Skip to main content

Unobtrusive Fall Detection at Home Using Kinect Sensor

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Abstract

The existing CCD-camera based systems for fall detection require time for installation and camera calibration. They do not preserve the privacy adequately and are unable to operate in low lighting conditions. In this paper we show how to achieve automatic fall detection using only depth images. The point cloud corresponding to floor is delineated automatically using v-disparity images and Hough transform. The ground plane is extracted by the RANSAC algorithm. The detection of the person takes place on the basis of the updated on-line depth reference images. Fall detection is achieved using a classifier trained on features representing the extracted person both in depth images and in point clouds. All fall events were recognized correctly on an image set consisting of 312 images of which 110 contained the human falls. The images were acquired by two Kinect sensors placed at two different locations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: Annual Int. Conf. of the Engineering in Medicine and Biology Society, pp. 6388–6391 (2006)

    Google Scholar 

  2. Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  3. Cleary, J., Trigg, L.: An instance-based learner using an entropic distance measure. In: Int. Conf. on Machine Learning, pp. 108–114 (1995)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (1992)

    Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  6. Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Expert Systems 24(5), 334–345 (2007)

    Article  Google Scholar 

  7. Degen, T., Jaeckel, H., Rufer, M., Wyss, S.: Speedy: A fall detector in a wrist watch. In: Proc. of IEEE Int. Symp. on Wearable Computers, pp. 184–187 (2003)

    Google Scholar 

  8. Jansen, B., Deklerck, R.: Context aware inactivity recognition for visual fall detection. In: Proc. IEEE Pervasive Health Conference and Workshops, pp. 1–4 (2006)

    Google Scholar 

  9. Kepski, M., Kwolek, B., Austvoll, I.: Fuzzy inference-based reliable fall detection using kinect and accelerometer. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 266–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kepski, M., Kwolek, B.: Human fall detection using kinect sensor. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 743–752. Springer, Heidelberg (2013)

    Google Scholar 

  11. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. In: IEEE Intelligent Vehicle Symposium, vol. 2, pp. 646–651 (2002)

    Google Scholar 

  12. Marshall, S.W., Runyan, C.W., Yang, J., Coyne-Beasley, T., Waller, A.E., Johnson, R.M., Perkis, D.: Prevalence of selected risk and protective factors for falls in the home. American J. of Preventive Medicine 8(1), 95–101 (2005)

    Article  Google Scholar 

  13. Mastorakis, G., Makris, D.: Fall detection system using Kinect’s infrared sensor. J. of Real-Time Image Processing, 1–12 (2012)

    Google Scholar 

  14. Miaou, S.G., Sung, P.H., Huang, C.Y.: A customized human fall detection system using omni-camera images and personal information. Distributed Diagnosis and Home Healthcare, 39–42 (2006)

    Google Scholar 

  15. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100, 144–152 (2013), special issue: Behaviours in video

    Article  Google Scholar 

  16. Noury, N., Fleury, A., Rumeau, P., Bourke, A., ÓLaighin, G., Rialle, V., Lundy, J.: Fall detection - principles and methods. In: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007)

    Google Scholar 

  17. Tzeng, H.W., Chen, M.Y., Chen, J.Y.: Design of fall detection system with floor pressure and infrared image. In: Int. Conf. on System Science and Engineering, pp. 131–135 (2010)

    Google Scholar 

  18. Yu, X.: Approaches and principles of fall detection for elderly and patient. In: 10th Int. Conf. on e-Health Networking, Applications and Services, pp. 42–47 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kepski, M., Kwolek, B. (2013). Unobtrusive Fall Detection at Home Using Kinect Sensor. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics