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Abstract.  Metallography is the science of studying the physical properties of 
metal microstructures, by means of microscopes. While traditional approaches 
involve the direct observation of the acquired images by human experts, Com-
puter Vision techniques may help experts in the analysis of the inspected mate-
rials. In this paper we present an automated system to classify the phases of a 
Titanium alloy, Ti-6Al-4V. Our system has been tested to analyze the final 
products of a Friction Stir Welding process, to study the states of the micro-
structures of the welded material. 

Keywords: Titanium, Ti-6Al-4V, Metallography, Computer Vision, Automated 
Visual Inspection, SVM, Texture. 

1 Introduction and Previous Works 

In an a industrial workflow, visual inspection and quality control of the manufacturing 
process, until to the end product, are traditionally performed by human experts. Even 
if usually the human expertise works better than a machine application, it is much 
slower and more expensive. Moreover, in certain applications human inspection is 
tedious (repetitive actions) or dangerous (e.g. underwater inspection, nuclear or chem-
ical industry, etc.). Computer vision is an effective solution in such cases [1].  

In this work we focused on a specific field of the industrial engineering: metallo-
graphy, that is the study of the physical properties of metals, by optical and electron 
microscopy. One of the aims of metallography is to study the microstructures of an 
inspected metal, under certain working conditions. According to metallography, struc-
tures which are coarse enough to be discernible by the naked eye or under low magni-
fications are termed macrostructures, while those which require high magnification to 
be visible are termed microstructures. Even if useful information can often be gained 
by examination with the naked eye of the surface of metal objects, microscopes are 
required for the examination of the microstructure of the metals. Optical microscopes 
are used for resolutions down to roughly the wavelength of light (about half a micron) 
and electron microscopes are used for details below this level, down to atomic resolu-
tion. Particular features of interest are: grain size, phases content, distribution of 
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phases, elongated structures formed by plastic deformation. The examination of mate-
rials by optical microscopy is essential in order to understand the relationship between 
properties and microstructure. While the traditional approach involved the direct ob-
servation of the acquired images by human experts, resulting in a qualitative analysis 
of the results, with the diffusion of digital image processing techniques the analysis 
process became faster, simpler and more precise. Computer Vision techniques have 
been used in Metallography Image Analysis[2,3] to study the properties of sintered-
steel and the nickel-based superalloy [4], for the automated classification of heat re-
sistant steel structures[5], for segmenting the phases of high strength low alloy steel 
[6], to study the pit formation on a titanium alloy [7], and for the segmentation of a of 
a two-phase Ti–6Al–2Mo–2Cr–Fe titanium alloy[8]. Tejrzanowski et al. [9] presented 
a review of different techniques for the estimation of the size, shape and spatial distri-
bution of structural elements of engineering materials.  

In our work we proposed an automated inspection system to study the properties of 
a titanium alloy, and in particular of its microstructures, in order to classify the parts 
of the inspected material into different mechanical-physical phases. The paper is or-
ganized as follow: section 2 describes the features of the titanium alloy and one of its 
most important welding techniques; section 3 presents our classification system; sec-
tion 4 discuss our experimental results; a conclusive section ends the paper. 

2 Titanium Properties 

Today, titanium alloys are common, readily available engineered metals that compete 
directly with stainless and specialty steels, nickel-based alloys and composites. In 
addition to its attractive high strength characteristics for aerospace use, titanium’s 
exceptional corrosion resistance, derived from its protective oxide film, has encour-
aged extensive application in seawater, marine and industrial chemical service over 
the past fifty years. Today, titanium and its alloys are extensively used for: aircraft 
engines and airframes, spacecraft, chemical and petrochemical production, power 
generation, nuclear waste storage, navy ship components, automotive components, 
food and pharmaceutical processing, medical implants and surgical devices. An im-
portant aspect of this kind of alloy is its microstructural evolution as function of the 
thermo-mechanical history, depending on the applied manufacturing process. It is 
possible to differentiate three different kind of microstructures, called phases, having 
different mechanical and physical properties: Alpha, Beta,  and Alpha+Beta (fig. 1). 
The formation and the behavior of each phase is linked to the addition of alloying 
elements (called stabilizers) to titanium, which enables physical-chemical effects on 
the creation of the single microstructural type. The most commonly used titanium 
alloy is Ti-6Al-4V, that is the object of study of our work. It has a chemical composi-
tion of 6% aluminum, 4% vanadium, 0.25% (maximum) iron, 0.2% (maximum) oxy-
gen, and the remainder titanium. These alloy elements make its microstructure com-
posed, at room temperature, of 91% of Alpha phase and 9% of Beta phase (Fig. 2). It 
is significantly stronger than commercially pure titanium while having similar thermal 
properties. Among its many advantages, it is heat treatable[11]. 
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Fig. 1. Metallography of Alpha (light) and Beta (dark) and Alpha+Beta microstructure types, 
on the left and on the right respectively 

 

 

Fig. 2. Ti-6Al-4V phase diagram 

2.1 Titanium Alloys Friction Stir Welded Joints 

Friction Stir Welding is an important new non-fusion technique for joining sheet and 
plate material [12]. FSW was invented by TWI (The Welding Institute) in 1991, and 
is a TWI licensed technology. The tool is rotated and plunged into the material so that 
the shoulder works on the plate surface and the probe is buried in the workpiece. The 
friction between the rotating tool and the plate material generates heat, and the high 
normal pressure from the tool causes a plasticized zone to form around the probe. The 
tool is then traversed, frictionally heating and plasticizing new material as it moves 
along the joint line [13]. Although the majority of common titanium alloys are gener-
ally weldable by conventional means, problems with workpiece distortion, and poor 
weld quality, can occur. The development of FSW offers the possibility of a new 
method of producing high quality, low distortion, welds in Ti sheet and plates .  

The parent material was found to consist of a rolled microstructure of elongated 
gains of alpha (light) in a matrix of alpha and beta (dark). In the deformed weld zone, 
the microstructure shows evidence of Alpha-to-Beta phase transformation. Significant 
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grain growth appears to occur at this elevated temperature, producing large equiaxed 
beta grains in the weld center. The beta phase reverts on cooling, and the resultant 
weld microstructure consists of large alpha grains with a smaller amount of retained 
beta. The weld root zone microstructure in this case shows that only partial transfor-
mation has occurred in this region. After FSW, the preparation of a specimen to re-
veal the microstructure of the welded material involves the following steps: sawing 
the section to be examined, mounting in resins, coarse grinding, grinding on progres-
sively finer emery paper, polishing using alumina powder or diamond paste on rotat-
ing wheel, etching in dilute acid, washing in Alcohol and drying. The specimen is 
then ready to be inspected by microscope. 

 

 

Fig. 3. Overall scheme of the proposed system 

3 Proposed System 

The main goal of our work is to find a compact and functional description of the im-
age information, in order to classify all the areas of the image into the two possible 
classes: “Alpha and Beta” and “Alpha+Beta”. In this paper we compare the results 
obtained with several low level features descriptors, using a common testing frame-
work. The scheme of the overall system  is shown in fig.3: 

• Images (size M×N) are first decomposed into a grid of (m×n) non overlapping sub-
blocks of size B×B, where m=M/B and n=N/B. The value of B will be further de-
scribed in the experimental section.  

• Features are extracted from each sub-block and concatenated to form a BxBxNi 
vector, where Ni is the size of a single block descriptor vector.  In our work we 
analyzed a set of texture descriptors, which are briefly described in the next sec-
tion. Color information, in this case, is useless as the images in the dataset are, in 
practice, monochrome. 
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• Feature vectors are then used to train a Support Vector Machine used as binary 
classifier. SVM is the most used and the simplest solution whenever a binary clas-
sification problem has to be solved, therefore is well suited for our goals. Informa-
tion about the SVM setup will be given in the experimental section. Each feature is 
used to train separately a classifier. 

• After  training, we test the classifiers to evaluate the precision of the system. 

If a block is classified as “Alpha and Beta” class, it is further processed to discrimi-
nate between Alpha and Beta phases, and to assign to each pixel another label. In this 
case a simple adaptive threshold method is applied. For each block all the pixels 
whose grey values are above the average value of the block are labeled as Alpha 
(lightest areas), and the other ones as Beta (darkest areas). Two constraints (a mini-
mum and maximum value) are imposed to this threshold value, to treat also the rare 
case in which all the pixels of a block are of the same class (i.e. all dark or all light). 
We preferred to use an adaptive threshold approach,  rather than a global one, as it 
works also in case of not uniform illumination during the acquisition of the image. 

3.1 Texture Descriptors 

Texture is one of the most studied image features in Computer Vision, Image 
Processing and Computer Graphics applications. It can be considered as a measure of 
the perceived image surface variations. For our purpose we tested 4 different standard 
texture descriptors: 

• Statistical: mean, standard deviation, skewness and kurtosis of the pixel grey val-
ues. Output is a 4-dimensional vector. 

• Wavelet: the sub-band energy of the coefficients of a 2-level wavelet transform of 
the image, as described in [14]. Output is a 7-dimensional feature vector. 

• Tamura [15] descriptors: Contrast, Coarseness and Directionality properties from 
the Tamura set of features. Output is a 3-dimensional feature vector. 

• Edge Histogram [16]: in our simplified version, we filter blocks with 4 directional 
(vertical, horizontal, 45, 135) and a non-directional Roberts-like operators. Mean 
and standard deviations of the filtered blocks are considered as descriptors. Output 
is a 10-dimensional feature vector. 

4 Experimental Results 

Our dataset is composed by more than 150 images, of size 1079 × 816. In our experi-
ments, for simplicity of annotation, we selected 10 examples of images representing 
the “pure” Alpha and Beta phase and 10 representing the “pure” Alpha+Beta phase. 
We divided each image into blocks of size BxB. We tried with different values of B 
but, at last, we decided to set B=80, as it is the nearest value to the size of a micro-
structure in an Alpha+Beta phase.  Each image is then divided into a grid of 13×10 
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Fig. 4. Experimental result

blocks, (residual pixels on t
1300 Alpha and Beta and 
randomly split into training
rately, as in the general case
the same specimen. We me
ferent descriptor vectors, in
has been repeated 100 time
with the different texture d
different kernels and param
sults with a RBF kernel, an
configuration. We have ob
most 85% with the Wavele
into a single vector, trained
higher value of precision (
(almost 95%). The result is
effective, than the single on

A numerical evaluation 
pha and Beta images, is ver
images were acquired, ther
Beta pixels into the images
factory and the values of p
mens is consistent with the
output of our classifier, for 

In terms of efficiency, fo
ilar results. Time to extract
all the analyzed descriptors

al Inspection System for the Classification of the Phases 

 

ts, with the single descriptors and with a combination of them 

the borders of the image are discarded). As a result, we 
1300 Alpha+Beta samples. In our tests, our dataset w

g and testing images, equally. Each block is classified se
e, Alpha and Beta and Alpha+Beta areas may be presen
easured the accuracy of the classifier, trained with the 
n terms of precision, for both the classes. Each experim
s, and results averaged. Figure 4 shows the results obtai
escriptors Our experiments have been also repeated, us

meters for the SVM classifier.  We achieved our best 
nd with C=1 and γ=1. Results are shown only for the b
btained around 80% precision with all descriptors, and
et descriptor. We furthermore concatenated the descript
d another classifier, and repeated the tests. We measure
(“All” bar in fig. 4), especially for the Alpha+Beta ph
s that the combination of all the texture descriptors is m
nes, in the representing the Alpha+Beta microstructures.
of the Alpha/Beta segmentation algorithm, in case of 
ry difficult to give as, due to the resolution with which 
re is not a precise and clear separation between Alpha 
. According to a subjective evaluation, the results are sa

percentage of the two phases in the Alpha and Beta spe
e expected results. Figure 5 show a visual example of 
an Alpha and Beta case. 

or the single step of descriptor extraction, we obtained s
t information from an input image is less than a second 
. 

367 

had 
was 
epa-
nt in 
dif-

ment 
ined 
sing 

re-
best 

d al-
tors 
ed a 
hase 

more 
  
Al-
the 
and 

atis-
eci-
the 

sim-
 for 



368 A. Ducato et al. 

 

 

 

Fig. 5. A visual example. An image of Alpha and Beta input specimen (left) and the output 
classification (right), using the Tamura descriptor. Cyan areas have been (wrongly) classified as 
Alpha+Beta. Yellow pixels are classified as Alpha and purple pixels as Beta. 

5 Conclusions 

Nowadays the use of computer aided software allows to design a great number of 
manufacturing processes both from a pure mechanical and structural point of view. 
The actual race consists on finding a computer aided system taking into account the 
technological knowledge about a particular alloy in order to obtain a FEM (Finite 
Element Method) suite able to predict, as function of thermo-mechanical history dic-
tated by the considered process, both the classical thermo-mechanical and the metal-
lurgical response of the material. The state of art of the numerical codes is ready to 
offer several solution to improve a numerical model containing all the requested 
knowledge and mathematical formulation to simulate and carry-out good (after a cor-
rect calibration) results in terms of phase evolution predictions. However these types 
of numerical models need for a proper set-up, based on a direct comparison with the 
experimental data provided by the considered real process study cases, with the aim 
of  verifying if the parameters and the used mathematical laws are correct. Unfortu-
nately the comparison between experimental and numerical results is very difficult 
especially when the user have to evaluate, by observing a metallography, the phase 
content to obtain an accurate quantitative information. It often happens that it is not 
possible to obtain a direct link between the output data of the numerical code and the 
experimental observation of the phenomena. Therefore a computer software for image 
analysis is needed in order to obtain a numerical evaluation of typology of phases and 
their percentage content respect to the observed area. This numerical tool should be 
the connecting ring able to create a CAE (Computer Aided Engineering) system for 
the design of forming processes of the considered alloy. With this goal, we developed 
our classification system, that can be a very helpful and powerful instrument to sup-
port metal science experts in the analysis process. Moreover, future versions of our 
system would be able to detect also imperfections and defects (grooves, holes) of the 
welded materials. 
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