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Abstract. Background recovery is a very important theme in computer
vision applications. Recent research shows that robust principal compo-
nent analysis (RPCA) is a promising approach for solving problems such
as noise removal, video background modeling, and removal of shadows
and specularity. RPCA utilizes the fact that the background is common
in multiple views of a scene, and attempts to decompose the data ma-
trix constructed from input images into a low-rank matrix and a sparse
matrix. This is possible if the sparse matrix is sufficiently sparse, which
may not be true in computer vision applications. Moreover, algorithmic
parameters need to be fine tuned to yield accurate results. This paper
proposes a fixed-rank RPCA algorithm for solving background recover-
ing problems whose low-rank matrices have known ranks. Comprehensive
tests show that, by fixing the rank of the low-rank matrix to a known
value, the fixed-rank algorithm produces more reliable and accurate re-
sults than existing low-rank RPCA algorithm.
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1 Introduction

Background recovery is a very important recurring theme in computer vision
applications. Traditionally, different approaches have been developed to solve
different varieties of the problem. Recent research in robust principal com-

ponent analysis (RPCA) offers a promising alternative approach for solving
problems such as noise removal, video background modeling, and removal of
shadows and specularity [2, 12]. RPCA utilizes the fact that multiple views of
a scene contain consistent information about the common background. It con-
structs a data matrix from multiple views and decomposes it into a low-rank

matrix that contains the background and a sparse matrix that captures non-
background components. It has been proved that exact solution of RPCA prob-
lem is available if the data matrix is composed of a sufficiently low-rank matrix
and a sufficiently sparse matrix [2, 3, 9, 13]. Various algorithms have been pro-
posed for solving RPCA problem [6, 9, 12]. In particular, the methods based on
augmented Lagrange multiplier (ALM) have been shown to be among the
most efficient and accurate methods [9].



In computer vision applications, the non-background components may not be
sparse. Moreover, algorithmic parameters need to be fine tuned to yield accurate
results [1]. These difficulties are especially pronounced for reflection removal
problem, and no work on applying RPCA to reflection removal has been reported
so far. Fortunately, these application problems can be framed as one of recovering
a fixed-rank matrix from the data matrix because the rank of the low-rank
matrix is known. This paper proposes a fixed-rank RPCA algorithm based
on ALM (FrALM) for solving background recovering problems. Comprehensive
tests on reflection removal and video background modeling show that FrALM
produces more accurate results than does low-rank ALM method (LrALM).
Moreover, FrALM can produce optimal or near optimal results over a much
wider range of parameter values than does LrALM, making it more reliable for
solving computer vision problems whose low-rank matrices have known ranks.

2 Existing RPCA Methods

Robust PCA is a term given to a long line of work that aims to render PCA
robust to gross corruption and outliers. Various methods have been proposed
including influence function [4], multivariate trimming [7], alternating minimiza-
tion [8], and random sampling [5]. These methods are either inefficient, having
non-polynomial time complexity, or do not guarantee optimal solutions [12].

A recent approach directly decomposes a corrupted data matrix into a low-
rank matrix and a sparse matrix. The corruption is assumed to be sparse, but
the noise amplitude can be large. Various methods have been proposed such as
iterative thresholding [9], proximal gradient [12], accelerated proximal gradient
[6], and augmented Lagrange multiplier method (ALM) [9]. In particular, ALM
has been shown to be among the most efficient and accurate methods [9]. These
methods require tuning of algorithmic parameters [1]. On the other hand, [1]
applies Bayesian approach to estimate the algorithmic parameters along with
the matrices based on prior distributions of inverse variances.

In our applications, the rank of the low-rank matrix is known. So, we adopt
the ALM approach but fix the rank of the low-rank matrix, which provides
more specific constraint than do prior distributions. This approach allows our
algorithm to converge efficiently and accurately, as for the low-rank ALMmethod
of [9], and is simpler and more efficient than the Bayesian method of [1].

Other methods have been proposed to solve related but different problems.
For example, [11] solves low-rank matrix factorization and [10] computes a fixed-
rank representation for sparse subspace clustering. They are not directly appli-
cable to our application problem, which is a matrix decomposition problem.

3 Fixed-rank RPCA

Given an m×n data matrix D, PCA seeks to recover a low-rank matrix A from
data matrix D such that the discrepancy or error E = D−A is minimized:

min
A,E

‖E‖F , subject to rank(A) ≤ r, D = A+E (1)



where r ≪ min(m,n) is the target rank of A and ‖ · ‖F is the Frobenius norm.
Eq. 1 can be solved by SVD but the solution will be vastly inaccurate if the error
entries in E are arbitrarily large. Under the conditions that A is low-rank and
E is sufficiently sparse, Wright et al. [12] show that A can be exactly recovered
by solving the following convex optimization problem:

min
A,E

‖A‖∗ + λ‖E‖1, subject to D = A+E (2)

where ‖ · ‖∗ denotes the nuclear norm and ‖ · ‖1 denotes the 1-norm,
Lin et al. [9] reformulate Eq. 2 using augmented Lagrange multiplier method.

Their method (LrALM) uses a matrixY and parameter µ to merge the constraint
into the objective function, leading to the following revised problem:

min
A,E

‖A‖∗ + λ‖E‖1 + 〈Y,D−A−E〉+ µ

2
‖D−A−E‖2F (3)

where 〈U,V〉 is the sum of the product of corresponding elements in U and V,
and λ and µ are parameters that need to be specified. An iterative algorithm is
applied to determine the A and E that minimize Eq. 3.

For reflection removal, a set of reflection images are arranged as column ma-
trices in D. If the images are well aligned such that the transmitted parts are
identical, then A captures the transmitted parts and has a rank of 1. If the
reflection is localized, E is sparse; otherwise, E is not sparse. Similar charac-
teristics are observed in background modeling of video taken with a stationary
camera.

When E is not sparse, LrALM may not recover accurate results unless the
parameter λ is carefully chosen (Section 4). If λ is too large, the trivial solution
of E = 0 is obtained, and A = D, which has a rank larger than the desired low
rank. On the other hand, if λ is too small, E = D and A = 0, which has a rank
of 0. So, the value of λ directly influences the rank of A recovered by LrALM.
Although Zhou et al. [13] prove theoretically that the optimal λ can be set to
1/
√

max(m,n), this is true only if A is low-rank and E is sufficiently sparse.
The parameter µ can also affect the accuracy of the recovered A by influencing
the rank of A (see discussion below).

To overcome the above difficulties, we frame the background recovery prob-
lem as one of recovering a low-rank matrix A with a known rank r:

min
A,E

‖E‖F , subject to rank(A) = known r, D = A+E. (4)

To solve Eq. 4 robustly, we reformulate it in the same manner as the ALM
approach (Eq. 3), with the additional constraint of rank(A) = r. With A’s rank
fixed, it may seem that the term ‖A‖∗ in Eq. 3 is redundant. Nevertheless, we
choose to keep ‖A‖∗ in Eq. 3 and solve for A using ALM approach so that the
convergence and optimality properties proved by Lin et al. [9] are preserved.

Our algorithm (FrALM) adopts the exact ALM approach to solve fixed-rank
RPCA problem. It is similar to the low-rank ALM algorithm (LrALM) proposed
by Lin et al. [9], except that FrALM fixes the rank of A.



FrALM

Input: D, r, λ

1. A = 0, E = 0.
2. Y = sgn(D)/J(sgn(D)), µ > 0, ρ > 1.
3. Repeat until convergence:
4. Repeat until convergence:
5. U,S,V = svd(D−E+Y/µ).
6. If rank(T1/µ(S)) < r, A = UT1/µ(S)V

⊤; otherwise, A = USrV
⊤.

7. E = Tλ/µ(D−A+Y/µ).
8. Y = Y + µ(D−A−E), µ = ρµ.

Output: A, E.

In line 2, sgn(·) computes the sign of each matrix element, and J(·) computes a
scaling factor

J(X) = max
(

‖X‖2, λ−1‖X‖∞
)

(5)

as recommended in [9]. The function Tǫ in line 7 is a soft thresholding function:

Tǫ(x) =







x− ǫ, if x > ǫ,
x+ ǫ, if x < −ǫ,
0, otherwise.

(6)

The main difference between FrALM and LrALM lies in Step 6. Sr is the
diagonal matrix of singular values whose diagonal elements above r are set to
0. FrALM fixes A’s rank to the desired rank r if a rank-r matrix is recovered.
Otherwise, it behaves in the same manner as LrALM. On the other hand, LrALM
allows A’s rank to increase beyond r if µ is too large.

FrALM is algorithmically equivalent to LrALM with a sufficiently small µ
that restricts the rank of A to r. Therefore, the convergence proof of LrALM
given in [9] applies to FrALM. Consequently, FrALM can converge as efficiently
as LrALM does (Fig. 2(a)). The advantage of FrALM over LrALM is that the
user does not have to specify the exact µ that fixes the rank of A to r.

4 Experiments and Discussions

7 test sets were used to evaluate the performance of FrALM and LrALM on the
tasks of reflection removal and video background modeling (Fig. 3, 4). Sets 1 to 3
contained synthetically generated reflection images, and Sets 4 and 5 contained
real reflection images. Sets 1 and 4 were corrupted by local reflections whereas
Sets 2, 3, and 5 were corrupted by global reflections. Sets 6 and 7 contained
video frames of a single moving human and busy traffic junction, respectively.

All the test images were color images of size 200×150 pixels; so m = 200×
150×3 = 90000. The number of images n in Sets 1 to 7 were respectively, 38,
38, 38, 31, 46, 210, and 250 respectively. Ground truth background images were
available for Sets 1 to 6 but not for Set 7. The images were captured with a
stationary camera. So the desired rank of the low-rank matrix is 1.
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Fig. 1. Performance comparison for reflection removal. (a) Error Eg vs. λ. Error curves
above Eg = 1000 for very small λ are cropped to reduce clutter. (b) Rank of low-rank
matrix recovered by LrALM. (Red dashed lines) LrALM results. Vertical dash lines
denote theoretical optimal λ∗ = 0.003̇. (Blue solid lines) FrALM results.

LrALM and FrALM were tested on the test sets over a range of λ from
0.0001 to 0.5, including the theoretical optimal λ of

√
m = 0.003̇, denoted as λ∗,

as proved in [13]. The parameters ρ and initial µ were set to the default values
of 6 and 0.5/σ1, where σ1 is the largest singular value of the initial Y, as for
LrALM. The algorithms’ accuracy was measured in terms of the mean squared
error Eg between the ground truth G and the recovered A:

Eg =
1

mn
‖G−A‖2F . (7)

Test results show that FrALM converges as efficiently as LrALM (Fig. 2(a)).
Since the desired rank of A is 1, λ has to be sufficiently small for LrALM
to produce accurate results (Fig. 1(a)). For Sets 2, 3, and 5 with non-sparse
E, the empirical optimal λ (0.002) is smaller than the theoretical λ∗ (0.003̇),
contrary to the theory of [13]. At this lower λ, the ranks of the optimal A

recovered by LrALM are still larger than the known value of 1 (Fig. 1(b)). This
shows that LrALM has accumulated higher-rank components in A and thus
over-estimated A. In contrast, FrALM constrains the rank of A to 1, removing
the over-estimation. Consequently, FrALM yields more accurate results than
does LrALM, and it returns optimal or near optimal results over a wide range
of λ (Fig. 1(a)). We have also verified empirically that reducing the rank of
A to 1 after it is returned by LrALM can reduce over-estimation and improve
LrALM’s accuracy. However, this post-processing is insufficient for removing the
over-estimation entirely and LrALM’s error is still larger than that of FrALM.

To investigate the stability of FrALM, we ran it on the test cases at a range of
fixed ranks r, with λ set to the empirical optimal of 0.002. FrALM’s results were
plotted together with LrALM’s results obtained in previous tests (Fig. 2(b)).
When r is slightly larger than 1, FrALM’s error increases only slightly. when r
is larger than the rank of A recovered (line 6 of algorithm), FrALM reduces to
LrALM, and its error simply approaches that of LrALM.
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Fig. 2. Performance comparison for reflection removal. (a) Convergence curves with
λ = 0.003̇. (b) Error vs. rank. Error curves above Eg = 1000 for very small λ are
cropped to reduce clutter.

Figure 3 displays sample results for reflection removal obtained at the the-
oretical λ∗. LrALM’s results are good for Sets 1 and 4 whose E is sparse. For
Sets 2, 3, and 5, E is not sparse and LrALM’s results have visually noticeable
errors (when the images are viewed at higher zoom factors). In contrast, FrALM
obtains good results for all test sets.

Figure 4 shows sample results for video background modeling obtained at the
theoretical λ∗. In the video frames where the human and vehicles are moving
continuously, LrALM can recover the stationary background well (Fig. 4(1c, 2c)).
When the vehicles are moving slowly, E is not sparse, and LrALM shows signs
of inaccuracy (Fig. 4(3c)). When the vehicles stop at the traffic junction for an
extended period of time, LrALM regards them as part of the low-rank matrix
A and fails to remove them from A (Fig. 4(4c)). In contrast, FrALM produces
much better overall results than does LrALM (Fig. 4(d)).

5 Conclusions

A fixed-rank RPCA algorithm, FrALM, based on exact augmented Lagrange
multiplier method is proposed in this paper. By fixing the rank of the low-rank
matrix to be recovered, FrALM removes over-estimation of the low-rank matrix
and produces more accurate results than does low-rank ALM method (LrALM).
Moreover, FrALM returns optimal or near optimal results over a wide range of
λ values, whereas LrALM’s accuracy is sensitive to λ. If FrALM is fixed to a
desired rank that is larger than the actual rank, then FrALM just reduces to
LrALM. These properties make FrALM more reliable and accurate than LrALM
for solving computer vision problems whose low-rank matrices have known ranks.
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