Skip to main content

Parity Games and Propositional Proofs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

A propositional proof system is weakly automatizable if there is a polynomial time algorithm which separates satisfiable formulas from formulas which have a short refutation in the system, with respect to a given length bound. We show that if the resolution proof system is weakly automatizable, then parity games can be decided in polynomial time. We also define a combinatorial game and prove that resolution is weakly automatizable if and only if one can separate, by a set decidable in polynomial time, the games in which the first player has a positional winning strategy from the games in which the second player has a positional winning strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. SIAM J. Comput. 38(4), 1347–1363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Inform. and Comput. 189(2), 182–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atserias, A., Maneva, E.: Mean-payoff games and propositional proofs. Inform. and Comput. 209(4), 664–691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buresh-Oppenheim, J., Morioka, T.: Relativized NP search problems and propositional proof systems. In: Proceedings of the 19th IEEE Annual Conference on Computational Complexity, pp. 54–67. IEEE (2004)

    Google Scholar 

  5. Buss, S.R.: Bounded arithmetic, Studies in Proof Theory. Lecture Notes, vol. 3. Bibliopolis, Naples (1986)

    Google Scholar 

  6. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity Theory (New Brunswick, NJ, 1990). DIMACS Ser. Discrete Math. Theoret. Comput. Sci, vol. 13, pp. 51–71. Amer. Math. Soc., Providence (1993)

    Google Scholar 

  7. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Internat. J. Game Theory 8(2), 109–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Emerson, E.A.: Automata, tableaux, and temporal logics. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  9. Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Log. Methods Comput. Sci. 7(3), 3:19, 42 (2011)

    Google Scholar 

  10. Friedmann, O.: Recursive algorithm for parity games requires exponential time. RAIRO Theor. Inform. Appl. 45(4), 449–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  12. Huang, L., Pitassi, T.: Automatizability and simple stochastic games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 605–617. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Juba, B.: On the Hardness of Simple Stochastic Games. Master’s thesis, Carnegie Mellon University (2005)

    Google Scholar 

  14. Krajíček, J.: Lower bounds to the size of constant-depth Frege proofs. J. Symbolic Logic 59, 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62, 457–486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krajíček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-2), 123–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Di Prisco, C.A. (ed.) Methods in Mathematical Logic. LNCS, vol. 1130, pp. 317–340. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Pudlák, P.: On reducibility and symmetry of disjoint NP pairs. Theoret. Comput. Sci. 295(1-3), 323–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Puri, A.: Theory of hybrid systems and discrete event structures. Ph.D. thesis, University of California, Berkeley (1995)

    Google Scholar 

  20. Razborov, A.A.: On provably disjoint NP-pairs. Tech. Rep. RS-94-36, Basic Research in Computer Science Center, Aarhus, Denmark (November 1994)

    Google Scholar 

  21. Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science. Springer (2001)

    Google Scholar 

  22. Wilmers, G.: Bounded existential induction. J. Symbolic Logic 50(1), 72–90 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoret. Comput. Sci. 158(1-2), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beckmann, A., Pudlák, P., Thapen, N. (2013). Parity Games and Propositional Proofs. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics