95 for leader-3-11. Confluence saved over 90% of the total
time to generate and analyse the models. The substantial reductions are due to
extensive interleaving with little communication.

Queueing system. The second case study is the queueing system from [24].
It consists of multiple stations with incoming jobs, and one server that polls
the stations for work. With some probability, communication fails. There can be
different sizes of buffers in the stations, and multiple types of jobs with differ-
ent service rates. In Table 1, we let polling-i-j-k denote the variant with i

stations, all having buffers of size j and k types of jobs. Note that, although sig-
nificant reductions are obtained, the reduction in states precisely corresponds to
the reduction in transitions; this implies that only trivially confluent transitions
could be reduced (i.e., invisible transitions without any other transitions from
the same source state). We computed the expected time to the situation that
all buffers are full. This turns out to be at least 1.1—for polling-3-2-2—and
at most 124—for polling-2-5-2. Reductions were less substantial, due to the
presence of many probabilistic and Markovian transitions.

Processor architecture. The third case study is a GSPN model of a 2 × 2
concurrent processor architecture, parameterised in the level k of multitasking,
taken from Figure 11.7 in [1]. We constructed a corresponding MAPA model,

13

modelling each place as a global variable and each transition as a summand.
As in [1], we computed the throughput of one of the processors, given by the
long-run average of having a token in a certain place of the GSPN. Whereas [1]
resolved all nondeterminism and found for instance a throughput of 0.903 for
k = 2, we are able to retain the nondeterminism and obtain the more informative
interval [0.811, 0.995]. (When resolving nondeterminism as before, we are able
to reproduce the result 0.903.)

Our results clearly show the significant effect of confluence reduction on
the state space sizes and the duration of the heavy numerical computations
by IMCA. The generation times by SCOOP are not reduced as much, due to the
additional overhead of computing representative states. To keep memory usage
in the order of the reduced state space, the representative map is deliberately
not stored and therefore potentially partly recomputed for some states.

7 Conclusions

We introduced confluence reduction for MAs: the first reduction technique for
this model that abstracts from invisible transitions. We showed that it preserves
divergence-sensitive branching bisimulation, and hence yields quantitatively be-
havioural equivalent models. In addition to working on MAs, our novel notion
of confluence reduction has two additional advantages over previous notions.
First, it preserves divergences, and hence does not alter minimal reachability
probabilities. Second, it is closed under unions, enabling us to separately de-
tect confluence of different sets of transitions and combine the results. We also
showed that the representation map approach can still be used safely to reduce
systems on-the-fly, and discussed how to detect confluence syntactically on the
process-algebraic language MAPA. Case studies with our tool SCOOP on several
instances of three different models show state space reductions up to 83%. We
linked SCOOP to the IMCA model checker to illustrate the significant impact of
these reductions on the expected time, time-bounded reachability and long-run
averages computations. Due to confluence reduction, for some models the entire
process from MAPA specification to results is now more than ten times as fast.

As future work we envision to search for even more powerful ways of us-
ing commutativity for state space reduction, for instance by allowing confluent
transitions to be probabilistic. Preferably, this would enable even more aggressive
reductions that, instead of preserving the conservative notion of bisimulation we
used, preserve the more powerful weak bisimulation from [14].

Acknowledgements. We thank Stefan Blom and Joost-Pieter Katoen for their
useful suggestions, and Dennis Guck for his help with the case studies.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., 1994.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochas-
tic Petri nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems, 2(2):93–122, 1984.

14

[3] C. Baier, P. R. D’Argenio, and M. Größer. Partial order reduction for probabilistic
branching time. In QAPL, volume 153(2) of ENTCS, pages 97–116, 2006.

[4] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic
systems. In QEST, pages 230–239, 2004.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
[6] S. Blom. Partial τ -confluence for efficient state space generation. Technical Report

SEN-R0123, CWI, Amsterdam, 2001.
[7] S. C. C. Blom and J. C. van de Pol. State space reduction by proving confluence.

In CAV, volume 2404 of LNCS, pages 596–609, 2002.
[8] H. Boudali, P. Crouzen, B. R. Haverkort, M. Kuntz, and M. I. A. Stoelinga.

Architectural dependability evaluation with arcade. In DSN, pages 512–521, 2008.
[9] H. Boudali, P. Crouzen, and M. I. A. Stoelinga. A rigorous, compositional, and

extensible framework for dynamic fault tree analysis. IEEE Transactions on De-
pendable and Secure Compututing, 7(2):128–143, 2010.

[10] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri.
Safety, dependability and performance analysis of extended AADL models. The
Computer Journal, 54(5):754–775, 2011.

[11] P. R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilis-
tic programs. In QEST, pages 240–249, 2004.

[12] Y. Deng and M. Hennessy. On the semantics of Markov automata. In ICALP,
volume 6756 of LNCS, pages 307–318, 2011.

[13] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency and composition in a
stochastic world. In CONCUR, volume 6269 of LNCS, pages 21–39, 2010.

[14] C. Eisentraut, H. Hermanns, and L. Zhang. On probabilistic automata in contin-
uous time. In LICS, pages 342–351, 2010.

[15] W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anonymous
rings. In Proc. of the 4th International Workshop on Automated Verification of
Critical Systems (AVoCS), volume 128(6) of ENTCS, pages 53–68, 2005.

[16] P. Godefroid. Partial-order Methods for the Verification of Concurrent Systems:
an Approach to the State-explosion Problem, volume 1032 of LNCS. 1996.

[17] H. Hansen and M. Timmer. A comparison of confluence and ample sets in prob-
abilistic and non-probabilistic branching time. To be published in TCS, 2013.

[18] A. Hartmanns and M. Timmer. On-the-fly confluence detection for statistical
model checking. In NFM, LNCS, 2013 (to appear).

[19] IMCA model checker. http://www-i2.informatik.rwth-aachen.de/imca/.
[20] J.-P. Katoen. GSPNs revisited: Simple semantics and new analysis algorithms.

In ACSD, pages 6–11, 2012.
[21] D. Peled. All from one, one for all: on model checking using representatives. In

CAV, volume 697 of LNCS, pages 409–423, 1993.
[22] M. I. A. Stoelinga. Alea jacta est: Verification of Probabilistic, Real-time and

Parametric Systems. PhD thesis, University of Nijmegen, 2002.
[23] M. Timmer. SCOOP: A tool for symbolic optimisations of probabilistic processes.

In QEST, pages 149–150, 2011.
[24] M. Timmer, J.-P. Katoen, J. C. van de Pol, and M. I. A. Stoelinga. Efficient

modelling and generation of Markov automata. In CONCUR, volume 7454 of
LNCS, pages 364–379, 2012.

[25] M. Timmer, M. I. A. Stoelinga, and J. C. van de Pol. Confluence reduction for
probabilistic systems. In TACAS, volume 6605 of LNCS, pages 311–325, 2011.

[26] A. Valmari. Stubborn sets for reduced state space generation. In APN, volume
483 of LNCS, pages 491–515, 1989.

15

A Divergence-sensitive branching bisimulation

MAs may contain states in which nondeterministic choices arise. Schedulers can
be used to specify how these choices are resolved. Our schedulers can select from
interactive transitions as well as Markovian transitions, as both might be enabled
at the same time. This is due to the fact that we consider open MAs, in which
the timing of visible actions is still to be determined by their context.

Definition 18 (Schedulers). Let M = 〈S, s0, A, ↪−→, 〉 be an MA, and → its
set of extended transitions. Then, a scheduler for M is a function

S : finpathsM → Distr({⊥} ∪ →),

such that, for every π ∈ finpathsM, the transitions s −α→ µ that are scheduled
by S after π are indeed possible, i.e., S(π)(s, α, µ) > 0 implies s = last(π). The
decision of not choosing any transition is represented by ⊥.

We define the sets of finite and maximal paths enabled by a given scheduler,
and define how each scheduler induces a probability distribution over paths (as
in [25]).

Definition 19 (Finite and maximal paths). Let M be an MA and S a
scheduler for M. Then, the set of finite paths of M under S is given by

finpathsSM = {π ∈ finpathsM | ∀0 ≤ i < |π| . S(prefix(π, i))(step(π, i+ 1)) > 0}.

We define finpathsSM(s) ⊆ finpathsSM as the set of all such paths starting in s.
The set of maximal paths of M under S is given by

maxpathsSM = {π ∈ finpathsSM | S(π)(⊥) > 0}.

Similarly, maxpathsSM(s) is the set of maximal paths ofM under S starting in s.

Definition 20 (Path probabilities). Let M be an MA with a state s, and S
a scheduler for M. Then, we define the function PSM,s : finpathsM(s)→ [0, 1] by

PSM,s(s) = 1; PSM,s(π −
a,µ−→ t) = PSM,s(π) · S(π)(last(π), a, µ) · µ(t).

A scheduler also induces a probability to terminate in some state s′ when
starting in state s. Following [25], we define this by FSM(s)(s′). Note that the
distribution FSM(s) may be substochastic, as S does not necessarily terminate.

Definition 21 (Final state probabilities). Let M be an MA and S a sched-
uler for M. Then, we define the function FSM : S → SDistr(S) by

FSM(s) =
{
s′ 7→

∑
π∈maxpathsSM(s)

last(π)=s′

PSM,s(π) · S(π)(⊥) | s′ ∈ S
}

∀s ∈ S.

16

Example 22. For the system in Example 4 we can define a scheduler S by

S(ε)(s2 −
χ(9)−−→ µ1) = 1 S(s2 −

χ(9),µ1−−−−→ s3)(⊥) = 1 S(π1)(s1 −a→ µ2) = 1

S(π0)(s0 −
χ(2)−−→ 1s1) = 1

2 S(π0)(⊥) = 1
2 S(π4)(s4 −τ→ 1s5) = 1 S(π5)(⊥) = 1

with µ1 and µ2 as in Example 7, and each πi any path ending in si. For the path
π given in Example 7, we find PSM,s2

(π) = (1· 79)·(1· 23)·(1
2 ·1)·(1· 13)·(1·1) = 7

81 , for
each step multiplying the probability of taking the transition by the probability
of selecting the given next state. Using the formula for infinite geometric series,
we find that FSM(s2) assigns probability 4

18 to s3, 7
18 to s0 and 7

18 to s5. ut

We now define branching steps for MAs. Intuitively, a state s can do a branch-
ing step s

a
=⇒R µ if there exists a scheduler that terminates according to µ, al-

ways schedules precisely one a-transition (immediately before terminating), does
not schedule any other visible transitions and does not leave the equivalence class
[s]R before doing an a-transition. Additionally, every state can do a branching
τ -step to itself. Due to the use of extended transitions as a uniform manner of
dealing with both interactive and Markovian transitions, this definition precisely
coincides with the definition of branching steps for PAs [25].

Definition 23 (Branching steps). Let M = 〈S, s0, A, ↪−→, 〉 be an MA, s ∈
S, and R an equivalence relation over S. Then, s

a
=⇒R µ if either (1) a = τ and

µ = 1s, or (2) there exists a scheduler S such that FSM(s) = µ and for every
maximal path s −a1,µ1−−−→ s1 −a2,µ2−−−→ s2 −a3,µ3−−−→ . . . −an,µn−−−→ sn ∈ maxpathsSM(s) it holds
that an = a, as well as ai = τ and (s, si) ∈ R for all 1 ≤ i < n.

Based on these branching steps, we define branching bisimulation for MAs
as a natural extension of the notion of naive weak bisimulation from [14]. It can
easily be seen that naive weak bisimulation is immediately implied by our notion
of branching bisimulation.

Definition 24 (Branching bisimulation). Let M = 〈S, s0, A, ↪−→, 〉 be an
MA, then an equivalence relation R ⊆ S × S is a branching bisimulation forM
if for all (s, t) ∈ R and every extended transition s −a→ µ, there is a transition
t

a
=⇒R µ

′ such that µ ≡R µ′. We say that p, q ∈ S are branching bisimilar,
denoted by p -b q, if there is a branching bisimulation R for M with (p, q) ∈ R.

Two MAs are branching bisimilar if their initial states are, in the disjoint union
of the two systems (see Remark 5.3.4 of [22] for the details). For a more elaborate
discussion on branching bisimulation, we refer to [25].

Minimal probabilities (e.g., of eventually seeing an a-action) are not invariant
under branching bisimulation. Consider for instance a system consisting of two
states, connected by an a-transition and both having a τ -selfloop. Due to these
divergences, the a-transition never has to happen. Still, this system is branching
bisimilar to the same system without the τ -selfloops. However, in that case the
minimal probability of traversing the a-transition is 1.

Hence, divergence-sensitive notions of bisimulation have been introduced that
take into account that diverging states are always mapped to diverging states [5].

17

Definition 25 (Divergence-sensitive relations). An equivalence relation R
is divergence sensitive if for all (s, s′) ∈ R it holds that

∃S . ∀π ∈ finpathsSM(s) . trace(π) = ε ∧ S(π)(⊥) = 0

⇐⇒

∃S ′ . ∀π ∈ finpathsS
′

M(s′) . trace(π) = ε ∧ S ′(π)(⊥) = 0

Two MAs M1,M2 are divergence-sensitive branching bisimilar, in which case
we write M1 -div

b M2, if they are branching bisimilar and the equivalence rela-
tion to show this is divergence sensitive.

Hence, if (s, s′) ∈ R and R is divergence sensitive, then s can diverge (perform
an endless series of τ -transitions with probability 1) if and only if s′ can.

B Proofs

In all proofs, whenever a confluent set T is given, we abuse notation by writing
confluent transition to denote a transition in this set T . Note that, in general,
there might also be confluent transitions that are not in T .

Proposition 11. LetM = 〈S, s0, A, ↪−→, 〉 be an MA, P ⊆P(↪−→) a confluence
classification for M and T a Markovian confluent set for P . Then,

s� �T t if and only if s��T t

Proof. We separately prove both directions of the equivalence.

(=⇒) Let s � �T t. Then, by definition there is a state u such that s �T u
and t�T u. This immediately implies that s��T t.

(⇐=) Let s��T t. This means that there is a path from s to t such as

s0 ← s1 → s2 → s3 ← s4 ← s5 → s6,

where s0 = s, s6 = t and each of the transitions is in T . Note that si � �T si+1

for all si, si+1 on this path. After all, if si → si+i then they can join at si+1,
otherwise they can join at si. Hence, to show that s� �T t, it suffices to show
that � �T is transitive.

Let s′ � �T s and s � �T s′′. We show that s′ � �T s′′. Let t′ be a
state such that s �T t′ and s′ �T t′, and likewise, let t′′ be a similar state
for s and s′′. If we can show that there is some state t such that t′ �T t and
t′′ �T t, we have the result. Let a minimal confluent path from s to t′ be given
by s0 →T s1 →T · · · →T sn, with s0 = s and sn = t′. By induction on the length
of this path, we show that for each state si on it, there is some state t such that
si �T t and t′′ �T t. Since t′ is also on the path, this completes the argument.

Base case. There clearly is a state t such that s0 �T t and t′′ �T t, namely t′′

itself. After all, s0 = s and s�T t′′, and �T is reflexive.

18

Inductive case. Let there be a state tk such that sk �T tk and t′′ �T tk. We
show that there exists a state tk+1 such that sk+1 �T tk+1 and t′′ �T tk+1.
Let sk −τ→ u be the first transition on the T -path from sk to tk. Let sk −τ→ sk+1

be the T -transition between sk and sk+1. Since it is in T , there must be at least
one group C ∈ P ∩ T such that sk −τ→C sk+1.

By definition of confluence, since (sk −τ→ u) ∈ T and sk −τ→C sk+1 for some
C ∈ P , either (1) sk+1 = u (the transitions coincide), or (2) there is a transition
u −τ→C u′ such that 1sk+1

≡R 1u′ , with R the equivalence relation given in
Definition 9.

In case (1), we directly find sk+1 �T tk. Hence, we can just take tk+1 = tk.
In case (2), either sk+1 = u′ or sk+1 −τ→T u′. In both cases, if u = tk, we can
take tk+1 = u′ and indeed sk+1 �T tk+1 and t′′ �T tk+1. Otherwise, we can
use the same reasoning to show that there is a state tk+1 such that u′ �T tk+1

and t′′ �T tk+1, based on u �T tk, t′′ �T tk and u −τ→T u′. Since the path
from u to tk is one transition shorter than the path from sk to tk, this argument
terminates. ut

Proposition 12. LetM = 〈S, s0, A, ↪−→, 〉 be an MA, P ⊆P(↪−→) a confluence
classification forM and T1, T2 two Markovian confluent sets for P . Then, T1 ∪ T2

is also a Markovian confluent set for P .

Proof. Let T = T1 ∪ T2. Clearly, T still only contain invisible transitions with
Dirac distributions, since T1 and T2 do. Consider a transition (s −τ→T t), and
another transition s −a→ µ. We need to show that{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R ν , if (s −a→ µ) 6∈ P

where R is the smallest equivalence relation such that

R ⊇ {(s, t) ∈ spt(µ)× spt(ν) | (s −τ→ t) ∈ T }.

Without loss of generality, assume that s −τ→T1 t. Hence, by definition of Marko-
vian confluence, we find that{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R1

ν , if (s −a→ µ) ∈ P
∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R1

ν , if (s −a→ µ) 6∈ P

where R1 is the smallest equivalence relation such that

R1 ⊇ {(s, t) ∈ spt(µ)× spt(ν) | (s −τ→ t) ∈ T1}

Note that R ⊇ R1 since T ⊇ T1. Therefore, µ ≡R1 ν implies µ ≡R ν (using
Proposition 5.2.1.5 from [22]). The result now immediately follows. ut

Lemma 26. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, s, s′ ∈ S two of its states,
a ∈ A, µ ∈ Distr(S), P ⊆ P(↪−→) a confluence classification for M and T a
Markovian confluent set for P . Then,

s�T s
′ ∧ s −a→ µ =⇒ (a = τ ∧ µ ≡R 1s′) ∨

(
∃ν ∈ Distr(S) . s′ −a→ ν ∧ µ ≡R ν

)
where R = {(u, v) | u� �T v}.

19

Proof. Let s, s′ ∈ S be such that s �T s′, and assume a transition s −a→ µ. Let
R = {(u, v) | u � �T v}. We show that either a = τ ∧ µ ≡R 1s′ or that there
exists a transition s′ −a→ ν such that µ ≡R ν, by induction on the length of the
confluent path from s to s′. Let s0 −τ→T s1 −τ→T . . . −τ→T sn−1 −τ→T sn, with s0 = s
and sn = s′, denote this path. Then, we show that

(a = τ ∧ µ ≡R 1s′) ∨
(
∃ν ∈ Distr(S) . si −a→ ν ∧ µ ≡R ν

)
holds for every state si on this path. For the base case s this is immediate, since
s −a→ µ and the relation ≡R is reflexive.

As induction hypothesis, assume that the formula holds for some state si
(0 ≤ i < n). We show that it still holds for state si+1. If the above formula was
true for si due to the clause a = τ ∧ µ ≡R 1s′ , then this still holds for si+1. So,
assume that si −a→ ν such that µ ≡R ν.

Since si −τ→T si+1 and si −a→ ν, by definition of confluence either (1) a = τ
and ν = 1si+1 , or (2) there is a transition si+1 −a→ ν′ such that ν ≡R′ ν′, where
R′ is the smallest equivalence relation such that

R′ ⊇ {(s, t) ∈ spt(ν)× spt(ν′) | (s −τ→ t) ∈ T }.

(1) In the first case, ν = 1si+1
implies that ν ≡R 1s′ as there is a T -path from

si+1 to s′ and hence (si+1, s
′) ∈ R. Since we assumed that µ ≡R ν, and the

relation ≡R is transitive, this yields µ ≡R 1s′ . Together with a = τ , this
completes the proof.

(2) In the second case, note that R ⊇ R′. After all, R = � �T = ��T (by
Proposition 11), and obviously (s, t) ∈ R′ implies that s ��T t. Hence,
ν ≡R′ ν′ implies ν ≡R ν′ (using Proposition 5.2.1.5 from [22]). Since we
assumed that µ ≡R ν, by transitivity of ≡R we obtain µ ≡R ν′. Hence, there
is a transition si+1 −a→ ν′ such that µ ≡R ν′, which completes the proof. ut

Theorem 14. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, s, s′ ∈ S two of its states,
P ⊆ P(↪−→) a confluence classification for M and T a Markovian confluent set
for P . Then,

s��T s
′ implies s -div

b s′.

Proof. We show that s � �T s′ implies s -div
b s′. By Proposition 11, this is

equivalent to the theorem. So, assume that s � �T s′. To show that s -div
b s′,

consider the relation
R = {(u, v) | u� �T v}

Clearly (s, s′) ∈ R, and from Proposition 11 and the obvious fact that ��T is
an equivalence relation, it follows that R is an equivalence relation as well. It
remains to show that R is a divergence-sensitive branching bisimulation. Hence,
let (p, q) ∈ R, i.e., p� �T q. We need to show that for every extended transition
p −a→ µ there is a transition q

a
=⇒R µ

′ such that µ ≡R µ′.
So, assume such a transition p −a→ µ. Let r be a state such that p�T r and

q �T r. By Lemma 26, either (1) a = τ ∧ µ ≡R 1r or (2) there is a distribution
ν ∈ Distr(S) such that r −a→ ν ∧ µ ≡R ν.

20

(1) In the first case, note that q �T r immediately implies that q
τ

=⇒R 1r.
After all, we can schedule the (invisible) confluent transitions from q to r
and then terminate. Indeed, all intermediate states are clearly related by R.
Together with the assumption that µ ≡R 1r, this completes the argument.

(2) In the second case, note that q �T r and r −a→ ν together immediately imply
that q

a
=⇒R ν. After all, we can schedule the (invisible) confluent transitions

from q to r, perform the transition r −a→ ν and then terminate. Indeed, all
intermediate states before the a-transition are clearly related by R. Together
with the assumption that µ ≡R ν, this completes the argument.

It remains to show that R is divergence sensitive. So, let (s, s′) ∈ R (and hence
s� �T s′) and assume that there is a scheduler S such that

∀π ∈ finpathsSM(s) . trace(π) = ε ∧ S(π)(⊥) = 0

It is well known that we can assume that such diverging schedulers are memo-
ryless and deterministic.

We show that there also is a diverging scheduler from s′. First, note that
since s� �T s′, there is a state t such that s�T t and s′ �T t. We show that
there is a diverging scheduler from t; then, the result follows as from s′ we can
schedule to first follow the confluent (and hence invisible) transitions to t and
then continue with the diverging scheduler from t.

Let s0 −τ→T s1 −τ→T s2 −τ→T . . . −τ→T sn be the confluent path from s to t;
hence, s0 = s and sn = t. It might be the case that some states on this path also
occur on the tree associated with S; hence, for those states a diverging scheduler
already exists. Let si be the last state on the path from s0 to sn that occurs on
the tree of S. We show that sn also has a diverging scheduler by induction on
the length of the path from si to sn; note that the base case is immediate.

Assume that sj (with i ≤ j < n) has a diverging scheduler S ′. We show
that sj+1 has one too. If sj+1 occurs on the tree associated with S ′ this is
immediate, so from now on assume that it does not. From sj there now is a
confluent transition sj −τ→T sj+1 and an invisible (not necessarily confluent)
transition sj −τ→ µ (chosen by S ′ as first step of the diverging path form sj). By
definition of confluence, either these transitions coincide or there is a transition
sj+1 −τ→ ν such that µ ≡R′ ν, with R′ the smallest equivalence relation such that
R ⊇ {(s, t) ∈ spt(µ)× spt(ν) | (s −τ→ t) ∈ T }. The first option is impossible, since
we assumed that sj+1 is not on the tree associated with S ′. Therefore, there is
a transition sj+1 −τ→ ν such that µ ≡R′ ν. We schedule this transition from sj+1

in order to diverge. Hence, we still need to show that it is possible to diverge
from all states q ∈ spt(ν).

By definition of R′, µ ≡R′ ν implies that each state q ∈ spt(ν) is either
(1) in spt(µ) as well or (2) has an incoming confluent transition p −τ→T q with
p ∈ spt(µ). In the first case, we can diverge from q using S ′. In the second case,
we have reached the situation of a state q with an incoming confluent transition
from a state p that has a diverging scheduler. Now, the above reasoning can be
applied again, taking sj = p and sj+1 = q. Either at some point overlap with the

21

scheduler of p occurs, or this argument is repeated indefinitely; in both cases,
divergence is obtained. ut

Theorem 17. Let M = 〈S, s0, A, ↪−→, 〉 be an MA, T a Markovian confluent
set for M, and ϕ : S → S a representation map for M under T . Then,

M/ϕ -div
b M.

Proof. We denote the extended transition relation of M by →, and the one of
M/ϕ by →ϕ. We take the disjoint union M′ of M and M/ϕ, to provide a
bisimulation relation over this state space that contains their initial states. We
denote the transition relation ofM′ by −→′. Note that, based on whether s ∈M
or s ∈M/ϕ, a transition s −a→′ µ corresponds to either s −a→ µ or s −a→ϕ µ.

To distinguish between for instance a state ϕ(s) ∈M and the corresponding
state ϕ(s) ∈ M/ϕ, we denote all states s, ϕ(s) from M just by s, ϕ(s), and all
states s, ϕ(s) from M/ϕ by ŝ, ϕ̂(s).

Let R be the smallest equivalence relation containing the set

{(s, ϕ̂(s)) | s ∈ S},

i.e., R relates all states fromM that have the same representative to each other
and to this mutual representative from M/ϕ. Clearly, (s0, ϕ̂(s0)) ∈ R.

Note that given this equivalence relation R, for every probability distribu-
tion µ we have µ ≡R ϕ(µ) (no matter whether ϕ(µ) is in M or in M/ϕ). After
all, the lifting over ϕ just changes the states in the support of µ to their represen-
tatives; as R relates precisely such states, clearly µ ≡R ϕ(µ). This observation
is used several times in the proof below.

Now, let (s, s′) ∈ R and assume that there is an extended transition s −a→′ µ.
We show that also s′

a
=⇒′R µ′ such that µ ≡R µ′. Note that there are four

possible cases to consider with respect to the origin of s and s′, indicated by the
presence or absence of hats:

– Case 1: (ŝ, ŝ′). Since every equivalence class of R contains precisely one rep-
resentative fromM/ϕ, we find that ŝ = ŝ′. Hence, the result follows directly
by the scheduler that takes the transition s −a→′ µ and then terminates.

– Case 2: (s, s′). If both states are inM, then the quotient is not involved and
ϕ(s) = ϕ(s′). By definition of the representation map, we find s� �T s′. Us-
ing Theorem 14, this immediately implies that s′

a
=⇒R′ µ′ such that µ ≡R′ µ′

for R′ = {(u, v) | u � �T v}. Since all states connected by T -transitions
are required to have the same representative, we have R ⊇ R′. Hence, also
s′

a
=⇒R µ

′, as this is then less restrictive. Moreover, µ ≡R µ′ by Proposition
5.2.1.5 from [22]. Finally, note that s′

a
=⇒R µ

′ implies s′
a

=⇒′R µ′.
– Case 3: (ŝ, s′). Since ŝ is in M/ϕ and s′ is not, by definition of R we find

that ŝ = ϕ̂(s′). Hence, by assumption ϕ̂(s′) −a→ϕ µ, and thus by definition of
the extended arrow either (1) a ∈ A and ϕ̂(s′)

a
↪−→ϕ µ, or (2) a = χ(λ) for

λ = rate(ϕ̂(s′)), λ > 0, µ = Pϕ̂(s′) and there is no µ′ such that ϕ̂(s′)
τ
↪−→ϕ µ

′.
We make a case distinction based on this.

22

(1) Let a ∈ A and ϕ̂(s′)
a
↪−→ϕ µ. By definition of the quotient, this

implies that there is a transition ϕ(s′)
a
↪−→ µ′ in M such that µ = ϕ(µ′). By

definition of the representation map, there is a T -path (which is invisible and
deterministic) from s′ to ϕ(s′) in M. Hence, s′

a
=⇒R µ′ (and therefore also

s′
a

=⇒′R µ′) by the scheduler from s′ that first goes to ϕ(s′) and then executes
the ϕ(s′)

a
↪−→ µ′ transition. Note that the transition is indeed branching, as

all steps in between have the same representative and thus are related by R.
It remains to show that µ ≡R µ′. We already saw that µ = ϕ(µ′); hence,

the result follows from the observation that µ ≡R ϕ(µ) for every µ.

(2) Let a = χ(λ) for λ = rate(ϕ̂(s′)), λ > 0, µ = Pϕ̂(s′) and there is no µ′

such that ϕ̂(s′)
τ
↪−→ϕ µ

′. Note that this means that from ϕ̂(s′) there is a total
outgoing rate of λ, spreading out according to µ. Hence, given an arbitrary
state û in M/ϕ, we have

µ(û) =
rate(ϕ̂(s′), û)

λ

By definition of the quotient there is at most one Markovian transition
between any pair of states inM/ϕ, so for every û ∈ spt(µ), there is precisely
one Markovian transition ϕ̂(s′) λ

′
 ϕ û with λ′ = µ(û) · λ. By definition of the

quotient we then also find that λ′ is the sum of all outgoing Markovian
transitions in M from ϕ(s′) to states t such that ϕ(t) = u. Since each state
in M has precisely one representative and ϕ̂(s′) has a Markovian transition
to all representatives of states reached from ϕ(s′) by Markovian transitions,
it follows that the total outgoing rate of ϕ(s′) is also λ.

Additionally, there is no outgoing τ -transition from ϕ(s′), since by defi-
nition of the quotient this would have resulted in a τ -transition from ϕ̂(s′),
which we assumed is not present. Hence, there is an extended transition
ϕ(s′) −χ(λ)−−→ µ′ inM. As the total outgoing rates of ϕ(s′) and ϕ̂(s′) are equal,
and the sum of all outgoing Markovian transitions from ϕ(s′) to states t such
that ϕ(t) = u equals the rate from ϕ̂(s′) to û, we find that µ ≡R µ′ since
R equates states to their representative and to other states with the same
representative.

By definition of the representation map, there is a T -path (which is
invisible and deterministic) from s′ to ϕ(s′) in M. Hence, ϕ(s′) −χ(λ)−−→ µ′

implies that s′
χ(λ)
=⇒R µ

′ and therefore also s′
χ(λ)
=⇒′R µ′. As χ(λ) = a and we

already saw that µ ≡R µ′, this completes this part of the proof.

– Case 4: (s, ŝ′). Since ŝ′ is in M/ϕ and s is not, by definition of R we find
that ŝ′ = ϕ̂(s). By definition of the representation map, there is a T -path
from s to ϕ(s) in M. Hence, since s −a→ µ, by Lemma 26 we have either
(1) a = τ ∧ µ ≡R′ 1ϕ(s), or (2) there exists a transition ϕ(s) −a→ ν such that
µ ≡R′ ν, for R′ = {(u, v) | u � �T v}. Again, as in case 2 we can safely
substitute R′ by R.

(1) We need to show that ϕ̂(s)
τ

=⇒′R µ′ such that 1ϕ(s) ≡R µ′. By
definition of branching steps, we trivially have ϕ̂(s)

τ
=⇒′R 1ϕ̂(s). Note that

indeed 1ϕ(s) ≡R 1ϕ̂(s), since (ϕ(s), ϕ̂(s)) ∈ R.

23

(2) If ϕ(s) −a→ ν, by definition of the extended arrow either (2.a) a ∈ A
and ϕ(s)

a
↪−→ µ, or (2.b) a = χ(λ) for λ = rate(ϕ(s)), λ > 0, µ = Pϕ(s) and

there is no µ′ such that ϕ(s)
τ
↪−→ µ′.

In case of (2.a), by definition of the quotient we find that ϕ̂(s)
a
↪−→ϕ ϕ(ν).

Hence, also ϕ̂(s)
a

=⇒′R ϕ(ν). As observed above, ϕ(ν) ≡R ν. Also, since
µ ≡R ν by assumption, transitivity of ≡R yields µ ≡R ϕ(ν).

In case of (2.b), ϕ(s) has a total outgoing rate of λ and this is spread out
according to µ. That is, for each state t, there is a rate of λ · µ(t) from ϕ(s)
to t. Let C = [t]R for some state t, and let λ′ be the total rate from ϕ(s)
to C. By definition of the quotient, this implies that there is a rate of λ′ from
ϕ̂(s) to ϕ̂(t) in M/ϕ as well. Since the only element of C reachable from
ϕ̂(s) is ϕ̂(t), this implies that there is a rate from ϕ̂(s) to C of λ′. Hence, for
an arbitrary equivalence class C we find identical rates from ϕ(s) to C and
from ϕ̂(s) to C. This immediately implies that the outgoing rates of ϕ(s) and
ϕ̂(s) coincide, and that Pϕ(s) ≡R Pϕ̂(s). By definition of extended transitions
now ϕ̂(s) −χ(λ)−−→ϕ Pϕ̂(s), and hence ϕ̂(s)

a
=⇒′R Pϕ̂(s). Since µ = Pϕ(s) and

Pϕ(s) ≡R Pϕ̂(s), this completes this part of the proof.

It remains to show that R is divergence sensitive. So, let (s, s′) ∈ R. Again,
we make a case distinction based on the origin of s and s′. Like before, if both
states are inM/ϕ then they coincide, and hence the result immediately follows.
Also, if both states are inM, then divergence of s′ is implied by divergence of s.
After all, having the same representative they must be connected by confluent
transitions, and hence Theorem 14 and the fact that the quotient is not involved
give the result.

So, we only need to show (1) whether divergence in a state s in M implies
divergence in its representative ϕ̂(s) in M/ϕ, and (2) whether divergence in a
state t̂ ∈M/ϕ implies divergence in all states s in M such that ϕ(s) = t.

(1) Assume that there is a diverging scheduler for some state s in M. We need
to show that there also is a diverging scheduler for ϕ̂(s) inM/ϕ. First of all
note that, by Theorem 14, divergence of s implies divergence of ϕ(s) in M.
Hence, we can assume that there is a scheduler S such that

∀π ∈ finpathsSM(ϕ(s)) . trace(π) = ε ∧ S(π)(⊥) = 0

It is well known that we can assume that this diverging scheduler is memo-
ryless and deterministic.

By the existence of S, there must be some transition ϕ(s)
τ
↪−→ µ such that

every state t ∈ spt(µ) is also diverging. By the definition of the quotient, then
there also is a transition ϕ̂(s)

τ
↪−→ϕ ϕ(µ) in M/ϕ. We can now construct a

diverging scheduler for ϕ̂(s) that starts with this transition. Then, it invisibly
ends up in either one of a set of states that are all representatives of diverging
states. From all those states, the above argument can be repeated to take
the next invisible transition. As this process can be extended indefinitely,
indeed ϕ̂(s) is diverging too.

24

(2) Assume that there is a scheduler S such that

∀π ∈ finpathsSM/ϕ(ŝ) . trace(π) = ε ∧ S(π)(⊥) = 0

for some state ŝ in M/ϕ. It is well known that we can assume that this
diverging scheduler is memoryless and deterministic.

We need to show that there also is a diverging scheduler for every state s′

in M such that ϕ(s′) = s. First of all note that, by Theorem 14, divergence
of ϕ(s′) implies divergence of s′ in M. Hence, it suffices to show divergence
of ϕ(s′) based on divergence of ϕ̂(s′) (= ŝ).

By the existence of S, there must be some transition ϕ̂(s′)
τ
↪−→ϕ µ such

that every state t̂ ∈ spt(µ) is also diverging. By the definition of the quotient,
then there also is a transition ϕ(s′)

τ
↪−→ ν in M such that ϕ(ν) = µ. Hence,

we can now construct a diverging scheduler for ϕ(s′) that starts with this
transition. Then, it invisibly ends up in either one of a set of states that all
have a diverging representative. From all those states, the above argument
can be repeated to take the next invisible transition. As this process can be
extended indefinitely, indeed ϕ(s′) (and hence s′) is diverging too. ut

25

