
Predictability of Event Occurrences
in Timed Systems

Franck Cassez1 and Alban Grastien2

1 NICTA? and UNSW, Sydney
2 NICTA and ANU, Canberra

Australia

Abstract. We address the problem of predicting events’ occurrences in partially
observable timed systems modelled by timed automata. Our contribution is many-
fold: 1) we give a definition of bounded predictability, namely k-predictability,
that takes into account the minimum delay between the prediction and the ac-
tual event’s occurrence; 2) we show that 0-predictability is equivalent to the
original notion of predictability of S. Genc and S. Lafortune; 3) we provide a
necessary and sufficient condition for k-predictability (which is very similar to
k-diagnosability) and give a simple algorithm to check k-predictability; 4) we
address the problem of predictability of events’ occurrences in timed automata
and show that the problem is PSPACE-complete.

1 Introduction

Monitoring and fault diagnosis aim at detecting defects that can occur at run-time. The
monitored system is partially observable but a formal model of the system is available
which makes it possible to build (offline) a monitor or a diagnoser. Monitoring and
fault diagnosis for discrete event systems (DES) have been have been extensively in-
vestigated in the last two decades [1,2,3]. Fault diagnosis consists in detecting a fault as
soon as possible after it occurred. It enables a system operator to stop the system in case
something went wrong, or reconfigure the system to drive it to a safe state. Predictabil-
ity is a strong version of diagnosability: instead of detecting a fault after it occurred, the
aim is to predict the fault before its occurrence. This gives some time to the operator to
choose the best way to stop the system or to reconfigure it.

In this paper, we address the problem of predicting event occurrences in partially
observable timed systems modelled by timed automata.
The Predictability Problem. A timed automaton [4] (TA) generates a timed language
which is a set of timed words which are sequences of pairs (event, time-stamp). Only
a subset of the events generated by the system is observable. The objective is to pre-
dict occurrences of a particular event (observable or not) based on the sequences of
? NICTA is funded by the Australian Government as represented by the Department of Broad-

band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

ar
X

iv
:1

30
6.

06
62

v1
 [

cs
.S

Y
]

 4
 J

un
 2

01
3

observable events. Automaton G, Fig. 1, is a timed version of the example of automa-
ton G1 of [5]. The set of observable events is {a, b, c}. We would like to predict event
f without observing event d. First consider the untimed version of G by ignoring the

l0

[x ≤ 1]

l3

[x ≤ 1]

l1

[x ≤ 2]

l2

[x ≤ 3]

l4

[x < 1]

lf

[x ≤ 1]

x = 1
a

x := 0

x < 1
d

x = 2,c,x := 0

x ≤ 1,a,x := 0
b;x := 0

x ≥ 2,f ,x := 0 a, b, c
x := 0

Fig. 1. Example G from [5].

constraints on clock x. The untimed automaton can generate two types of events’ se-
quences: d.a.b∗ and a.c.f.{a, b, c}∗. Because d is unobservable, after observing a we
do not know whether the system is in location l4 or l1 and cannot predict f as, accord-
ing to our knowledge, it is not bound to occur in all possible futures from locations l4
or l1. However, after the next observable event, b or c, we can make a decision: if we
observe a.c, G must be in l2 and thus f is going to happen next. After observing a.c
we can predict event f . Note that there is no quantitative duration between occurrences
of events in discrete event systems and thus we can predict f at a logical time which
is before f occurs. The time that separates the prediction of f from the actual occur-
rence of f is measured in the number of discrete steps G can make. In this sense G is
0-predictable as when we predict f , it is the next event to occur. The untimed version
of G is an abstraction of a real system, and in the real system, it could be that f is going
to occur 5 seconds after we observe c.

Timed automata enable us to capture quantitative aspects of real-time systems. We
can use clocks (like x) to specify constraints between the occurrences of events. More-
over invariants (like [x ≤ 1]) ensure that G changes location when the upper bound of
the invariant is reached. In the timed automaton G, the (infinite) sequences with no f
are of the form (d, δd)(a, δa)(b, δb) · · · with δd < 1, δa ≤ 1 and δb < 2. The sequences
with event f are of the form (a, 1)(c, 3)(f, δf) with 5 ≤ δf ≤ 6. Thus if we do not
observe a “b” within the first two time units, we know that the system is in location l1.
This implies that f is going to occur, and we know this at time 2. But f will not occur
before 1+ 2 time units, the time for c to occur (from time 2) and the minimum time for
f to occur after c. G is thus 3-predictable. In the sequel we formally define the previous
notions and give efficient algorithms to solve the predictability problem.

Related Work. Predictability for discrete event systems was first proposed by S. Genc
and S. Lafortune in [6]. Later in [5] they gave two algorithms to decide the predictabil-
ity problem, one of them is a polynomial decision procedure. T. Jéron, H. Marchand,
S. Genc and S. Lafortune [7] extended the previous results to occurrences of patterns
(of events) rather than a single event. L. Brandán Briones and A. Madalinski in [8]
studied bounded predictability without relating it to the notion defined by S. Genc and
S. Lafortune.

2

Predictability is closely related to fault diagnosis [1,2,3]. The objective of fault di-
agnosis is to detect the occurrence of a special event, a fault, which is unobservable, as
soon as possible after it occurs. Fault diagnosis for timed automata has first been stud-
ied by S. Tripakis in [9] and he proved that the diagnosis problem is PSPACE-complete.
P. Bouyer, F. Chevalier and D. D’Souza [10] later studied the problem of computing a
diagnoser with fixed resources (a deterministic TA) and proved that this problem is
2EXPTIME-complete. To the best of our knowledge the predictability problem for TA
has not been investigated yet.

Our Contribution. We give a new characterization of bounded predictability and show
it is equivalent to the definition of S. Genc and S. Lafortune. This new characterization
is simple and dual to the one for the diagnosis problem; we can derive easily algorithms
to decide predictability, bounded predictability, and to compute the largest anticipa-
tion delay to predict a fault. We also study the bounded predictability problem for TA
and prove it is PSPACE-complete. We investigate implementability issues, i.e., how
to build a predictor, and solve the sampling predictability problem which ensures an
implementable predictor exists. We show how to compute bounded predictability with
UPPAAL [11].

Organization of the Paper. The paper is organized as follows: the next section recalls
some definitions: timed words, timed automata. Section 3 states the predictability prob-
lems for TA and Finite Automata (FA) and presents a necessary and sufficient condition
for bounded predictability. Section 4 compares our definition of predictability with the
original one (by S. Genc and S. Lafortune) and provides an algorithm (for finite au-
tomata) to solve the bounded predictability problem and compute the largest bound.
Section 5 studies the bounded predictability problem for TA and implementation is-
sues related to the construction of a predictor. An example is also solved with UPPAAL.
Omitted proofs are given in Appendix.

2 Preliminaries

B = {TRUE, FALSE} is the set of boolean values, N the set of natural numbers, Z the
set of integers and Q the set of rational numbers. R is the set of real numbers and R≥0
is the set of non-negative reals.

2.1 Clock Constraints

Let X be a finite set of variables called clocks. A clock valuation is a mapping v :
X → R≥0. We let RX≥0 be the set of clock valuations over X . We let 0X be the zero
valuation where all the clocks in X are set to 0 (we use 0 when X is clear from the
context). Given δ ∈ R, v + δ denotes the valuation defined by (v + δ)(x) = v(x) + δ.
We let C(X) be the set of convex constraints on X which is the set of conjunctions of
constraints of the form x ./ c with c ∈ N and ./∈ {≤, <,=, >,≥}. Given a constraint
g ∈ C(X) and a valuation v, we write v |= g if g is satisfied by v. Given R ⊆ X and a
valuation v, v[R] is the valuation defined by v[R](x) = v(x) if x 6∈ R and v[R](x) = 0
otherwise.

3

2.2 Timed Words

A finite (resp. infinite) timed word overΣ is a word in R≥0.(Σ.R≥0)∗ (resp. (R≥0.Σ)ω).
We write timed words as 0.4 a 1.0 b 2.7 c · · · where the real values are the durations
elapsed between two events: thus c occurs at global time 4.1. We let Dur(w) be the du-
ration of a timed word w which is defined to be the sum of the durations (in R≥0) which
appear in w; if this sum is infinite, the duration is∞. Note that the duration of an infi-
nite word can be finite, and such words which still contain an infinite number of events,
are called Zeno words. An infinite timed word w is time-divergent if Dur(w) = ∞.
We let Unt(w) be the untimed version of w obtained by erasing all the durations in w,
e.g., Unt(0.4 a 1.0 b 2.7 c 0) = abc. Given w a timed word and a ∈ Σ, |w|a is the
number of occurrences of a in w (∞ if a occurs infinitely often in w.)

TW∗(Σ) is the set of finite timed words over Σ, TWω(Σ), the set of infinite timed
words and TW∞(Σ) = TW∗(Σ)∪TWω(Σ). We use Σ∗ and Σω for the corresponding
sets of untimed words. A timed language is any subset of TW∞(Σ). ForL ⊆ TW∞(Σ),
we let Unt(L) = {Unt(w) | w ∈ L}.

For w ∈ TW∗(Σ) and w′ ∈ TW∞(Σ), w.w′ is the concatenation of w and w′.
A finite timed word w is a prefix of w′ ∈ TW∞(Σ) if w′ = w.w′′ for some w′′ ∈
TW∞(Σ). In the sequel we also the prefix operator and L is the set of finite words that
are prefixes of words in L.

Let Σ1 ⊆ Σ. π/Σ1
is the projection of timed words of TW∞(Σ) over timed words

of TW∞(Σ1). When projecting a timed word w on a sub-alphabet Σ1 ⊆ Σ, the dura-
tions elapsed between two events are set accordingly: π/{a,c}(0.4 a 1.0 b 2.7 c) =
0.4 a 3.7 c (projection erases some events but preserves the time elapsed between
the non-erased events). It follows that π/Σ1

(w) = π/Σ1
(w′) implies that Dur(w) =

Dur(w′). For L ⊆ TW∞(Σ), π/Σ1
(L) = {π/Σ1

(w) | w ∈ L}.

2.3 Timed Automata

Timed automata (TA) are finite automata extended with real-valued clocks to specify
timing constraints between occurrences of events. For a detailed presentation of the
fundamental results for timed automata, the reader is referred to the seminal paper of
R. Alur and D. Dill [4]. As usual we use the symbol ε to denote the silent (invisible)
action in an automaton.

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple (L, l0, X,Σ ∪
{ε}, E, Inv, F,R) where: L is a finite set of locations; l0 is the initial location; X is a
finite set of clocks; Σ is a finite set of events; E ⊆ L×C(X)×Σ ∪{ε}× 2X ×L is a
finite set of transitions; for (`, g, a, r, `′) ∈ E, g is the guard, a the event, and r the reset
set; Inv : L→ C(X) associates with each location an invariant; as usual we require the
invariants to be conjunctions of constraints of the form x � c with �∈ {<,≤}. F ⊆ L
and R ⊆ L are respectively the final and repeated sets of locations. �

A state ofA is a pair (`, v) ∈ L×RX≥0. A run % ofA from (`0, v0) is a (finite or infinite)
sequence of alternating delay and discrete moves:

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a1−→ (`1, v1) · · ·
an−−→ (`n, vn)

δn−→ (`n, vn + δn) · · ·

4

s.t. for every i ≥ 0:

– vi+δ |= Inv(`i) for 0 ≤ δ ≤ δi (Def. 1 implies that vi+δi |= Inv(`i) is equivalent);
– there is a transition (`i, gi, ai+1, ri, `i+1) ∈ E s.t. : (i) vi + δi |= gi and (ii)
vi+1 = (vi + δi)[ri] (by the previous condition we have vi+1 |= Inv(`i+1).)

If % is finite and ends in sn, we let tgt(%) = sn. We say that event a ∈ Σ ∪ {ε} is
enabled in s = (`, v), written a ∈ en(s), if there is a transition (`, g, a,R, `′) ∈ E
s.t. v |= g and v[R] |= Inv(`′). The set of finite (resp. infinite) runs from a state s is
denoted Runs∗(s,A) (resp. Runsω(s,A)) and we define Runs∗(A) = Runs∗((l0,0), A)
and Runsω(A) = Runsω((l0,0), A).

We make the following boundedness assumption on timed automata: time-progress
in every location is bounded. This is not a restrictive assumption as every timed automa-
ton that does not satisfy this requirement can be transformed into a language-equivalent
one that is bounded [12]. This implies that every infinite run has an infinite number of
events. We further assume3 that every infinite run has an infinite number of discrete
transitions with a 6= ε.

The trace, tr(%), of a run % is the timed word δ0a1δ1a2 · · · anδn · · · where ε is
removed (and durations are updated accordingly). We let Dur(%) = Dur(tr(%)). For
V ⊆ Runs∗(A) ∪ Runsω(A), we let Tr(V) = {tr(%) | % ∈ V }.

A finite (resp. infinite) timed word w is accepted by A if w = tr(%) for some
% ∈ Runs∗(A) that ends in an F -location (resp. for some % ∈ Runsω(A) that reaches
infinitely often an R-location). L∗(A) (resp. Lω(A)) is the set of traces of finite (resp.
infinite) timed words accepted by A. In the sequel we often omit the sets R and F in
TA and this implicitly means F = L and R = L.

2.4 Product of Timed Automata

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σ ∪ {ε}, Ei, Invi, Fi, Ri), i ∈

{1, 2}, be TA s.t. X1 ∩ X2 = ∅. The product of A1 and A2 is the TA A1 × A2 =
(L, l0, X,Σ∪{ε}, E, Inv, R, F) defined by: L = L1×L2; l0 = (l10, l

2
0);X = X1∪X2;

and E ⊆ L× C(X)×Σ ∪ {ε} × 2X × L and ((`1, `2), g1,2, σ, r1,2, (`
′
1, `
′
2)) ∈ E if:

– either σ 6= ε, and (i) (`k, gk, σ, rk, `′k) ∈ Ek for k = 1 and k = 2; (ii) g1,2 =
g1 ∧ g2 and (iii) r1,2 = r1 ∪ r2;

– or σ = ε and for k ∈ {1, 2}, (i) (`k, gk, σ, rk, `
′
k) ∈ Ek; (ii) g1,2 = gk, (iii)

r1,2 = rk and (iv) `′3−k = `3−k;

Inv(`1, `2) = Inv(`1) ∧ Inv(`2), F = F1 × F2 and R is defined 4 such that Lω(A1) ∩
Lω(A2) = Lω(A1 ×A2). �

3 Otherwise the trace of an infinite word can have a finite number of events in Σ but still infinite
duration which cannot be defined in our setting. This is not a compulsory assumption and can
be removed at the price of longer (not more complex) proofs.

4 The product of Büchi automata requires an extra variable to keep track of the automaton that
repeated its state. For the sake of simplicity we ignore this and assume the setR can be defined
to ensure Lω(A1) ∩ Lω(A2) = Lω(A1 ×A2).

5

2.5 Finite Automata

A finite automaton (FA) is a TA with X = ∅: guards and invariants are vacuously true
and time elapsing transitions do not exist.

We write A = (L, l0, Σ ∪ {ε}, E, F,R) for a FA. A run of a FA A is thus a
sequence of the form: % = `0

a1−−→ `1 · · · · · ·
an−−→ `n · · · where for each i ≥ 0,

(`i, ai+1, `i+1) ∈ E. Definitions of traces and languages are inherited from TA but the
duration of a run % is the number of steps (including ε-steps) of %: if % is finite and ends
in `n, Dur(%) = n and otherwise Dur(%) = ∞. The product definition also applies to
finite automata.

3 Predictability Problems

Predictability problems are defined on partially observable TA. Given a TA A = (L, `0,
X,Σ,E, Inv, L, L), Σo ⊆ Σ a set of observable events, and a bound ∆ ∈ N, we want
to predict the occurrences of event f ∈ Σ at least ∆ time units before they occur.
Without loss of generality, we assume 1) that the target location of the f -transitions is
lf , and they all reset a dedicated clock of A, x, which is only used on f -transitions; 2)
A has transitions (lf , TRUE, a, {x}, lf) for every a ∈ Σo. We let Inv(lf) = x ≤ 1. In
the remaining of this paper, Σo is fixed and we use π for π/Σo

.
We again make the assumption that every infinite run of A contains infinitely many

Σo events: this is not compulsory but simplifies some of the proofs.

3.1 ∆-Predictability

A run ρ of A is non-faulty if Unt(tr(ρ)) does not contain event f ; otherwise it is faulty.
We write NonFaulty(s,A) for the non-faulty runs from s and define NonFaulty(A) =
NonFaulty((l0,0), A). Let % ∈ NonFaulty(A) be a finite non-faulty run:

% = (l0, v0)
δ0−→ (l0, v0 + δ0)

a1−→ (l1, v1) · · ·
an−−→ (ln, vn)

δn−→ (ln, vn + δn).

% is ∆-prefaulty, if it can be extended by a run %′ as follows:

%′′ = (l0, v0)
δ0−→ · · · δn−→ tgt(%)

δ′0−−→ s′1
a′1δ

′
1−−−−→ · · · a′kδ

′
k−−−−→ · · ·

a′jδ
′
j−−−−→ sj︸ ︷︷ ︸

run %′

where the extended run %′′ ∈ NonFaulty(A) satisfies: (i) f ∈ en(sj) and (ii) Dur(ρ′) ≤
∆ (i.e.,

∑j
k=0 δ

′
k ≤ ∆.) In words, f can occur within ∆ time units from tgt(%). We

let PreFaulty≤∆(A) be the set of ∆-prefaulty runs of A. Note that if ∆ ≤ ∆′ then
PreFaulty≤0(A) ⊆ PreFaulty≤∆(A) ⊆ PreFaulty≤∆′(A).

We want to predict the occurrence of event f at least ∆ time units before it occurs
and it makes sense only if ∆ ≤ κ(A) where κ(A) is the minimum duration to reach a
state where f is enabled. If f is never enabled, we let κ(A) = ∞. If κ(A) is finite, let
0 ≤ ∆ ≤ κ(A) and define the following timed languages:

Lω¬f = Lω(A) ∩ Tr(NonFaulty(A)) (1)

L−∆f = Tr(PreFaulty≤∆(A)). (2)

6

If κ(A) = ∞ then we let L−∆f = ∅. Lω¬f contains the infinite non-faulty traces of A.
L−∆f contains the finite traces w of A that can be extended into w.x.f with f occurring
less then ∆ time units after w.

A ∆-Predictor is a device that predicts the occurrence of f at least ∆ time units
before it occurs. It should do it observing only the projection π(w) of the current trace
w. Thus for every word w ∈ L−∆f , the predictor predicts f by issuing a 1. On the other
hand, if a trace w can be extended as an infinite trace without any event f , i.e., it is in
Lω¬f , the predictor must not predict f and thus should issue a 0. For a trace which is in

L−∆
′

f with ∆′ > ∆ and not in Lω¬f , we do not require anything from the predictor: it
can predict f or not and this is why we define a predictor as a partial mapping.

Definition 3 (∆-Predictor). A∆-predictor forA is a partial mappingP : TW∗(Σo) −→
{0, 1} such that:

– ∀w ∈ L−∆f , P (π(w)) = 1,
– ∀w ∈ Lω¬f , P (π(w)) = 0.

A is ∆-predictable if there exists a ∆-predictor for A and is predictable if there is some
∆ such that A is ∆-predictable. �

It follows that if f is never enabled in A, A is ∆-predictable for any ∆: a predictor is a
mapping P (·) = 0. In the sequel we assume that A contains a state where f is enabled
and thus κ(A) is finite.5

In the dual problem of diagnosability [9], it is required that the infinite words in Lω¬f
be non-Zeno. This is required by the problem statement that time must advance beyond
any bound. For predictability, this is not a requirement and we could accept non time-
divergent runs in Lω¬f . However for realistic systems we should add this requirement.
This can be easily done and we discuss how to do this in section 5.2.

3.2 PSPACE-Hardness of Bounded Predictability

We are interested in the two following problems:

Problem 1 (∆-Predictability (Bounded Predictability))
INPUT: A TA A = (L, `0, X,Σ,E, Inv) and ∆ ∈ N.
PROBLEM: Is A ∆-predictable?

Problem 2 (Predictability)
INPUT: A TA A = (L, `0, X,Σ,E, Inv).
PROBLEM: Is A predictable?

Notice that predictability problems for finite automata are defined using the number of
steps in the automatonA (including unobservable steps) for the duration of a run. A first
result is the PSPACE-hardness of the Bounded Predictability problem. This is obtained

5 Checking whether a state where f is enabled is reachable and the computation of κ(A) can be
done in PSPACE [13] for TA and linear time for FA.

7

by reducing the reachability problem for TA to the Bounded Predictability problem. The
location reachability problem for TA asks, given a location l, whether (l, v) (for some
valuation v) is reachable from the initial state of A. This problem is PSPACE-complete
for TA [4].

Theorem 1. The Bounded Predictability problem is PSPACE-hard for TA.

Proof. We can reduce the location reachability problem for bounded TA to the pre-
dictability problem as follows (the reduction is similar to [9]): let A be a bounded TA
and l a location ofA. We can buildA′ by adding transitions toA: let END by a new loca-
tion. We add a transition (l, TRUE, f, {x},END), and another one (l, TRUE, u, {x},END)
with u unobservable, assuming A has at least one clock x. We then add loops on loca-
tion END (END, x = 1, a, {x},END), for each a ∈ Σ. Moreover Inv(END) = x ≤ 1.
It follows from our definition of predictability that l is reachable in A iff A′ is not
predictable, and A′ has size polynomial in A.

3.3 Necessary and Sufficient Condition for∆-Predictability

We now give a necessary and sufficient condition (NSC) for ∆-predictability which is
similar in form to the condition used for ∆-diagnosability [9].

Lemma 1. A is ∆-predictable iff π(L−∆f) ∩ π(Lω¬f) = ∅.

Proof. Only If. Assume A is ∆-predictable. There exists a partial mapping P s.t. ∀w ∈
L−∆f , P (π(w)) = 1, ∀w ∈ Lω¬f , P (π(w)) = 0. Assumew ∈ π(L−∆f)∩π(Lω¬f) 6= ∅.
Thenw = π(w1) = π(w2) withw1 ∈ L−∆f andw2 ∈ Lω¬f . By definition of P we must
have P (w) = P (π(w1)) = 1 and P (w) = P (π(w2)) = 0 which is a contradiction.
If. If π(L−∆f) ∩ π(Lω¬f) = ∅ define P (w) = 1 if w ∈ π(L−∆f) and P (w) = 0

otherwise. If P does not exist, we must have w = π(w1) = π(w2) with w1 ∈ L−∆f
and w2 ∈ Lω¬f . In this case w ∈ π(L−∆f) ∩ π(Lω¬f) which is a contradiction. ut

From Lemma 1 we can prove the following Proposition and Theorem:

Proposition 1. if ∆ ≤ ∆′ and A is ∆′-predictable, then A is ∆-predictable.

Proof. L−∆f ⊆ L−∆
′

f and thus π(L−∆f) ∩ π(Lω¬f) ⊆ π(L
−∆′

f) ∩ π(Lω¬f). ut

Theorem 2. A is predictable iff A is 0-predictable.

In the next section, we focus on the ∆-predictability problem for finite automata and
discuss how it generalizes the previous notion introduced by S. Genc and S. Lafortune
in [5]. Section 5 tackles the ∆-predictability problem for TA.

4 Predictability for Discrete Event Systems

In this section, we address the predictability problems for discrete event systems spec-
ified by FA. We first show that the definition of predictability (Def. 3) we introduced
in Section 3 is equivalent to the original definition of predictability by S. Genc and
S. Lafortune in [5].

8

4.1 Original Definition of Predictability (S. Genc and S. Lafortune)

Let Lf = Tr(PreFaulty≤0(A)) be the set of non-faulty traces that can be extended
with a fault in one step, and L¬f = Tr(NonFaulty(A)) be the set of finite prefixes of
non-faulty traces. S. Genc and S. Lafortune originally defined predictability for dis-
crete event systems in [5] and we refer to GL-predictability for this definition. GL-
predictability is defined as follows6:

∃n ∈ N,∀w ∈ Lf ,∃t ∈ w such that P(t) (3)

with P(t) defined by:

P(t) : ∀u ∈ L¬f ,∀v ∈ L(A)/u,π(u) = π(t) ∧ |v| ≥ n =⇒ |v|f > 0.

According to [5], A is GL-predictable iff Equation (3) is satisfied. GL-predictability as
defined by Equation (3) is equivalent to our notion of predictability:

Theorem 3. A is GL-predictable iff A is 0-predictable.

4.2 Checking k-Predictability

To check whether A is k-predictable, 0 ≤ k ≤ κ(A), we can use the NSC we es-
tablished in Lemma 1: A is k-predictable iff π(L−kf) ∩ π(Lω¬f) = ∅. To check this
condition, it suffices to build a twin plant (similar to [5] and to what is defined for fault
diagnosis [2]). We define two automata A1(k) and A2 that accept π(L−kf) and π(Lω¬f)
and synchronize them to check whether the intersection is empty. The first automaton
A1(k) accepts finite words which are in π(L−kf) and is defined as follows:

1. in A, we compute the set of states Fk that can reach a state where f is enabled
within k steps (this can be done in linear time using a backward breadth-first search
from states where f is enabled.)

2. A1(k) is a copy of A where the set of final states is Fk, and every a 6∈ Σo is
replaced by ε.

It follows that A1(k) accepts π(L−kf).
The second automaton A2 accepts π(Lω¬f). To compute it, we merely need to com-

pute the states from which there is an infinite path without any state where f is enabled.
This can be done in linear time again (e.g., computing the states that satisfy the CTL
formula EG¬en(f).) A2 is defined as follows:

1. let F¬f be the set of states in A from which there exists an infinite path with no
states where f is enabled.

2. A2 is a copy of A restricted to the set of states F¬f , and every a 6∈ Σo is replaced
by ε (this implies that the target state of the f transitions cannot be in A2).

6 Technically S. Genc and S. Lafortune let w range over Lf .f and impose that |t|f = 0; the
definition we give in Equation (3) is equivalent to Definition 1 of [5].

9

From the previous construction with sets of accepting states Fk for A1(k) and F¬f for
A2 (every state in A2 is accepting), L∗(A1(k)×A2) = π(L

−k
f)∩π(Lω¬f) and we can

check k-predictability in quadratic time in the size of A.

Example 1. For the untimed version of Automaton G (Fig. 1, page 2), we obtain G1(0)
and G2 as depicted on Fig. 2. Recall that d is unobservable.

l0

l1

l2

a

c

a, b, c

(a) G1(0)

l0

l3

l4

ε

a

b

(b) G2

l0, l0

l0, l3

l1, l4

ε

a

(c) G1(0)×G2

Fig. 2. Construction of G1 and G2 for automaton G ((Fig. 1)

Computing the largest k such that A is k-predictable can also be done in quadratic
time. In A, we can compute, in linear time7, the shortest distance df (q) (going back-
wards) from q to a state where f is enabled (it is∞ if q is unreachable going backwards
in A). In the product A1(k) × A2, if there is a run from the initial state to (s1, s2) and
d(s1) = k′, k′ ≤ k, this implies that A is not k′-predictable. To determine the largest k
such that A is k-predictable, it suffices to perform the following steps:

1. compute the shortest distance df (q) to an f -enabled state for each q ∈ Q;
2. build the product A1(0)×A2;
3. let S be the set of reachable states in A1(0)×A2 and M = min(s1,s2)∈S df (s1).

The largest k such that A is k-predictable is M − 1.

Example 2. On automaton G of Fig. 1: d(l2) = 0, d(l1) = 1, d(l0) = 2, d(l3) =
d(l4) = ∞. The minimum value reachable in G1(0) × G2 is obtained for l1 and is
d(l1) = 1. Thus G is 0-predictable.

5 Predictability for Timed Automata

In this section we address the predictability problems for TA. We first rewrite the NSC
of Lemma 1 using infinite languages. This enables us 1) to deal with time-divergent
runs and 2) to design an algorithm to solve the predictability problems for TA.

7 e.g., standard breadth-first search [14] on A.

10

5.1 Checking∆-Predictability

We can reformulate Lemma 1 without the prefix operator by extending L−∆f into an
equivalent language of infinite words: let Lω,−∆f = L−∆f .(Σo × R≥0)ω .

Lemma 2. π(L−∆f) ∩ π(Lω¬f) = ∅ ⇐⇒ π(Lω,−∆f) ∩ π(Lω¬f) = ∅.

To check ∆-predictability we build a product of timed automata A1(∆) × A2, and
reduce the problem to Büchi emptiness on this product. This construction is along the
lines of the twin plant introduced in [2,9]. The difference in the predictability problem
lies in the construction of A1(∆) which is detailed later. The twin plant idea is the
following:

– A1(∆) accepts π(Lω,−∆f) i.e., (projections of) infinite timed words of the form
w.(R≥0 ×Σo)ω with w ∈ L−∆f ;

– A2 accepts π(Lω¬f) i.e., (projections of) infinite non-faulty timed words in Lω¬f ;
– the product A1(∆)×A2 accepts the language π(Lω,−∆f) ∩ π(Lω¬f);
– thus checking ∆-predictability of A reduces to Büchi emptiness checking on the

product A1(∆)×A2.

l l1

l̃ l̃1

l′ lf

l̃′ END

[y ≤ 1]

NZ

[y ≤ 0]

X
g1, a1, r1

g1, ε, r1

g2, a2, r2

g2, ε, r2

g, f

g ∧ y ≤ ∆, ε
y := 0

y = 1, ε
y := 0

εΣo Σo Σo

Σo Σo

y := 0 y := 0 y := 0

Fig. 3. Construction of Automaton A1

A1(∆) itself is made of two copies ofA: the originalA and a twin copy (see Fig. 3).
A1 starts in the initial location of A, `0, and at some point in time switches to the twin
copy (grey area on Fig. 3). The purpose of the twin copy is to extend the previously
formed timed word with a timed word of duration less than ∆ time units that reaches a
state where f is enabled. The actions performed in the copy do not matter as we only
have to check that f is reachable within ∆ time units since we switched to the copy. In
this case the timed word built in the original A is in L−∆f .

A1(∆) = (L∪ L̃∪{END}, l10, X ∪{y}, Σ ∪{ε}, E1, Inv1,∅, {END}) is formally
defined as follows8 (see Fig. 3):

– L̃ = {˜̀, ` ∈ L} is the set of twin locations;
– l10 = l0; A1(∆) starts in the same initial state as A.

8 For now ignore the NZ location in the Figure and the invariants [y ≤ k]. Their sole purposes
is to ensure time-divergence.

11

– Inv1(`) = Inv1(˜̀) = Inv(`); invariants are the same as in the original automaton A
including the twin locations;

– the transition relation is defined as follows:
• original transitions of A: (`, g, a′, R, `′) ∈ E1 iff (`, g, a,R, `′) ∈ E and a ∈
Σo \ {f}; a′ = a if a ∈ Σo and a′ = ε otherwise; this renaming hides the
unobservable events by renaming them in ε.
• transitions to the twin locations: (`, TRUE, ε, {y}, ˜̀) ∈ E1 for each ` ∈ L; A1

can switch to the twin copy at any time and doing so preserves the values for
the clocks in X but resets y;
• equivalent unobservable transitions inside the twin copy: (˜̀, g, ε, R, ˜̀1) ∈ E1

iff (`, g, a,R, `1) ∈ E for some a 6= f ;
• equivalent of f -transitions in the twin copy: (˜̀′, g ∧ y ≤ ∆, ε,R,END) ∈ E1

iff (`′, g, f, R, lf) ∈ E.
• loop transitions on observable events in the twin copy: (˜̀, TRUE, a,∅, ˜̀) ∈ E1

for each a ∈ Σo. This enables A2 (defined below) to synchronize with A1 on
Σo after A1 has chosen to switch to the twin copy of A.

Finally, A2 is simply of copy of A without the f -transitions and the clocks are re-
named to be local to A2. Every location in A2 is a repeated location. Notice that the
only repeated location in A1(∆) is END. By definition of the synchronized product,
Lω(A1(∆)×A2) = Lω(A1(∆)) ∩ Lω(A2).

Lemma 3. π(Lω,−∆f) ∩ π(Lω¬f) = Lω(A1(∆)×A2).

Theorem 4. Problems 1 and 2 are PSPACE-complete.

Proof. PSPACE-easiness of Problem 1 is established as follows: checking Büchi empti-
ness for timed automata is in PSPACE [4]. The productA1(∆)×A2 has size polynomial
in the size ofA and thus checking Büchi emptiness of the product is in PSPACE as well.
Problem 1 is thus in PSPACE. By Theorem 2, Problem 2 is in PSPACE as well.

Theorem 1 states PSPACE-hardness for Problem 1. As 0-predictability i.e., Prob-
lem 1, is equivalent to Problem 2, it is PSPACE-hard as well. ut

5.2 Restriction to Time-Divergent Runs of Lω
¬f

To deal with time-divergence and enforce the runs in Lω¬f to have infinite duration (see
Remark ??), we can add another automaton in the product with a Büchi condition that
enforces time-divergence (this is how this kind of requirements is usually addressed).
In our setting, we can re-use the fresh clock y of A1(∆) after location END is visited:
it is not useful anymore to check whether a timed word is in L−∆f . The modifications to
A1(∆) required to ensure time-divergence in A2 are the following:

– add a new location NZ, which is now the repeated location of A1(∆);
– add two transitions as depicted on Fig. 3 between END and NZ.

This way infinite timed words accepted by A1(∆) must be time-divergent and with the
synchronization with A2 this forces the runs of A2 to be time-divergent.

Finally, once we know how to solve Problem 1, we can compute the optimal (max-
imum) anticipation delay by performing a binary search on the possible values of
0 ≤ ∆ ≤ κ(A).

12

5.3 Implementability of the∆-Predictor

In the previous sections, we defined a predictor as a mapping from timed words to
{0, 1}. To build an implementation of this mapping (an actual predictor) we still have
some key problems to address: 1) we have to recognize when a timed word is in L−∆f ;
and 2) we have to detect that a timed word is in L−∆f as soon as possible. S. Tripakis
addressed similar problems in [9] in the context of fault diagnosis where a diagnoser
is given as an algorithm that computes a state estimate of the system after reading a
timed word w. The diagnoser updates its status after the occurrence of an observable
event or after a timeout (TO) has occurred, which means some timed elapsed since the
last update and no observable event occurred. The value of the timeout period (TO) is
required to be less than the minimum delay between two observable events to ensure
that the diagnoser works as expected. However, point 2) above still poses problem in
our context, as demonstrated by the TA B of Fig. 4.
The set of observable events is {a} and B is 4-predictable. To see this, define the pre-
dictor P as follows: for a timed word w = δ.w′ with δ ≥ 2, P (w) = 1 and otherwise
P (w) = 0. Indeed if 2 time units elapse and we see no observable events, for sure the
system is still is l0 and thus a fault f is bound to happen, but not before 4 time units. An
implementation of a 4-predictor has to observe the state of the system exactly at time 2
otherwise it cannot predict the fault 4 time units in advance.
Now assume the platform on which we imple-

l0

[x ≤ 8]
l1

[x ≤ 1]

6 ≤ x ≤ 8,f

x < 1
ε

x := 0

x = 1; a ;x := 0

a

Fig. 4. The Timed Automaton B

ment the predictor can make an observation ev-
ery 3

5 time units. The first observation of the
predictor occurs at time 3

5 ; the third at 9
5 and we

cannot predict the fault as we still don’t know
whether the system is in l0 or has made a silent
move to l1. The next observation is at 12

5 : if we
have seen no a so far, for sure the system is in
l0 and we can predict the fault. However the
fault may now occur in 18

5 time units i.e., less
than 4 time units from the current time. Such
a platform cannot implement the 4-predictor.
The maximal anticipation delay we computed in the previous section is thus an ideal
maximum that can be achieved by an ideal predictor that could monitor the system
continuously. In a realistic system, there is a sampling rate, or at least a minimum
amount of time between two observations [15]. In the sequel we address the sampling
predictability problem that takes into account the speed of the platform.

5.4 Sampling Predictability

Let α ∈ Q and L be a timed language. We let L modα be the set of timed words in L
with a duration multiple of α: L mod α = {w ∈ L,∃k ∈ N,Dur(w) = k · α}.

Given a sampling rate α ∈ Q, the sampling predictability problem is defined by
refining the definition of a ∆-predictor: an (α,∆)-predictor for A is a partial mapping
P : TW∗(Σo) modα −→ {0, 1} such that:

– ∀w ∈ L−∆f modα, P (π(w)) = 1,

13

– ∀w ∈ Lω¬f modα, P (π(w)) = 0.

A timed automaton A is (α,∆)-predictable if there exists a (α,∆)-predictor for A and
is α-predictable is there is some ∆ such that A is (α,∆)-predictable.

Remark 1. The problem of deciding whether there exists a sampling rate α such that A
is α-predictable is also interesting but very likely to be undecidable as the existence of
a sampling rate s.t. a location is reachable in a TA is undecidable [16].

The solution to the sampling predictability problem is a simple adaptation of the so-
lution we presented in Section 5: in the construction of automaton A1(∆) (Fig. 3,
page 11), it suffices to restrict the transitions from the originalA to the twin copy (those
resetting y) to happen at time points multiple of α. This can be achieved by adding a
sampler timed automaton, and a common fresh clock, s, that sampler resets every α
time units. The transitions resetting y in A1 are now guarded by s = 0.

We can now safely define an implementation for an (α,∆)-predictor along the lines
of the diagnoser defined in [9]. The implementation performs an observation every
α time units. It computes a state estimate of the system. If one of the states in the
state estimate can reach a state where f is enabled within ∆ time units, the predictor
predicts f and issue a 1. Otherwise it issues 0. Computing a representation of the state
estimate as a set of polyedra is a standard operation and can be done given an observed
timed word w, and the timed automaton model A. Checking that one of the states in
the estimate can reach an f -enabled state within ∆ time units can also be done using
standard reachability algorithm. It can be performed on-line or off-line by computing a
polyedral representation of this set of states.

5.5 A Simple Example

The example of Fig. 4 can be analyzed using UPPAAL [11]. UPPAAL cannot check for
Büchi emptiness but in this example there is no Zeno non-faulty behaviours; thus we
can restrict to a sufficiently large horizon to check the condition of Lemma 2.

The construction of the product B1(∆)×B2 defined in Section 5.1 for B is depicted
on Fig. 5. Assume the sampling rate is α = q

p . The rational rates must be encoded by
scaling up the constants in a network of TA as UPPAAL only accepts integers to compare
clocks against. We use the variables qsRate and psRate in the UPPAAL model for
these two constants. To obtain a network of TA with integers, and sampling rate α, we
multiply all the constants by p (this is standard in TA and scales up time such that one
time unit in the original automaton is p time units in the scaled up one). We add one
automaton sampler that resets the clock s every q time units. The transitions in B1(∆)
that reset y are now guarded by s = 0 which implies there can only be taken at points in
time which are multiples of q. As mentioned earlier we cannot check a Büchi condition
with UPPAAL and replace it by a reachability condition on a sufficiently large horizon.
Note also that the∆ (D in the UPPAAL model) is multiplied by q in the guard leading to
END. Synchronization is realized with a broadcast channel for each observable event.

Given a value of D, the property we check is P : “Can we reach END in the product
with global time larger than M ∗ p”? M = 10 is enough for our example. If the answer
is “yes” then the system is not (D · pq)-predictable, otherwise it is.

14

For a sampling rate α = 3
5 , we get as expected that the maximum D for which B is

predictable is 6. Which means that the actual maximal anticipation delay is∆ = 6 · 35 =
18
5 time units. And indeed, the first time we can check that more than 2 time units have

elapsed is 12
5 and thus an interval of 18

5 before f can occur. If we set α = 1 we get
D = ∆ = 4 meaning we can ideally predict the fault 4 time units in advance.

y<=0
s == 0

x<=1*psRate

y<=1

y==1

y <= qsRate*D && psRate*6 <= x && x <= 8*psRate

s==0

x<1*psRate

a!

x<=1*psRate

x<=8*psRate

x<=8*psRate

NZ

y=0

y=0

l1tilde

END

l1

x=0

y=0

x=0

y=0

x=0

a!

a!

l0

l0tilde

a!

a!

x<=1*psRate

x<1*psRate

x<=8*psRate

x=0 l1
x=0
a?

l0
s<=qsRate

s=0

s==qsRate

Fig. 5. UPPAAL Models for B of Fig. 4.

6 Conclusion and Future Work

In this paper we have proved some new results for predictability of events’ occurrences
for timed automata. We also contributed a new and simpler definition of bounded pre-
dictability for finite automata. The natural extensions of our work are as follows:

– in [10], P. Bouyer, F. Chevalier and D. D’Souza proposed an algorithm to decide
the existence of a diagnoser with fixed resources (number of clocks and constants).
The very same question arises for the existence of a predictor in timed systems.

– dynamic observers [17] have been proposed in the context of fault diagnosis and
opacity [18]; in [19] it is shown how to compute a most permissive observer that
ensures diagnosability (or opacity [20]) and also how to compute an optimal ob-
server [21] (w.r.t. to a given criterion). We can define the same problems for pre-
dictability.

15

– given the similarities between the fault diagnosis and predictability problems, it
would be interesting to state these two problems in a similar and unified way and
design an algorithm that can solve the unified version.

References

1. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosabil-
ity of discrete event systems. IEEE Transactions on Automatic Control 40(9) (September
1995)

2. Yoo, T.S., Lafortune, S.: Polynomial-time verification of diagnosability of partially-observed
discrete-event systems. IEEE Transactions on Automatic Control 47(9) (September 2002)
1491–1495

3. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnos-
ability of discrete event systems. IEEE Transactions on Automatic Control 46(8) (August
2001)

4. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126 (1994)
183–235

5. Genc, S., Lafortune, S.: Predictability of event occurrences in partially-observed discrete-
event systems. Automatica 45(2) (2009) 301–311

6. Genc, S., Lafortune, S.: Predictability in discrete-event systems under partial observation. In:
IFAC Symposium on Fault Detection, Supervision and Safety of Techical Processes, Beijing,
China, IEEE (2006)

7. Jéron, T., Marchand, H., Genc, S., Lafortune, S.: Predictability of sequence patterns in dis-
crete event systems. In: IFAC World Congress, Seoul, Korea (July 2008) 537–453

8. Brandán Briones, L., Madalinski, A.: Bounded predictability for faulty discrete event sys-
tems. In: 30th International Conference of the Chilean Computer Science Society (SCCC-
11). (2011)

9. Tripakis, S.: Fault diagnosis for timed automata. In Damm, W., Olderog, E.R., eds.: Proceed-
ings of the International Conference on Formal Techniques in Real Time and Fault Tolerant
Systems (FTRTFT’02). Volume 2469 of LNCS., Springer (2002) 205–224

10. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In Sassone,
V., ed.: FoSSaCS. Volume 3441 of LNCS., Springer (2005) 219–233

11. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2) (1997) 134–152
12. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager,

F.W.: Minimum-cost reachability for priced timed automata. In Benedetto, M.D.D.,
Sangiovanni-Vincentelli, A.L., eds.: HSCC. Volume 2034 of LNCS., Springer (2001) 147–
161

13. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time
systems. Formal Methods in System Design 1(4) (1992) 385–415

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (3. ed.).
MIT Press (2009)

15. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models to timed
implementations. In Alur, R., Pappas, G.J., eds.: HSCC. Volume 2993 of LNCS., Springer
(2004) 296–310

16. Cassez, F., Henzinger, T.A., Raskin, J.F.: A Comparison of Control Problems for Timed and
Hybrid Systems. In: Proc. of the Workshop on Hybrid Systems: Computation and Control
(HSCC’02). Volume 2289 of LNCS., Springer (March 2002) 134–148

17. Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic diagnosers. Fundamenta
Informaticae 88(4) (November 2008) 497–540

16

18. Cassez, F., Dubreil, J., Marchand, H.: Synthesis of opaque systems with static and dynamic
masks. Formal Methods in System Design 40(1) (2012) 88–115

19. Cassez, F., Tripakis, S., Altisen, K.: Sensor minimization problems with static or dynamic
observers for fault diagnosis. In: 7th Int. Conf. on Application of Concurrency to System
Design (ACSD’07), IEEE Computer Society (2007) 90–99

20. Cassez, F., Dubreil, J., Marchand, H.: Dynamic observers for the synthesis of opaque sys-
tems. In Liu, Z., Ravn, A.P., eds.: ATVA. Volume 5799 of LNCS., Springer (2009) 352–367

21. Cassez, F., Tripakis, S., Altisen, K.: Synthesis of optimal-cost dynamic observers for fault
diagnosis of discrete-event systems. In: Proceedings of the 1st IEEE & IFIP International
Symposium on Theoretical Aspects of Software Engineering (TASE’07), IEEE Computer
Society (2007) 316–325

17

A Proof of Theorem 3

Proof. if Part. Assume there exists a 0-predictor P for A and Equation (3) does not
hold. Then ∀n,∃w ∈ Lf ,∀t ∈ w, P(t) does not hold. Let t = w−0 = w. As P(t) does
not hold: ∃u ∈ L¬f ,∃v ∈ L∗(A)/u,π(u) = π(t) ∧ |v| ≥ n but |v|f = 0. Assume
we have n ≥ |Q|, the number of states of A. Then v has a cycle (pumping Lemma) and
can be written v = x.y.z with |x.yj .z|f = 0, x.yj .z ∈ L∗(A)/u,∀j ≥ 0 and thus we
can build v′ = x.yω ∈ L(A)ω/u s.t. |v′|f = 0. It follows that u v′ ∈ Lω¬f . We have:
1) w ∈ L−0f , 2) w′ ∈ Lω¬f . Moreover π(w−0) = π(t) and P (π(w−0)) = 1 because P
is a 0-predictor. But π(t) = π(u) and u ∈ Lω¬p which entails P (π(u)) = 0 which is a
contradiction.
Only if. Assume Equation (3) holds. Define the mapping P as follows:

– ∀w ∈ L−0f , P (π(w)) = 1 and
– ∀w ∈ Lω¬p, P (π(w)) = 0.

We can show that P is a 0-predictor i.e., it is well-defined. On the contrary assume
there exists r = π(w1) with w1 ∈ L−0f and r = π(w2) with w2 ∈ Lω¬p. We can show
that Equation (3) cannot hold which is a contradiction. Take n ∈ N. w1 ∈ L−0f = Lf
and, by Equation (3), there must exist t ∈ w1 s.t. P(t) holds. But we can exhibit two
words u ∈ L¬p and v ∈ L∗(A)/u that falsify P(t). t ∈ w1. As π(w1) = π(w2), there
exists w′2 ∈ w2 s.t. π(t) = π(w′2). w

′
2 ∈ Lωf because w2 ∈ Lωf . Take u = w′2 and

v ∈ L¬f/w′2 with |v| ≥ n (exists as w′2 ∈ Lωf). We have π(u) = π(t), v ∈ L∗(A)/u,
|v| ≥ n but |v|f = 0 which contradicts Equation (3). ut

B Proof of Lemma 2

Proof. If. Assume π(L−∆f) ∩ π(Lω¬f) 6= ∅. Let w ∈ π(L−∆f) ∩ π(Lω¬f). Then w =

π(w1) = π(w2) with w1 ∈ L−∆f and w2 ∈ Lω¬f . Moreover there exists some w′2 ∈
Lω¬f such thatw2.w

′
2 ∈ Lω¬f . It follows that π(w2.w

′
2) is an infinite timed word because

by assumption every infinite timed has an infinite number of events inΣo. By definition
of Lω,−∆f , w1.w

′
2 ∈ L

ω,−∆
f . Moreover9 Dur(w1) = Dur(w2) and π(w1) = π(w2) and

thus π(w1.w
′
2) = π(w1).π(w

′
2) = π(w2.w

′
2). This entails π(Lω,−∆f) ∩π(Lω¬f) 6= ∅.

Only If. Now assume w ∈ π(Lω,−∆f) ∩ π(Lω¬f) 6= ∅. We have w = π(w1.w
′
1) =

π(w2) with w1 ∈ L−∆f , w2 ∈ Lω¬f . Let w′2 be a prefix of w2 such that π(w′2) = π(w1)

(such a prefix exists because π(w1.w
′
1) = π(w2).) Then w′2 ∈ Lω¬f and w1 ∈ L−∆f

and π(w′2) = π(w1) which entails that π(L−∆f) ∩ π(Lω¬f) 6= ∅. ut

C Proof of Lemma 3

Proof. ⊇ Let w ∈ Lω(A1(∆)×A2) = Lω(A1(∆))∩Lω(A2). Then w = π(tr(ρ1))
with ρ1 ∈ Runsω(A1(∆)) and w = π(tr(ρ2)) with ρ2 ∈ Runsω(A2). We can write

9 The condition Dur(w1) = Dur(w2) is only needed for TA. For FA, it does not hold but is not
necessary to concatenate the words.

18

tr(ρ1) = w1.w
′
1.w
′′
1 with w1 ∈ L−∆f , Dur(w′1) ≤ ∆ and w′′1 ∈ (R≥0 × Σo)

ω by
construction ofA1 and its accepting condition. It follows thatw ∈ π(Lω,−∆f)∩π(Lω¬f).
⊆ Let w ∈ π(Lω,−∆f) ∩ π(Lω¬f). Fig. 6 depicts the following proof. We can write
w = π(w1.w

+
1) with w1 ∈ L−∆f , w+

1 ∈ (R≥0 × Σo)ω . We also have w = π(w2.w
+
2)

for some w2.w
+
2 ∈ Lω¬f and such that π(w1) = π(w2) and π(w+

1) = π(w+
2). Note

also that π(w2.w
+
2) ∈ Lω(A2) because we assume every infinite timed word has an

infinite number of Σo actions. As w1 ∈ L−∆f , we can split w+
1 into w+

1 = w′1.w
′′
1 with

•A1 •
w1 w+

1

• •
END

w′
2 w′′

2

•A2 • •
w2 w′

2 w′′
2

≤ ∆ time units

y := 0

Fig. 6. Proof of Lemma 3, ⊆.

Dur(w′1) ≤ ∆. We can split w+
2 accordingly such that w+

2 = w′2.w
′′
2 and π(w′2) =

π(w′1) and π(w′′2) = π(w′′1) and Dur(w′2) = Dur(w′1) ≤ ∆. Moreover w1.w
′
2 can be

generated inA1(∆) as follows: start with w1, after w1 switch to the twin copy and reset
y and generate w′2. By playing w′1 in the original copy of A in A1(∆) we reach a state
(l′, v) where f is enabled: there is a transition (l′, g, f, R, lf) ∈ E such that v |= g. By
construction of A1(∆), playing w′2 in the twin copy in A1(∆) we reach an equivalent
state (l̃′, v) and a twin transition (l̃′, g ∧ y ≤ ∆, ε, {y},END). As Dur(w′2) ≤ ∆,
we must have y ≤ ∆ and this twin transition can be fired and END is reachable. We
can subsequently read w′′2 in A1(∆). It follows that π(w1.w

+
2) ∈ Lω(A1(∆)) and

w ∈ Lω(A1(∆)×A2). ut

19

	Predictability of Event Occurrences in Timed Systems

