Skip to main content

Laplacian Derivative Based Regularization for Optical Flow Estimation in Driving Scenario

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Abstract

Existing state of the art optical flow approaches, which are evaluated on standard datasets such as Middlebury, not necessarily have a similar performance when evaluated on driving scenarios. This drop on performance is due to several challenges arising on real scenarios during driving. Towards this direction, in this paper, we propose a modification to the regularization term in a variational optical flow formulation, that notably improves the results, specially in driving scenarios. The proposed modification consists on using the Laplacian derivatives of flow components in the regularization term instead of gradients of flow components. We show the improvements in results on a standard real image sequences dataset (KITTI).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (DARPA). In: DARPA Image Understanding Workshop, pp. 121–130 (April 1981)

    Google Scholar 

  2. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  3. Bruhn, A.: Variational Optic Flow Computation: Accurate Modelling and Efficient Numerics. PhD thesis, Department of Mathematics and Computer Science, Saarland University, Saarbrücken (2006)

    Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. http://vision.middlebury.edu/flow/

  6. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Wedel, A., Pock, T., Zach, C., Cremers, D., Bischof, H.: An improved algorithm for TV-L1 optical flow. In: Dagstuhl Motion Workshop, Dagstuhl Castle, Germany, pp. 23–45 (September 2008)

    Google Scholar 

  8. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Internal Journal of Computer Vision 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  9. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference of Computer Vision, Kyoto, Japan, pp. 1663–1668 (2009)

    Google Scholar 

  10. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Internal Journal of Computer Vision 93(3), 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Steinbruecker, F., Pock, T., Cremers, D.: Advanced data terms for variational optic flow estimation. In: Vision, Modeling, and Visualization Workshop, Braunschweig, Germany, pp. 155–164 (2009)

    Google Scholar 

  12. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference of Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 2432–2439 (June 2010)

    Google Scholar 

  13. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: IEEE International Conference of Computer Vision, pp. 1–8 (October 2007)

    Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR), Providence, USA (June 2012)

    Google Scholar 

  15. http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow

  16. Valgaerts, L., Bruhn, A., Weickert, J.: A variational model for the joint recovery of the fundamental matrix and the optical flow. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 314–324. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Onkarappa, N., Sappa, A.D.: An empirical study on optical flow accuracy depending on vehicle speed. In: IEEE Intelligent Vehicles Symposium, pp. 1138–1143 (June 2012)

    Google Scholar 

  18. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: DAGM Symposium, Heidelberg, Germany, pp. 214–223 (September 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Onkarappa, N., Sappa, A.D. (2013). Laplacian Derivative Based Regularization for Optical Flow Estimation in Driving Scenario. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics