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Abstract. We survey succinct representations of ordinal, or rooted, or-
dered trees. Succinct representations use space that is close to the ap-
propriate information-theoretic minimum, but support operations on the
tree rapidly, usually in O(1) time.

1 Introduction

An increasing number of applications such as information retrieval, XML pro-
cessing, data mining etc. require large amounts of tree-structured data to be
represented in main memory. Unfortunately, the memory consumption of clas-
sical ways of representing such data is often prohibitively large: for example,
the standard in-memory representation of XML documents in a number of com-
mon programming languages such as C++, Java or Python requires memory an
order of magnitude more than the size of the XML document on disk [40]. A
similar situation arises when attempting to build a suffix tree data structure to
index a collection of documents [31]. The large memory usage of standard tree
representations severely affects the scalability of such applications.

This problem has led to the intensive study of succinct, or highly space-
efficient, tree representations. This survey focusses on succinct ordinal trees, i.e.
rooted, ordered trees. The standard way to represent an ordinal tree is to store
pointers from each node to its first child and its next sibling; this represents
the structure of the tree using 2n pointers, or 2ndlg ne bits3. However, this is
significantly more space than necessary. As there are Cn−1 = 1

n

(
2n−2
n−1

)
ordinal

trees on n nodes, there is an information-theoretic worst-case lower bound of
lgCn−1 = 2n − O(lg n) bits on any ordinal tree representation, and there is a
trivial encoding of an n-node ordinal tree as an integer of dlgCn−1e bits: the tree
is encoded by its position in any systematic enumeration of all n-node ordinal
trees. It has been known for several years (see e.g. [30] and references therein)

? Work partly supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (Grant number 2012-0008241).

3 We use lg to denote the logarithm base 2.



that there are many—less brute-force—ways of encoding the structure of an n-
node ordinal tree in 2n + O(1) bits. Thus, a succinct tree representation can
potentially offer a Θ(lg n) factor space savings in the worst case.

At first sight it appears that it would be difficult to perform operations
quickly on such a compact representation: in particular, converting a compact
representation to a standard one to perform operations defeats the purpose of
considering the compact representation. However, standard representations also
have limitations: for instance, in the basic first-child next-sibling representation
described above, navigating to the parent of a node takes O(n) time, unless a
parent pointer is added, increasing the space usage to 3ndlg ne bits from 2ndlg ne
bits. Determining the size of the subtree rooted at a node in O(1) time would
require storing an additional Θ(n lg n) bits, and adding more complex function-
ality such as level-ancestor [6] or lowest common ancestor [1] would add a further
Θ(n lg n) bits each. In short, while standard representations can support a num-
ber of navigational and other queries in ‘linear’ space (Θ(n) words or Θ(n lg n)
bits), as the set of operations increases, so does the constant within the Θ(n). To
mitigate this space blow-up, real-world software libraries can sometimes attempt
to minimize the constant factor in the space usage by omitting some pointers,
with disastrous results [14, p144]. On the other hand, as we will see, a number
of succinct representations have been developed that use only 2n + o(n) bits
of space, and support a wide variety of navigational and other operations in
O(1) time on the word RAM model. A key advantage of succinct representa-
tions is that as their functionality increases, usually only the constant in the
o(n) increases. Thus, adding new functionality has very little additional cost.

Furthermore, as a number of implementations and empirical evaluations have
demonstrated (see Section 5), the practical performance of succinct ordinal tree
representations is excellent, both in terms of memory usage and speed. They
have also only been integrated successfully into a range of applications [13, 3,
45]. Furthermore, they are currently available in well-documented open-source
libraries such as SDSL [22] and succinct [37].

The paper is organised as follows. After some preliminaries, we discuss the
main succinct representations of ordinal trees. We then cover specialized topics
including dynamization and the redundancy of tree representations, and con-
clude with implementations, empirical evaluations and practical issues.

2 Preliminaries

2.1 Terminology

Succinct ordinal trees can be dynamic, i.e. allow changes to the tree, or static.
Our focus will be more on static trees, though we address dynamization issues
in Section4.1. For static trees, we assume that the input tree is pre-processed
to obtain a succinct representation: we do not normally focus on the time and
space requirements for the pre-processing (which is, however, an important issue
in practice). The space used by the succinct representation of an n-node tree can



be expressed as I(n) + R(n) bits where I(n) = dlgCn−1e = 2n − O(lg n) is the
information-theoretic lower bound and R(n) ≥ 0 is called the redundancy. The
redundancy is a term of great practical significance, and studying the trade-off
between redundancy and query time is of fundamental importance.

Succinct tree representations are of two kinds: systematic (also known as
succinct indices) and non-systematic. In systematic tree representations, we sep-
arate the storage for the encoding of the tree (which usually takes 2n + O(1)
bits) from the succinct index, an auxiliary data structure created during pre-
processing to help answer queries rapidly. A query is answered by reading O(1)
words (each of O(lg n) consecutive bits) from the query and the succinct index. In
a systematic representation, the redundancy is essentially the size of the succinct
index. Separating the ‘structure of the tree’ from auxiliary data structures not
only makes it easier to show lower bounds on the redundancy needed to achieve
a particular query time [19, 24], it also has several algorithmic advantages [4].
Non-systematic representations do not have this conceptual separation, but it is
known that the redundancy needed to achieve a particular query time is lower
for non-systematic representations than for systematic representations.

2.2 Features of succinct tree representations

Succinct tree representations require some care in their use. Firstly, the number-
ing of nodes is based upon the position of the representation of the nodes in the
encoding of the tree. This is particularly problematic in the dynamic case, since
a single update may change the numbers of every node in the tree. Furthermore,
certain operations can be implemented efficiently in one tree encoding, but are
hard or impossible to implement in another. Since different encodings number
nodes differently, it may not be possible to come up with a succinct represen-
tation that supports the union of the operations of two encodings. Finally, this
way of numbering nodes sometimes means that the ‘natural’ numbering of nodes
is a sequence of non-consecutive integers from the range {1, . . . , 2n+O(1)}.

2.3 FIDs

Given a subset S from a universe U , we define a fully indexable dictionary (FID,
from now on) on S to be any data structure that supports the following opera-
tions on S in constant time, for any x ∈ U , and 1 ≤ i ≤ |U |:

– rank(x): return the number of elements in S that are less than x,
– select(i, S): return the i-th smallest element in S, and
– select(i, S̄): return the i-th smallest element in U \ S.

Lemma 1. [41] Given a subset of size n from the universe [m], there is a FID
that uses lg

(
m
n

)
+O(m lg lgm/ lgm) bits.

Given a bitvector B, we define its FID to be the FID for the set S where B is
the characteristic vector of set S.



3 Ordinal tree representations

In this section we describe the main succinct ordinal tree representations.

3.1 Operations on ordinal trees

We first introduce a set of useful operations that are supported by various ordinal
tree representations. Given an ordinal tree, we consider the following operations:

– parent(x): returns the parent of node x;
– child(x, i): returns the i-th child of node x, for i ≥ 1;
– child rank(x): returns the number of left siblings of node x plus 1;
– depth(x): returns the depth of node x;
– level ancestor(x, i): returns the ancestor of node x that is i levels above
x, for i ≥ 0 (if x is at depth d, it returns the ancestor of x at depth d− i);

– desc(x): returns the number of descendants of node x;
– degree(x): returns the degree of node x;
– height(x): returns the height of the subtree rooted at node x;
– LCA(x, y): returns the lowest common ancestor of the nodes x and y;
– left leaf(x) (right leaf(x)): returns the leftmost (rightmost) leaf of the

subtree rooted at node x;
– leaf rank(x): returns the number of leaves up to node x in preorder;
– leaf select(i): returns the i-th leaf among all the leaves from left to right;
– leaf size(x): returns the number of leaves in the subtree rooted at node x;
– rankPRE/POST/DFUDS/LEVEL(x): returns the position of node x in the preorder,

postorder, DFUDS order or level order traversal of the tree;
– selectPRE/POST/DFUDS/LEVEL(j): returns the j-th node in the preorder, postorder

or DFUDS order or level order traversal of the tree;
– level left(i) (level right(i)): returns the first (last) node visited in a

preorder traversal among all the nodes whose depths are i;
– level succ(x) (level pred(x)): the level successor (predecessor) of node x,

i.e. the node visited immediately after (before) node x in a preorder traversal
among all the nodes that are at the same level as node x.

3.2 Jacobson’s representation

Jacobson [26] proposed the first succinct tree representation for ordinal trees.
His representation is based on the level order unary degree sequence (LOUDS)
of a tree, which visits the nodes in a level-order traversal of the tree and encodes
their degrees in unary. (In a level-order traversal of a tree, the root is visited first,
followed by all the children of the root, from left to right, followed by all the nodes
at each successive level.) See Figure 1 for an example. This representation uses
2n+O(1) bits to encode an ordinal tree on n nodes, and an additional o(n) bits to
support rank and select operations on the encoding. Jacobson considered these
operations in the bit probe model, and showed how to support them in O(lg n)



Fig. 1. An example of the DFUDS, LOUDS and BP sequences of a given ordinal tree.

probes. Clark and Munro [10] further showed how to support the rank and
select operations in O(1) time under the word RAM model with Θ(lg n) word
size. Thus the LOUDSrepresentation supports parent, child and child rank

operations in O(1) time. In addition to these operations, it is straightforward
to support rankLEVEL, selectLEVEL, level succ and level pred operations in
constant time.

3.3 Balanced Parenthesis representation

Munro and Raman [33] proposed another type of succinct representation of trees
based on the isomorphism between balanced parenthesis sequences (BP) and or-
dinal trees. The BP sequence of a given tree is obtained by performing a depth-
first traversal, and writing an opening parenthesis each time a node is visited,
and a closing parenthesis immediately after all its descendants are visited. This
gives a 2n-bit encoding of an n-node tree as a sequence of balanced parenthe-
ses, and a node can be identified e.g. by the position of the opening parenthesis
of the pair corresponding to it. See Figure 1 for an example. Extending the
ideas from Jacobson [26], Munro and Raman showed how to support a few ba-
sic operations in constant time on a balanced parenthesis sequence of length n
using an auxiliary structure of size o(n) bits. By showing how to translate the
operations on the tree to the basic operation on the parenthesis sequence rep-
resenting it, Munro and Raman [33] presented a succinct representation of an
ordinal tree on n nodes in 2n+ o(n) bits based on BP, which supports parent,
desc, depth, rankPRE/POST and selectPRE/POST in constant time, and child(x, i)
in O(i) time. Munro et al. [34] provided constant-time support for leaf rank,
leaf select, left leaf, right leaf and leaf size on the BP representation
using o(n) additional bits, which were used to design space-efficient suffix trees.
Chiang et al. [8] showed how to support degree in constant time. The support
for level ancestor, level succ and level pred in constant time was further



provided by Munro and Rao [36], which has applications in the succinct represen-
tations of functions. Lu and Yeh [32] showed how to support child, child rank,
height and LCA operations in constant time.

Using a different approach to support the operations, Sadakane and Navarro [43]
augmented the BP sequence with o(n)-bit auxiliary structure to obtain a “fully
functional” representation as described in Section 3.7.

3.4 Depth-First Unary Degree Sequence representation

Benoit et al. [5] observed that by visiting the nodes in depth-first order (i.e.,
preorder) and encoding their degrees in unary (instead of visiting them in level
order to produce the LOUDS encoding), one can support other useful operations
such as desc. The resulting encoding of the tree is called the depth first unary
degree sequence (DFUDS). More specifically, the DFUDS sequence represents
a node of degree d by d opening parentheses followed by a closing parenthe-
sis. All the nodes are listed in preorder (an extra opening parenthesis is added
to the beginning of the sequence). See Figure 1 for an example. The DFUDS
number of a node is defined to be the rank of the opening parenthesis in its
parent’s description that corresponds to this node. Benoit et al. [5] presented
a succinct tree representation based on DFUDS that occupies 2n + o(n) bits
and supports child, parent, degree and desc in constant time. In their rep-
resentation, each node is referred to by the position of the first parenthesis in
the representation of the node. Jansson et al. [27] extended this representa-
tion using o(n) additional bits to provide constant-time support for child rank,
depth, level ancestor, LCA, left leaf, right leaf, leaf rank, leaf select,
leaf size, rankPRE and selectPRE. Barbay et al. [4] further showed how to sup-
port rankDFUDS and selectDFUDS. The operations rankPRE, selectPRE, rankDFUDS

and selectDFUDS support the constant-time conversions between the preorder
number and DFUDS number of the same node, which is used to support vari-
ous queries on labeled trees by Barbay et al. [4].

3.5 Representations based on tree covering

Another approach to represent ordinal trees is based on a tree covering algorithm
(TC). This approach, first proposed by Geary et al. [20], is based on an algorithm
to cover an ordinal tree with a set of mini-trees, each of which is further covered
by a set of micro-trees.

Geary et al. [20] proposed an algorithm to cover a given ordinal tree on n
nodes into O(n/M) mini-trees, each of size O(M), for a given parameter M . This
decomposition guarantees that any two mini-trees computed by this algorithm
are either disjoint, or only joined at their common root, and in addition, every
mini-tree, except possibly the one containing the root, has size Θ(M). See Fig-
ure 3.5(a) for an example. The tree structure representing how these O(n/M)
mini-trees are connected is then stored using O(n lg n/M) bits. Similarly, each
mini-tree is further decomposed into O(M/M ′) micro-trees, each of size O(M ′),



(a) (b)

Fig. 2. An example of covering an ordinal tree using the algorithm of (a)
Geary et al. [20], and (b) Farzan and Munro [15], with parameter M = 3.

for a parameter M ′, using the same algorithm, and the tree structures of all the
mini-trees (representing their micro-tree decomposition) is stored using a total
of O(n(lgM)/M ′) bits. Each of the micro-trees is represented as a pointer to a
table of size at most 22M

′
. This table stores the representations of all possible

micro-trees of size M ′.

By choosing M = dlg4 ne and M ′ = d(lg n)/24e, Geary et al. [20] obtain
a representation that takes 2n + o(n) bits. They further show how to support
various operations (namely, child, child rank, depth, level ancestor, desc,
degree, rankPRE/POST and selectPRE/POST) on the ordinal tree in constant time by
storing various auxiliary structures using o(n) bits. He et al. [25] extended the
representation by supporting several additional operations, namely LCA, height,
left leaf, right leaf, leaf rank, leaf select, leaf size, rankDFUDS, selectDFUDS,
level left, level right, level succ and level pred.

Farzan and Munro [15] modified the tree covering algorithm so that each
mini-tree has at most one node, other than the root of the mini tree, that is
connected to the root of another mini-tree. See Figure 3.5(b) for an example.
This simplifies the representation of the tree, as well as the auxiliary structures
needed to support various operations on the tree. They call this approach as the
uniform approach, and justify the name by demonstrating that this approach
can be applied to obtain succinct representations for various other families of
trees, including cardinal trees.

3.6 “Universal” representation

The succinct tree representations described so far are systematic encodings: they
encode the structure of the tree as a bit-string of length 2n+ o(n) bits, together
with an index of o(n) bits, where the index depends upon the choice of structure
bit-string and the operations to be supported. Operations are supported in O(1)
time by reading O(1) words from the structure bit-string and/or the index.



Since the index depends on the choice of structure bit-string, which also de-
termines the node numbering, this approach leads to certain difficulties [17]. For
example, certain operations can be implemented efficiently using one encoding,
but are hard or impossible to implement in another. As noted in the introduc-
tion, it is not possible in general to create a representation that supports the
union of the sets of operations of two representations without losing optimality.
Even if we represent the given tree as two separate copies, each using the re-
spective structure bit-strings and index data structures (thus losing optimality)
we would still face the problem that a series of linked operations using both
representations would require us to be able to map nodes of one numbering to
the other, which is not always easy to achieve.

Farzan et al. [17] proposed an optimal-space succinct encoding for ordinal
trees that can return b = O(w) consecutive bits from the structure bit-strings
of other (BP, DFUDS or TC) encodings, where w is the word-size, in O(1)
time. Since we can emulate access to the structure bit-strings of other encod-
ings, by adding the appropriate index of o(n) bits, one can directly support any
operations supported by those encodings, with only a constant factor slowdown
and negligible additional space cost. This representation is called the universal
representation (UNIVERSAL).

3.7 “Fully-functional” representation

Sadakane and Navarro [43] proposed an ordinal tree representation that is based
on storing the structure bit-string of BP, and constructing auxiliary structures to
support the operations. But it differs from the BP representation by significantly
simplifying the auxiliary structures, and also improving the lower-order term in
space. In particular, they base navigation on the key primitive of excess search.
The excess of a position in a parentheses sequence is the difference between the
numbers of open and closed parentheses from the start of the sequence to the
given position (the depth of a node equals the excess of its open parenthesis in
the BP sequence). An excess search operation such as fwd excess(i, d) returns
the closest position j ≥ i whose where the excess equals the excess at i plus
d. They propose a simple and flexible data structure, called the range min-max
tree for supporting excess search, and then reduce a wide range of operations
on the ordinal trees to simple combinations excess search and other primitive
operations. The resulting representation, which they call as a fully-functional
(FF) representation, (i) is conceptually simpler than most of the earlier repre-
sentations, (ii) has smaller redundancy than the earlier ones, (iii) can be easily
implemented, and (iv) can be efficiently dynamized.

Table 1 shows the comparison between the functionalities of various succinct
tree representations that we described in this section.



Operations LOUDS BP DFUDS TC/ UNIVERSAL FF

parent, child, child rank X X X X X
depth, level ancestor X X X X
degree X X X X X
height X X X
LCA X X X X
desc, leaf size X X X X
left leaf, right leaf X X X X
leaf rank, leaf select X X X X
rankPRE, selectPRE X X X X
rankPOST, selectPOST X X X
rankDFUDS, selectDFUDS X X
rankLEVEL, selectLEVEL X
level left, level right X X
level succ, level pred X X X X

Table 1. Navigational operations supported in O(1) time on various succinct ordinal
tree representations. All these representations use 2n + o(n) bits.

4 Additional Topics

4.1 Dynamization

Following upon dynamization of binary trees [35, 42], dynamization of succinct
ordinal trees was considered by Sadakane and Navarro [43] and Farzan and
Munro [16]. In the former, the update operations are taken to be edits on the
BP sequence representing the tree, e.g. adding or deleting a parenthesis pair,
while Farzan and Munro consider the slightly less general operations of adding
a leaf or a new node breaking an existing edge. In both cases, navigation and
other operations should continue to be supported once the update is complete.

A fundamental difference is in the way the operations are specified in the two
approaches. Sadakane and Navarro follow the static API of [33], and perform
many navigation operations via excess search. A key feature is that operations
on a node are specified by the position of that node in the BP bit-string. As
noted by Joannou and Raman [28], when using this approach, any navigation
operation has several steps that are known require Ω(lg n/ lg lg n) time (unless
updates are allowed to take more than poly-log time). However, the resulting
dynamization does support the full range of navigational operations supported
by the FF representation, together with the updates, in O(lg n/ lg lg n) time.

An alternative is the finger model [16, 42, 35], where updates are done using
a finger, which is effectively a “pointer” to a node in the tree. A finger may
be moved using some navigational operations, and crucially, updates can only
happen in the vicinity of a finger. In the finger model, the non-constant lower
bounds above do not apply and both updates and navigation operations can
in fact be performed in O(1) time [16] (the time for updates is amortized).



However, the set of operations supported by Farzan and Munro is smaller than
that of Sadakane and Navarro: in addition to the basic navigation operations,
only child, child rank and desc are supported.

4.2 Compressibility

When considering the information-theoretic lower bound of 2n−O(lg n) bits, it
must be noted that this is a worst-case bound. The same information-theoretic
lower bound applies if the tree is a random tree or highly regular (e.g. complete
k-ary tree). On the other hand, trees we find in practice are usually compressible.
Although there has been work on compressing labelled trees [18], the work on
representing compressible ordinal trees is far less mature. Jansson et al. [27]
provided a definition of tree compressibility based on degree sequences (and
gave a combinatorial justification thereof). They showed that it is possible to
compress a given ordinal tree in the minimum possible space (according to their
measure of compressibility), plus lower-order terms, and still support operations
in O(1) time. Bille et al. [7] considered ordinal trees that are compressed by
sharing subtrees, which is a form of grammar-based compression. They showed
that by generalizing excess search to such grammar-compressed BP strings, it is
possible to support many of the operations of the representation of [43] in O(lg n)
time. The space used is O(m lg n) bits, where m is the size of the grammar that
generates the given tree.

4.3 Redundancy

The redundancy of a succinct representation is a quantity of both practical and
fundamental importance, and papers have increasingly focussed on obtaining
the best possible redundancy while still obtaining the best running times for
operations (typically O(1) time). As noted in the introduction, the redundancy
is viewed slightly differently for systematic and non-systematic representations.
For systematic representations, it is known that for the BP encoding, an index
of size Θ(n lg lg n/ lg n) bits is needed to perform a full set of navigational oper-
ations [24]. However, using a non-systematic encoding, it is possible to obtain a
redundancy of O(n/(lg n)c) for any constant c > 0 [39, 43].

We close on a lighter note. We note that even without the redundancy caused
by requiring O(1)-time operations, the basic representations such as BP, DFUDS
etc. are at least 2n−O(1) bits long, while the lower bound is 2n−O(lg n) bits.
We consider how to eliminate this O(lg n)-bit additive overhead. As noted in
the introduction, a trivial encoding—encoding a given tree by its position in an
enumeration—achieves the lower bound, albeit at the cost of making operations
quite difficult. However, Golin et al. [23] note that binary trees can be encoded as
follows: write down the size of the left subtree of the root (which is a number from
{0, . . . , n−1}), and then recurse on the left and right subtrees; finally encode this
sequence as a mixed-radix number. This approach gives an optimal-space (zero
redundancy) encoding of binary trees such that operations can be performed in



polynomial time; via the standard equivalence between binary and ordinal trees,
we also obtain an optimal succinct ordinal tree representation where navigation
can be performed in polynomial time.

5 Implementations and Experimental Evaluation

Succinct representations of trees have been applied in a number of practical
contexts. In the context of dictionary indexing, Clark [11] implemented succinct
binary trees, and an implementation of a compact trie, the Bonsai tree, was
used for text prediction and compression [12].

Ordinal tree implementations were apparently first studied in detail by Geary
et al. [21] who implemented a simplified version of the BP representation of
Munro and Raman (although [33] mentions a previous BP implementation by
Chupa [9], details appear not to be in the public domain). Delpratt et al. [14] con-
sidered engineering the LOUDS representation and suggested a useful practical
trick called double numbering. This addresses the issue that while the ‘natural’
numbering of notes in the succinct representation of an n-node tree is often as
non-consecutive integers from {1, . . . , 2n+O(1)}, for a variety of applications, a
‘compact’ numbering from {1, . . . , n} is desirable, particularly in order to asso-
ciate information with the nodes. In theory, this can often be achieved in O(1)
time by means of select, to convert a user-provided node number (in a compact
numbering) to the representation’s natural numbering, followed by the appro-
priate tree operation, finally followed by a rank operation to convert the answer
back to a node number in a compact numbering. However, this is a significant
overhead in practice, and Delpratt et al. note that it is often better to number a
node as a pair 〈x, y〉, where x and y number the node according to the compact
and natural numberings, as updating the pair during operations is often trivial.

Subsequently, Arroyuelo et al. [2] implemented a simplified O(lg n)-time ex-
cess search algorithm based on [43] for navigating in the BP representation; the
resulting implementation appears to have similar speed performance, greater
functionality and better space usage to that of Geary et al. [21]. Joannou and
Raman [28] observe that the reason that the simple O(lg n)-time excess search of
Arroyuelo et al. performs comparably to the O(1)-time implementation of Geary
et al. for navigation is that navigation in ordinal trees (i.e. a sequence of steps
moving from a node to an adjacent one) induces a kind of locality of access in
the BP sequence; consequently, the O(lg n)-time worst-case cost may not be paid
frequently. They advocate the use of splay trees [44] as a data structure for excess
search to exploit this locality, and show good empirical performance. However,
they do not perform a theoretical worst-case analysis. They also present the first
empirical study of dynamic ordinal trees. Grossi and Ottaviano [38] present a
highly engineered version of excess search.

In general, the experimental results show that succinct ordinal tree represen-
tations are competitive with naive representations, even when both the succinct
and naive representations are too large to fit in cache, and small enough to fit



in main memory. Succinct representations are usually much faster in case the
succinct representation fits into faster memory (cache/main memory) while the
naive representation does not. Admittedly, an O(1)-time operation on a suc-
cinct ordinal tree can be more complex (in terms of the number of instructions
performed) than the same operation in a classical ordinal tree representation,
where an operation may be as simple as just following a pointer. However, when
storing relatively large data, following a pointer can incur a cache miss or a TLB
miss (which is even worse [29]). On the other hand, the best practical implemen-
tations of a succinct data structure will spend many instructions sequentially
accessing memory locations, which is usually very fast in practice. Furthermore,
since more information is packed into the faster levels of the memory hierarchy,
succinct data structures show better locality as well.
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30. Katajainen, J., Mäkinen, E.: Tree compression and optimization with applications.
Int. J. Found. Comput. Sci. 1(4), 425–448 (1990)

31. Kurtz, S.: Reducing the space requirement of suffix trees. Softw., Pract. Exper.
29(13), 1149–1171 (1999)

32. Lu, H., Yeh, C.: Balanced parentheses strike back. ACM Trans. Algorithms 4(3),
1–13 (2008)

33. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

34. Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2),
205–222 (2001)

35. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: Kosaraju, S.R. (ed.) SODA. pp. 529–536. ACM/SIAM (2001)

36. Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Dı́az, J.,
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