
ar
X

iv
:1

30
6.

32
60

v2
 [

cs
.F

L
]

 1
8

Ju
n

20
13

SEMILINEARITY AND CONTEXT-FREENESS OF LANGUAGES

ACCEPTED BY VALENCE AUTOMATA

P. BUCKHEISTER AND GEORG ZETZSCHE

Abstract. Valence automata are a generalization of various models of au-
tomata with storage. Here, each edge carries, in addition to an input word,
an element of a monoid. A computation is considered valid if multiplying the
monoid elements on the visited edges yields the identity element. By choosing
suitable monoids, a variety of automata models can be obtained as special
valence automata.

This work is concerned with the accepting power of valence automata.
Specifically, we ask for which monoids valence automata can accept only
context-free languages or only languages with semilinear Parikh image, re-
spectively.

First, we present a characterization of those graph products (of monoids)
for which valence automata accept only context-free languages. Second, we
provide a necessary and sufficient condition for a graph product of copies of
the bicyclic monoid and the integers to yield only languages with semilinear
Parikh image when used as a storage mechanism in valence automata. Third,
we show that all languages accepted by valence automata over torsion groups
have a semilinear Parikh image.

1. Introduction

A valence automaton is a finite automaton in which each edge carries, in addi-
tion to an input word, an element of a monoid. A computation is considered valid
if multiplying the monoid elements on the visited edges yields the identity element.
By choosing suitable monoids, one can obtain a wide range of automata with stor-
age mechanisms as special valence automata. Thus, they offer a framework for
generalizing insights about automata with storage. For examples of automata as
valence automata, see [5, 22].

In this work, we are concerned with the accepting power of valence automata.
That is, we are interested in relationships between the structure of the monoid
representing the storage mechanism and the class of languages accepted by the cor-
responding valence automata. On the one hand, we address the question for which
monoids valence automata accept only context-free languages. Since the context-
free languages constitute a very well-understood class, insights in this direction
promise to shed light on the acceptability of languages by transferring results about
context-free languages.

A very well-known result on context-free languages is Parikh’s Theorem [17],
which states that the Parikh image (that is, the image under the canonical mor-
phism onto the free commutative monoid) of each context-free language is semilinear
(in this case, the language itself is also called semilinear). It has various applications
in proving that certain languages are not context-free and its effective nature (one
can actually compute the semilinear representation) allows it to be used in decision

1

http://arxiv.org/abs/1306.3260v2

2 P. BUCKHEISTER AND GEORG ZETZSCHE

procedures for numerous problems (see [15] for an example from group theory and
[11] for others). It is therefore our second goal to gain understanding about which
monoids cause the corresponding valence automata to accept only languages with
a semilinear Parikh image.

Our contribution is threefold. First, we obtain a characterization of those graph
products (of monoids) whose corresponding valence automata accept only context-
free languages. Graph products are a generalization of the free and the direct
product in the sense that for each pair of participating factors, it can be speci-
fied whether they should commute in the product. Since valence automata over a
group accept only context-free languages if and only if the group’s word problem
(and hence the group itself) can be described by a context-free grammar, such a
characterization had already been available for groups in a result by Lohrey and
Sénizergues [13]. Therefore, our characterization is in some sense an extension of
Lohrey and Sénizergues’ to monoids.

Second, we present a necessary and sufficient condition for a graph product of
copies of the bicyclic monoid and the integers to yield, when used in valence au-
tomata, only languages with semilinear Parikh image. Although this is a smaller
class of monoids than arbitrary graph products, it still covers a number of storage
mechanisms found in the literature, such as pushdown automata, blind multicounter
automata, and partially blind multicounter automata (see [22] for more informa-
tion). Hence, our result is a generalization of various semilinearity results about
these types of automata.

Third, we show that every language accepted by a valence automaton over a
torsion group has a semilinear Parikh image. On the one hand, this is particularly
interesting because of a result by Render [18], which states that for every monoid
M , the languages accepted by valence automata over M either (1) coincide with
the regular languages, (2) contain the blind one-counter languages, (3) contain
the partially blind one-counter languages, or (4) are those accepted by valence
automata over an infinite torsion group (which is not locally finite). Hence, our
result establishes a strong language theoretic property in the fourth case and thus
contributes to completing the picture of language classes that can arise from valence
automata.

On the other hand, Lohrey and Steinberg [15] have used the fact that for cer-
tain groups, valence automata accept only semilinear languages (in different terms,
however) to obtain decidability of the rational subset membership problem. How-
ever, their procedures require that the semilinear representation can be obtained
effectively. Since there are torsion groups where even the word problem is undecid-
able [1], our result yields examples of groups that have the semilinearity property
but which do not permit the computation of a corresponding representation. Our
proof is based on well-quasi-orderings (see, e.g., [12]).

2. Basic notions

We assume that the reader has some basic knowledge on formal languages and
monoids. In this section, we will fix some notation and introduce basic concepts.

A monoid is a set M together with an associative operation and a neutral el-
ement. Unless defined otherwise, we will denote the neutral element of a monoid
by 1 and its operation by juxtaposition. That is, for a monoid M and elements

SEMLINEARITY AND CONTEXT-FREENESS 3

a, b ∈M , ab ∈M is their product. In each monoid M , we have the submonoids

R(M) = {a ∈M | ∃b ∈M : ab = 1},

L(M) = {a ∈M | ∃b ∈M : ba = 1}.

When using a monoid M as part of a control mechanism, the subset

J(M) = {a ∈M | ∃b, c ∈M : bac = 1}

plays an important role1 A subgroup of a monoid is a subset that is closed under
the operation and is a group.

Let Σ be a fixed countable set of abstract symbols, the finite subsets of which are
called alphabets. For a set of symbols X ⊆ Σ, we will write X∗ for the set of words
over X . The empty word is denoted by λ ∈ X∗. Together with concatenation as
its operation, X∗ is a monoid. Given an alphabet X and a monoid M , subsets
of X∗ and X∗ ×M are called languages and transductions, respectively. A family
is a set of languages that is closed under isomorphism and contains at least one
non-trivial member. For a transduction T ⊆ X∗ × Y ∗ and a language L ⊆ X∗,
we write T (L) = {v ∈ Y ∗ | ∃u ∈ L : (u, v) ∈ T }. For any finite subset S ⊆ M of
a monoid, let XS be an alphabet in bijection with S. Let ϕS : X∗

S → M be the
morphism extending this bijection. Then the set {w ∈ X∗

S | ϕS(w) = 1} is called
the identity language of M with respect to S.

Let F be a family of languages. An F-grammar is a quadruple G = (N, T, P, S)
where N and T are disjoint alphabets and S ∈ N . P is a finite set of pairs (A,M)
with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ F . In this context, a pair (A,M) ∈ P will
also be denoted by A → M . We write x ⇒G y if x = uAv and y = uwv for some
u, v, w ∈ (N ∪ T)∗ and (A,M) ∈ P with w ∈ M . The language generated by G is
L(G) = {w ∈ T ∗ | S ⇒∗

G w}. A language L is called algebraic over F if there is an
F -grammar G such that L = L(G). The family of all languages that are algebraic
over F is called the algebraic extension of F . The algebraic extension of the family
of finite languages is denoted CF, its members are called context-free.

Given an alphabet X , we write X⊕ for the set of maps α : X → N. Elements
of X⊕ are called multisets. By way of pointwise addition, written α + β, X⊕ is a
monoid. The Parikh mapping is the mapping Ψ : X∗ → X⊕ such that Ψ(w)(x) is
the number of occurrences of x in w for every w ∈ X∗ and x ∈ X .

Let A be a (not necessarily finite) set of symbols and R ⊆ A∗ × A∗. The pair
(A,R) is called a (monoid) presentation. The smallest congruence of A∗ containing
R is denoted by ≡R and we will write [w]R for the congruence class of w ∈ A∗.
The monoid presented by (A,R) is defined as A∗/≡R. Note that since we did not
impose a finiteness restriction on A, every monoid has a presentation.

Let M be a monoid. An automaton over M is a tuple A = (Q,M,E, q0, F), in
which Q is a finite set of states, E is a finite subset of Q ×M × Q called the set
of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The step
relation ⇒A of A is a binary relation on Q ×M , for which (p, a) ⇒A (q, b) if and
only if there is an edge (p, c, q) such that b = ac. The set generated by A is then
S(A) = {a ∈ M | ∃q ∈ F : (q0, 1) ⇒∗

A (q, a)}. A set R ⊆ M is called rational if
it can be written as R = S(A) for some automaton A over M . Rational languages

1It should be noted that R(M), L(M), and J(M) are the R-, L-, and J -class, respectively, of
the identity and hence are important concepts in the theory of semigroups [8].

4 P. BUCKHEISTER AND GEORG ZETZSCHE

(a) (b)

Figure 1. Graphs C4 and P4.

are also called regular, the corresponding class is denoted REG. A class C for which
L ∈ C implies T (L) ∈ C for every rational transduction T is called a full trio.

For n ∈ N and α ∈ X⊕, we use nα to denote α+ · · ·+α (n summands). A subset
S ⊆ X⊕ is linear if there are elements α0, . . . , αn such that S = {α0+

∑n

i=1miαi |
mi ∈ N, 1 ≤ i ≤ n}. A set S ⊆ C is called semilinear if it is a finite union of linear
sets. In slight abuse of terminology, we will sometimes call a language L semilinear
if the set Ψ(L) is semilinear.

A valence automaton over M is an automaton A over X∗ × M , where X is
an alphabet. Instead of A = (Q,X∗ × M,E, q0, F), we then also write A =
(Q,X,M,E, q0, F) and for an edge (p, (w,m), q) ∈ E, we also write (p, w,m, q).
The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}. The
class of languages accepted by valence automata overM is denoted by VA(M). It is
well-known that VA(M) is the smallest full trio containing every identity language
of M (see, for example, [10]).

A graph is a pair Γ = (V,E) where V is a finite set and E ⊆ {S ⊆ V | 1 ≤
|S| ≤ 2}. The elements of V are called vertices and those of E are called edges. If
{v} ∈ E for some v ∈ V , then v is called a looped vertex, otherwise it is unlooped.
A subgraph of Γ is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Such a subgraph is
called induced (by V ′) if E′ = {S ∈ E | S ⊆ V ′}, i.e. E′ contains all edges from
E incident to vertices in V ′. By Γ \ {v}, for v ∈ V , we denote the subgraph of Γ
induced by V \ {v}. Given a graph Γ = (V,E), its underlying loop-free graph is
Γ′ = (V,E′) with E′ = E ∩ {S ⊆ V | |S| = 2}. For a vertex v ∈ V , the elements
of N(v) = {w ∈ V | {v, w} ∈ E} are called neighbors of v. Moreover, a clique is
a graph in which any two distinct vertices are adjacent. A simple path of length n
is a sequence x1, . . . , xn of pairwise distinct vertices such that {xi, xi+1} ∈ E for
1 ≤ i < n. If, in addition, we have {xn, x1} ∈ E, it is called a cycle. Such a cycle
is called induced if {xi, xj} ∈ E implies |i − j| = 1 or {i, j} = {1, n}. A loop-free
graph Γ = (V,E) is chordal if it does not contain an induced cycle of length ≥ 4.
It is well-known that every chordal graph contains a vertex whose neighborhood is
a clique [4]. By C4 and P4, we denote the cycle of length 4 and the simple path of
length 4, respectively (see figures 1a and 1b). A loop-free graph is called a transitive
forest if it is the disjoint union of comparability graphs of rooted trees. A result by
Wolk [20] states that a graph is a transitive forest if and only if it contains neither
C4 nor P4 as an induced subgraph.

Let Γ = (V,E) be a loop-free graph and Mv a monoid for each v ∈ V with
a presentation (Av, Rv) such that the Av are pairwise disjoint. Then the graph
product M = M(Γ, (Mv)v∈V) is the monoid given by the presentation (A,R), where
A =

⋃
v∈V Av and

R = {(ab, ba) | a ∈ Av, b ∈ Aw, {v, w} ∈ E} ∪
⋃

v∈V

Rv.

SEMLINEARITY AND CONTEXT-FREENESS 5

Note that for each v ∈ V , there is a map ϕv :M →Mv such that ϕv is the identity
map on Mv. When V = {0, 1} and E = ∅, we also write M0 ∗M1 for M and call
this the free product of M0 and M1. Given a subset U ⊆ V , we write M↾U for the
product M(Γ′, (Mv)v∈U), where Γ′ is the subgraph induced by U .

By B, we denote the monoid presented by (A,R) with A = {x, x̄} and R =
(xx̄, λ). The elements [x]R and [x̄]R are called its positive and negative generator,
respectively. The set D1 of all w ∈ {x, x̄}∗ with [w]R = [λ]R is called the Dyck
language. The group of integers is denoted Z. Here, we call 1 ∈ Z its positive and
−1 ∈ Z its negative generator.

Let Γ = (V,E) be a (not necessarily loop-free) graph. Furthermore, for each
v ∈ V , let Mv be a copy of B if v is an unlooped vertex and a copy of Z if v is
looped. If Γ− is obtained from Γ by removing all loops, we write MΓ for the graph
product M(Γ−, (Mv)v∈V). For information on valence automata over monoids MΓ,
see [22].

For i ∈ {0, 1}, letMi be a monoid and let ϕi : N → Mi be an injective morphism.
Let ≡ be the smallest congruence in M0 ∗M1 such that ϕ0(a) ≡ ϕ1(a) for every
a ∈ N . Then the monoid (M0 ∗M1)/ ≡ is denoted by M0 ∗N M1 and called a free
product with amalgamation.

3. Auxiliary Results

In this section, we present auxiliary results that are used in later sections. In
the following, we will call a monoid M an FRI-monoid (or say that M has the
FRI-property) if for every finitely generated submonoid N of M , the set R(N) is
finite. In [18] and independently in [21], the following was shown.

Theorem 1. For each monoid M , the following are equivalent:

(1) M is an FRI-monoid.
(2) VA(M) = REG.

The first two lemmas state well-known facts from semigroup theory for which
we provide short proofs for the sake of accessibility.

Lemma 2. For each monoid M , exactly one of the following holds:

(1) J(M) is a group,
(2) M contains a copy of B as a submonoid.

Proof. If R(M) = L(M), then J(M) = R(M) = L(M) and hence J(M) is a group.
Otherwise, if x ∈ R(M)\L(M) with xy = 1, it can be verified straightforwardly that
the submonoid generated by x and y is isomorphic to B. If L(M) \ R(M) 6= ∅, we
can proceed analogously. The two cases are mutually exclusive, since in the second
case, we have xy = 1 and yx 6= 1, where x and y are the positive and negative
generator of B, respectively. This, however, cannot happen in a group. �

Lemma 3. For each monoid M , exactly one of the following holds:

(1) M is an FRI-monoid.
(2) There is a finitely generated submonoid N ⊆ M and infinite subsets S ⊆

R(N), S′ ⊆ L(N) such that (i) no two distinct elements of S have a right
inverse in common and (ii) no two distinct elements of S′ have a left inverse
in common.

6 P. BUCKHEISTER AND GEORG ZETZSCHE

Proof. The conditions are clearly mutually exclusive. IfM is not an FRI-monoid, it
has a finitely generated submonoid N with infinite R(N). Distinguishing the cases
of Lemma 2 for N yields the required sets. �

We will employ a result by van Leeuwen [19] that generalizes Parikh’s theorem.
It states that semilinearity of all languages is preserved by building the algebraic
extension of a language family.

Theorem 4 (van Leeuwen). Let F be a family of semilinear languages. Then every
language that is algebraic over F is also semilinear.

In light of the previous theorem, the following implies that the class of monoids
M for which VA(M) contains only semilinear languages is closed under taking
free products with amalgamation over a finite identified subgroup that contains the
identity of each factor. In the case where the factors are residually finite groups, this
was already shown in [15, Lemma 8] (however, for a more general operation than free
products with amalgamation). The following also implies that if VA(Mi) contains
only context-free languages for i ∈ {0, 1}, then this is also true for VA(M0 ∗F M1).
This is due to the fact that clearly, the class of context-free languages is its own
algebraic extension.

Theorem 5. For each i ∈ {0, 1}, let Mi be a finitely generated monoid and F be
a subgroup that contains Mi’s identity. Then every language in VA(M0 ∗F M1) is
algebraic over VA(M0) ∪ VA(M1).

Proof. Since the algebraic extension of a full trio is again a full trio, it suffices to
show that with respect to some generating set S ⊆M0∗F M1, the identity language
of M0 ∗F M1 is algebraic over VA(M0) ∪ VA(M1).

For i ∈ {0, 1}, let Si ⊆ Mi be a finite generating set for Mi such that F ⊆ Si.
Furthermore, let Xi be an alphabet in bijection with Si and let ϕi : X

∗
i → Mi be

the morphism extending this bijection. Moreover, let Yi ⊆ Xi be the subset with
ϕi(Yi) = F . Let ψi : Mi → M0 ∗F M1 be the canonical morphism. Since F is
a subgroup of M0 and M1, ψ0 and ψ1 are injective (see e.g. [8, Theorem 8.6.1]).
Let X = X0 ∪ X1 and let ϕ : X∗ → M0 ∗F M1 be the morphism extending ψ0ϕ0

and ψ1ϕ1. Then the identity language of M0 ∗F M1 is ϕ−1(1) and we shall prove
the theorem by showing that ϕ−1(1) is algebraic over VA(M0) ∪ VA(M1). We will
make use of the following fact about free products with amalgamation of monoids
with a finite identified subgroup. Let s1, . . . , sn, s

′
1, . . . , s

′
m ∈ (X∗

0 \ϕ
−1
0 (F))∪ (X∗

1 \
ϕ−1
1 (F)), such that sj ∈ X∗

i if and only if sj+1 ∈ X∗
1−i for 1 ≤ j < n, i ∈ {0, 1} and

s′j ∈ X∗
i if and only if s′j+1 ∈ X∗

1−i for 1 ≤ j < m, i ∈ {0, 1}. Then the equality
ϕ(s1 · · · sn) = ϕ(s′1 · · · s

′
m) implies n = m. A stronger statement was shown in [14,

Lemma 10]. We will refer to this as the syllable property.
For each i ∈ {0, 1} and f ∈ F , we define Li,f = ϕ−1

i (f) and write yf for the
symbol in Yi with ϕi(yf) = f−1. Then clearly Li,1 ∈ VA(Mi). Furthermore, since

Li,f = {w ∈ X∗
i | yfw ∈ Li,1},

(here we again use that F is a group) we can obtain Li,f from Li,1 by a rational
transduction and hence Li,f ∈ VA(Mi).

Let F = VA(M0) ∪ VA(M1). Since for each F -grammar G, it is clearly possible
to construct an F -grammar G′ such that L(G′) consists of all sentential forms of
G, it suffices to construct an F -grammar G = (N, T, P, S) with N ∪ T = X and

SEMLINEARITY AND CONTEXT-FREENESS 7

S ⇒∗
G w if and only if ϕ(w) = 1 for w ∈ X∗. We construct G = (N, T, P, S) as

follows. Let N = Y0 ∪ Y1 and T = (X0 ∪X1) \ (Y0 ∪ Y1). As productions, we have
y → L1−i,f for each y ∈ Yi where f = ϕi(y). Since 1 ∈ F , we have an ei ∈ Yi with
ϕi(ei) = 1. As the start symbol, we choose S = e0. We claim that for w ∈ X∗, we
have S ⇒∗

G w if and only if ϕ(w) = 1.
The “only if” is clear. Thus, let w ∈ X∗ with ϕ(w) = 1. We write w = w1 · · ·wn

such that wj ∈ X∗
0 ∪ X∗

1 for all 1 ≤ j ≤ n such that wj ∈ X∗
i if and only if

wj+1 ∈ X∗
1−i for i ∈ {0, 1} and 1 ≤ j < n. We show by induction on n that S ⇒∗

G w.
For n ≤ 1, we have w ∈ X∗

i for some i ∈ {0, 1}. Since 1 = ϕ(w) = ψi(ϕi(w)) and
ψi is injective, we have ϕi(w) = 1 and hence w ∈ Li,1. This means S = e0 ⇒G w
or S = e0 ⇒G e1 ⇒G w, depending on whether i = 1 or i = 0.

Now let n ≥ 2. We claim that there is a 1 ≤ j ≤ n with ϕ(wj) ∈ F . Indeed,
if ϕ(wj) /∈ F for all 1 ≤ j ≤ n and since ϕ(w1 · · ·wn) = 1 = ϕ(λ), the syllable
property implies n = 0, against our assumption. Hence, let f = ϕ(wj) ∈ F .
Furthermore, let wj ∈ X∗

i and choose y ∈ Y1−i so that ϕ1−i(y) = f . Then
ψi(ϕi(wj)) = ϕ(wj) = f and the injectivity of ψi yields ϕi(wj) = f . Hence,
wj ∈ Li,f and thus w′ = w1 · · ·wj−1ywj+1 · · ·wn ⇒G w. For w′ the induction
hypothesis holds, meaning S ⇒∗

G w′ and thus S ⇒∗
G w. �

4. Context-Freeness

In this section, we are concerned with the context-freeness of languages accepted
by valence automata over graph products. The first lemma is a simple observation
and we will not provide a proof. In the case of groups, it appeared in [6].

Lemma 6. Let Γ = (V,E) and M = M(Γ, (Mv)v∈V) be a graph product. Then for
each v ∈ V

M ∼= (M↾V \{v}) ∗M↾N(v)
(M↾N(v) ×Mv).

The following is a result by Lohrey and Sénizergues [13]. A finitely generated
group is called virtually free if it has a free subgroup of finite index.

Theorem 7 (Lohrey, Sénizergues). Let Gv be a finitely generated non-trivial group
for each v ∈ V . Then M(Γ, (Gv)v∈V) is virtually free if and only if

(1) for each v ∈ V , Gv is virtually free,
(2) if Gv and Gw are infinite and v 6= w, then {v, w} /∈ E,
(3) if Gv is infinite, Gu and Gw are finite and {v, u}, {v, w} ∈ E, then {u,w} ∈

E, and
(4) the graph Γ is chordal.

In order to prove that certain languages are not context-free, we will employ the
following well-known Iteration Lemma by Ogden [16].

Lemma 8 (Ogden). For each context-free language L, there is an integer m such
that for any word z ∈ L and any choice of at least m distinct marked positions in
z, there is a decomposition z = uvwxy such that:

(1) w contains at least one marked position.
(2) Either u and v both contain marked positions, or x and y both contain

marked positions.
(3) vwx contains at most m marked positions.
(4) uviwxiy ∈ L for every i ≥ 0.

8 P. BUCKHEISTER AND GEORG ZETZSCHE

Aside from Theorem 5, the following is the key tool to prove our result on
context-freeness. We call a monoid M context-free if VA(M) ⊆ CF.

Lemma 9. The direct product of monoids M0 and M1 is context-free if and only
if for some i ∈ {0, 1}, Mi is context-free and M1−i is an FRI-monoid.

Proof. Suppose Mi is context-free and M1−i is an FRI-monoid. Then each lan-
guage L ∈ VA(Mi ×M1−i) is contained in VA(Mi × N) for some finitely gener-
ated submonoid N of M1−i. Since M1−i is an FRI-monoid, N has finitely many
right-invertible elements and hence J(N) is a finite group. Since no element out-
side of J(N) can appear in a product yielding the identity, we may assume that
L ∈ VA(Mi × J(N)). This means, however, that L can be accepted by a valence
automaton over Mi by keeping the right component of the storage monoid in the
state of the automaton. Hence, L ∈ VA(Mi) is context-free.

Suppose VA(M0 ×M1) ⊆ CF. Then certainly VA(Mi) ⊆ CF for each i ∈ {0, 1}.
This means we have to show that at least one of the monoidsM0 andM1 is an FRI-
monoid and thus, toward a contradiction, assume that none of them is. We provide
two proofs for the fact that VA(M0 ×M1) contains non-context-free languages in
this case. One is very short and the other is elementary in the sense that it does
not invoke the fact that context-free groups are virtually free.

First proof. By Lemma 2, for each i, either J(Mi) is an infinite subgroup of Mi

orMi contains a copy of B as a submonoid. Since every infinite virtually free group
contains an element of infinite order, we have that for each i, either (1) J(Mi) is
an infinite group and hence contains a copy of Z or (2) Mi contains a copy of B.
In any case, VA(M0 ×M1) contains the language {anbmcndm | n,m ≥ 0}, which is
not context-free.

Second proof. By Lemma 3, for each i, there is a finitely generated submonoid
Ni ⊆ Mi and infinite sets S0 ⊆ R(N0) and S1 ⊆ L(N1) such that the elements of
S0 have pairwise disjoint sets of right inverses in N0 and the elements of S1 have
pairwise disjoint sets of left inverses in N1. Let Xi be an alphabet large enough that
we can find a surjective morphism ϕi : X

∗
i → Ni for each i ∈ {0, 1}. Furthermore,

let # be a symbol with # /∈ X0 ∪X1. The language

L = {r0#r1#s0#s1 | ri, si ∈ X∗
i , ϕi(risi) = 1 for each i ∈ {0, 1}}

is clearly contained in VA(M0×M1). We shall use the Iteration Lemma to show that
L is not context-free. Suppose L is context-free and let m be the constant provided
by Lemma 8. For each a ∈ R(N0), let ℓ0(a) be the minimal length of a word w ∈ X∗

0

with aϕ0(w) = 1. Furthermore, for a ∈ L(N1), let ℓ1(a) be the minimal length of
a word w ∈ X∗

1 with ϕ1(w)a = 1. The existence of the sets S0 and S1 guarantees
that there are a0 ∈ R(N0) and a1 ∈ L(N1) such that ℓ0(a0) ≥ m and ℓ1(a1) ≥ m.
Choose r0 ∈ X∗

0 and s1 ∈ X∗
1 such that ϕ0(r0) = a0 and ϕ1(s1) = a1. Furthermore,

let r1 ∈ X∗
1 be a word of minimal length among those with ϕ1(r1s1) = 1 and let

s0 ∈ X∗
0 be a word of minimal length among those with ϕ0(r0s0) = 1. These choices

guarantee |r1| ≥ m and |s0| ≥ m. Moreover, the word z = r0#r1#s0#s1 is in L.
Let z = uvwxy be the decomposition provided by the Iteration Lemma, where

we choose the positions in the subword r1#s0 to be marked. In the following, we
call r0, r1, s0, s1 the segments of the word z. Clearly, v and x cannot contain the
symbol #. Therefore, by Condition (2), at least one of the words v and x lies in
one of the middle segments. By Condition (3), they have to lie in the same segment
or in neighboring segments. Hence, we have two cases:

SEMLINEARITY AND CONTEXT-FREENESS 9

• If v or x lies in the segment r1, none of them lies in s1. Thus, by pumping
with i = 0, we obtain a word r′0#r

′
1#s

′
0#s1 ∈ L with |r′1| < |r1| and

ϕ1(r
′
1s1) = 1, contradicting the choice of r1.

• If v or x lies in the segment s0, none of them lies in r0. Thus, by pumping
with i = 0, we obtain a word r0#r

′
1#s

′
0#s

′
1 ∈ L with |s′0| < |s0| and

ϕ1(r0s
′
0) = 1, contradicting the choice of s0.

This proves that L is not context-free and hence the lemma. �

We are now ready to prove our main result on context-freeness. Since for a
graph product M = M(Γ, (Mv)v∈V), there is a morphism ϕv : M → Mv for each
v ∈ V that restricts to the identity on Mv, we have J(M) ∩Mv = J(Mv): While
the inclusion “⊇” is true for any submonoid, given b ∈ J(M) ∩Mv with abc = 1,
a, c ∈ M , we also have ϕv(a)bϕv(c) = ϕv(abc) = 1 and hence b ∈ J(Mv). This
means no element of Mv \ J(Mv) can appear in a product yielding the identity. In
particular, removing a vertex v with J(Mv) = {1} will not change VA(M). Hence,
our requirement that J(Mv) 6= {1} is not a serious restriction.

Theorem 10. Let Γ = (V,E) and let J(Mv) 6= {1} for any v ∈ V . M =
M(Γ, (Mv)v∈V) is context-free if and only if

(1) for each v ∈ V , Mv is context-free,
(2) if Mv and Mw are not FRI-monoids and v 6= w, then {v, w} /∈ E,
(3) ifMv is not an FRI-monoid,Mu andMw are FRI-monoids and {v, u}, {v, w} ∈

E, then {u,w} ∈ E, and
(4) the graph Γ is chordal.

Proof. First, we show that conditions (1)–(4) are necessary. For (1), this is im-
mediate and for (2), this follows from Lemma 9. If (3) is violated then for some
u, v, w ∈ V , Mv × (Mu ∗ Mw) is a submonoid of M such that Mu and Mw are
FRI-monoids and Mv is not. Since Mu and Mw contain non-trivial (finite) sub-
groups,Mu∗Mw contains an infinite group and is thus not an FRI-monoid, meaning
Mv × (Mu ∗Mw) is not context-free by Lemma 9.

Suppose (4) is violated for context-free M . By (2) and (3), any induced cycle of
length at least four involves only vertices with FRI-monoids. Each of these, however,
contains a non-trivial finite subgroup. This means M contains an induced cycle
graph product of non-trivial finite groups, which is not virtually free by Theorem
7 and hence has a non-context-free identity language.

In order to prove the other direction, we note that VA(M) ⊆ CF follows if
VA(M ′) ⊆ CF for every finitely generated submonoid M ′ ⊆ M . Since every such
submonoid is contained in a graph product N = M(Γ, (Nv)v∈V) where each Nv

is a finitely generated submonoid of Mv, it suffices to show that for such graph
products, we have VA(N) ⊆ CF. This means whenever Mv is an FRI-monoid, Nv

has finitely many right-invertible elements. Moreover, since Nv ∩ J(N) = J(Nv), no
element of Nv \ J(Nv) can appear in a product yielding the identity. Hence, if Nv

is generated by S ⊆ Nv, replacing Nv by the submonoid generated by S ∩ J(Nv)
does not change the identity languages of the graph product. Thus, we assume that
each Nv is generated by a finite subset of J(Nv). Therefore, whenever Mv is an
FRI-monoid, Nv is a finite group.

We first establish sufficiency in the case that Mv is an FRI-monoid for every
v ∈ V and proceed by induction on |V |. This means that Nv is a finite group for
every v ∈ V . Since Γ is chordal, there is a v ∈ V whose neighborhood is a clique.

10 P. BUCKHEISTER AND GEORG ZETZSCHE

This means N↾N(v) is a finite group and hence N↾N(v)×Nv context-free by Lemma
9. Since N↾V \{v} is context-free by induction, Theorem 5 and Lemma 6 imply that
N is context-free.

To complete the proof, suppose there are n vertices v ∈ V for which Mv is not
an FRI-monoid. We proceed by induction on n. The case n = 0 is treated above.
Choose v ∈ V such that Mv is not an FRI-monoid. For each u ∈ N(v), Mu is an
FRI-monoid by condition (2), and hence Nu a finite group. Furthermore, condition
(3) guarantees that N(v) is a clique and hence N↾N(v) is a finite group. As above,
Theorem 5 and Lemma 6 imply that N is context-free. �

Corollary 11. Let Γ = (V,E). Then VA(M(Γ, (Mv)v∈V)) ⊆ CF if and only if

(1) for each v ∈ V , VA(Mv) ⊆ CF,
(2) if REG (VA(Mv) and REG (VA(Mw) and v 6= w, then {v, w} /∈ E,
(3) if REG (VA(Mv), VA(Mu) = VA(Mw) = REG and {v, u} ∈ E and {v, w} ∈

E, then {u,w} ∈ E, and
(4) the graph Γ is chordal.

5. Semilinearity

A well-known theorem by Chomsky and Schützenberger [2] was re-proved and
phrased in terms of valence automata in the following way by Kambites [10].

Theorem 12. VA(Z ∗ Z) = CF.

The next lemma can be shown using standard methods of formal language theory.
See [15, 22] for a proof.

Lemma 13. Let M be a monoid such that all languages in VA(M) are semilinear.
Then every languages in VA(M × Z) is semilinear.

By a simple product construction, one can show the following.

Lemma 14. If VA(Ni) ⊆ VA(Mi) for i = 0, 1, then VA(N0 ×N1) ⊆ VA(M0 ×M1).

Lemma 15. VA(B × B) contains a non-semilinear language.

Proof. VA(B× B) is the class of languages accepted by partially blind two-counter
machines [22]. Greibach [7] and, independently, Jantzen [9] have shown that such
machines can accept the language L1 = {wcn | w ∈ {0, 1}∗, n ≤ bin(w)}, where
bin(w) denotes the number obtained by interpreting w as a base 2 representation:
bin(w1) = 2 · bin(w) + 1, bin(w0) = 2 · bin(w), bin(λ) = 0. This means L1 ∩
{1}{0, c}∗ = {10ncm | m ≤ 2n} is also in VA(B×B), which is clearly not semilinear.

�

The next result also appears in [22], where, however, it was not made explicit
that the undecidable language is unary.

Lemma 16. If Γ’s underlying loop-free graph contains P4 as an induced subgraph,
then VA(MΓ) contains an undecidable unary language.

Proof. Let Γ = (V,E) and Γ̊ be the graph obtained from Γ by adding a loop to

every unlooped vertex. For notational reasons, we assume that the vertex set of Γ̊
is V̊ = {̊v | v ∈ V }. Recall that MΓ is defined as M(Γ−, (Mv)v∈V), where Mv is Z
or B, depending on whether v is looped or not. In the following, we write av and
āv for Mv’s positive and negative generator, respectively. Lohrey and Steinberg

SEMLINEARITY AND CONTEXT-FREENESS 11

[15] show that there are rational sets R̊, S̊ ⊆ MΓ̊ over positive generators such

that for a certain ů ∈ V̊ , given n ∈ N, it is undecidable whether 1 ∈ anůR̊S̊
−1.

Note that the morphism ϕ : MΓ → MΓ̊ with ϕ(av) = av̊ and ϕ(āv) = āv̊ induces an
isomorphism between the submonoids generated by positive generators and between
the submonoids generated by the negative generators. Thus, we find rational sets
R,S ⊆ MΓ over positive generators with ϕ(R) = R̊ and ϕ(S) = S̊.

If w is a word over positive generators in MΓ, w = a1 · · ·an, then we let
w̄ = ān · · · ā1. This is well-defined, for if a1 · · ·an = b1 · · · bm, for positive genera-
tors a1, . . . , an, b1, . . . , bm then ϕ(a1 · · ·an) = ϕ(b1 · · · bm) and thus ϕ(ān · · · ā1) =
ϕ(a1 · · · an)−1 = ϕ(b1 · · · bm)−1 = ϕ(b̄m · · · b̄1) and therefore ān · · · ā1 = b̄m · · · b̄1.
Note that ww̄ = 1 for every word w over positive generators. With this definition,
the set S̄ = {s̄ | s ∈ S} is also rational. We claim that for a word w ∈ MΓ over

positive generators, 1 ∈ wRS̄ if and only if 1 ∈ ϕ(w)R̊S̊−1.

If 1 ∈ ϕ(w)R̊S̊−1, there are r̊ ∈ R̊, s̊ ∈ S̊ with 1 = ϕ(w)̊rs̊−1 and hence
s̊ = ϕ(w)̊r. Thus, we can find s ∈ S and r ∈ R with ϕ(s) = ϕ(w)ϕ(r). The
injectivity of ϕ on words over positive generators yields s = wr and thus 1 = wrs̄.
Hence 1 ∈ wRS̄.

If 1 ∈ wRS̄, we have 1 = wrs̄ for some r ∈ R and s ∈ S. This implies
1 = ϕ(w)ϕ(r)ϕ(s)−1 and since ϕ(r) ∈ R̊ and ϕ(s)−1 ∈ S̊−1, we have 1 ∈ ϕ(w)R̊S̊−1.

Thus, given n ∈ N, it is undecidable whether 1 ∈ anuRS̄. Now, we construct
a valence automaton over MΓ that reads a word an while multiplying au in the
storage for each input symbol and then nondeterministically multiplies an element
from R and then an element from S̄. It accepts if and only if 1 ∈ anuRS̄. Therefore,
the automaton accepts an undecidable unary language. �

We are now in a position to show the first main result of this section. Note that
the first condition of the following theorem is similar to conditions (2) and (3) in
Theorem 10 (and 7): instead of FRI-monoids (finite groups) we have looped vertices
and instead of non-FRI-monoids (infinite groups), we have unlooped vertices.

Theorem 17. All languages in VA(MΓ) are semilinear if and only if

(1) Γ contains neither nor as an induced subgraph and
(2) Γ’s underlying loop-free graph contains neither C4 nor P4 as an induced

subgraph.

Proof. Let Γ = (V,E). Suppose conditions (1) and (2) hold. We proceed by
induction on |V |. (2) implies that Γ’s underlying loop-free graph is a transitive
forest. If Γ is not connected, then MΓ is a free product of graph products MΓ1 and
MΓ2, for which VA(MΓi) contains only semilinear languages by induction. Hence,
by Theorems 4 and 5, every language in VA(MΓ) is semilinear. If Γ is connected,
there is a vertex v ∈ V that is adjacent to every vertex other than itself. We
distinguish two cases.

• If v is a looped vertex, then VA(MΓ) = VA(Z×M(Γ\{v})), which contains
only semilinear languages by induction and Lemma 13.

• If v is an unlooped vertex, then by (1), V \ {v} induces a clique of looped
vertices. Thus, MΓ ∼= B×Z|V |−1, meaning VA(MΓ) contains only semilinear
languages by Lemma 13.

12 P. BUCKHEISTER AND GEORG ZETZSCHE

We shall now prove the other direction. If Γ contains as an induced
subgraph, then VA(B × B) is included in VA(MΓ) and the former contains a non-
semilinear language by Lemma 15. If Γ contains , then MΓ contains a
copy of B× (Z ∗ Z) as a submonoid. By Theorem 12, we have VA(B) ⊆ VA(Z ∗ Z)
and hence Lemma 14 implies VA(B× B) ⊆ VA(B × (Z ∗ Z)).

Suppose Γ’s underlying loop-free graph contains C4 as an induced subgraph.
Since we have already shown that the presence of or as an induced
subgraph guarantees a non-semilinear language in VA(MΓ), we may assume that all
four participating vertices are looped. Hence, MΓ contains a copy of (Z∗Z)×(Z∗Z).
By Theorem 12 and Lemma 14, this means VA(B × B) ⊆ VA(MΓ). Thus, VA(MΓ)
contains a non-semilinear language. Finally, if Γ’s underlying loop-free graph con-
tains P4 as an induced subgraph, Lemma 16 provides the existence of an undecidable
unary language in VA(MΓ). Since such a language cannot be semilinear, the lemma
is proven. �

5.1. Torsion groups. A torsion group is a group G in which for each g ∈ G, there
is a k ∈ N \ {0} with gk = 1. In this subsection, we show that for torsion groups G,
all languages in VA(G) are semilinear. The key ingredient in our proof is showing
that a certain set of multisets is upward closed with respect to a well-quasi-ordering.
A well-quasi-ordering on A is a reflexive transitive relation ≤ on A such that for
every infinite sequence (an)n∈N, an ∈ A, there are indices i < j with ai ≤ aj . We
call a subset B ⊆ A upward closed if a ∈ B and a ≤ b imply b ∈ B. A basic
observation about well-quasi-ordered sets states that for each upward closed set
B ⊆ A, the set of its minimal elements is finite and B is the set of those a ∈ A
with m ≤ a for some minimal m ∈ B (see [12]).

Given multisets α, β ∈ X⊕ and k ∈ N, we write α ≡k β if α(x) ≡ β(x) (mod k)
for each x ∈ X . Furthermore, we write α ≤k β if α ≤ β and α ≡k β. Clearly, ≤k

is a well-quasi-ordering on X⊕: Since ≡k has finite index in X⊕, we find in any
infinite sequence α1, α2, . . . ∈ X⊕ an infinite subsequence α′

1, α
′
2, . . . ∈ X⊕ of ≡k-

equivalent multisets. Furthermore, ≤ is well-known to be a well-quasi-ordering [3]
and yields indices i < j with α′

i ≤ α′
j and hence α′

i ≤k α
′
j .

If S ⊆ X⊕ is upward closed with respect to ≤k, we also say S is k-upward-
closed. The observation above means in particular that every k-upward-closed set
is semilinear.

Theorem 18. For every torsion group G, the languages in VA(G) are semilinear.

Proof. Let G be a torsion group and K be accepted by the valence automaton A =
(Q,X,G,E, q0, F). We regard the finite setE as an alphabet and define the automa-

ton Â = (Q,E,G, Ê, q0, F) such that Ê = {(p, (p, w, g, q), g, q) | (p, w, g, q) ∈ E}.

Let K̂ = L(Â). Clearly, in order to prove Theorem 18, it suffices to show that K̂ is
semilinear.

For a word w ∈ E∗, w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn), we write σ(w) for the
set {pi, qi | 1 ≤ i ≤ n}. w is called a p, q-computation if p1 = p, qn = q, and
qi = pi+1 for 1 ≤ i < n. A q, q-computation is also called a q-loop. Moreover, a
q-loop w is called simple if qi 6= qj for i 6= j.

For each subset S ⊆ Q, let FS be the set of all words w ∈ E∗ with σ(w) = S and
for which there is a q ∈ F such that w is a q0, q-computation and |w| ≤ |Q|·(2|Q|+1).
Furthermore, let LS ⊆ E∗ consist of all w ∈ E∗ such that w is a simple q-loop for
some q ∈ S and σ(w) ⊆ S. Note that LS is finite, which allows us to define the

SEMLINEARITY AND CONTEXT-FREENESS 13

alphabet YS so as to be in bijection with LS . Let ϕ : YS → LS be this bijection
and let ϕ̃ : Y ⊕

S → E⊕ be the morphism satisfying ϕ̃(y) = Ψ(ϕ(y)) for y ∈ YS .
For p, q-computations v, w ∈ E∗, we write v ⊢ w if σ(v) = σ(w) and w = rst

such that r is a p, q′-computation, s is a simple q′-loop, t is a q′, q-computation,
and v = rt. Moreover, let � be the reflexive transitive closure of ⊢. In other words,
v � w means that w can be obtained from v by inserting simple q-loops for states
q ∈ Q without increasing the set of visited states. For each v ∈ FS , we define

Uv = {µ ∈ Y ⊕
S | ∃w ∈ K̂ : v � w, Ψ(w) = Ψ(v) + ϕ̃(µ)}

(note that there is only one S ⊆ Q with v ∈ FS). We claim that

(∗) Ψ(K̂) =
⋃

S⊆Q

⋃

v∈FS

Ψ(v) + ϕ̃(Uv).

The inclusion “⊇” holds by definition. For the other direction, we show by induction
on n that for any qf ∈ F and any q0, qf -computation w ∈ E∗, |w| = n, there is
a v ∈ FS for S = σ(w) and a µ ∈ Y ⊕

S with v � w and Ψ(w) = Ψ(v) + ϕ̃(µ). If

|w| ≤ |Q| · (2|Q| + 1), this is satisfied by v = w and µ = 0. Therefore, assume
|w| > |Q| · (2|Q| + 1) and write w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn). Since n =
|w| > |Q| · (2|Q| + 1), there is a q ∈ Q that appears more than 2|Q| + 1 times in the
sequence q1, . . . , qn. Hence, we can write

w = w0(p
′
1, x

′
1, g

′
1, q)w1 · · · (p

′
m, x

′
m, g

′
m, q)wm

with m > 2|Q|+1. Observe that for each 1 ≤ i < m, the word wi(p
′
i+1, x

′
i+1, g

′
i+1, q)

is a q-loop. Since m− 1 > 2|Q|, there are indices 1 ≤ i < j < m with

σ(wi(p
′
i+1, x

′
i+1, g

′
i+1, q)) = σ(wj(p

′
j+1, x

′
j+1, g

′
j+1, q)).

Furthermore, we can find a simple q-loop ℓ as a subword of wi(p
′
i+1, x

′
i+1, g

′
i+1, q).

This means for the word w′ ∈ E∗, which is obtained from w by removing ℓ, we have
σ(w′) = σ(w) and thus w′ ⊢ w. Moreover, with S = σ(w) and ϕ(y) = ℓ, y ∈ YS ,
we have Ψ(w) = Ψ(w′) + ϕ̃(y). Finally, since |w′| < |w|, the induction hypothesis
guarantees a v ∈ FS and a µ ∈ Y ⊕

S with v � w′ and Ψ(w′) = Ψ(v) + ϕ̃(µ). Then
we have v � w and Ψ(w) = Ψ(v) + ϕ̃(µ + y) and the induction is complete. In

order to prove “⊆” of (∗), suppose w ∈ K̂. Since w is a q0, qf -computation for

some qf ∈ F , we can find the above v ∈ FS , S = σ(w), and µ ∈ Y ⊕
S with v � w

and Ψ(w) = Ψ(v) + ϕ̃(µ). This means µ ∈ Uv and hence Ψ(w) is contained in the
right hand side of (∗). This proves (∗).

By (∗) and since FS is finite for each S ⊆ Q, it suffices to show that Uv is
semilinear for each v ∈ FS and S ⊆ Q. Let γ : E∗ → G be the morphism with
γ((p, x, g, q)) = g for (p, x, g, q) ∈ E. Since G is a torsion group, the finiteness of LS

permits us to choose a k ∈ N such that γ(ℓ)k = 1 for any ℓ ∈ LS. We claim that Uv

is k-upward-closed. It suffices to show that for µ ∈ Uv, we also have µ+k ·y ∈ Uv for
any y ∈ YS . Hence, let µ ∈ Uv with w ∈ K̂ such that v � w and Ψ(w) = Ψ(v)+ϕ̃(µ)
and let µ′ = µ + k · y. Let ℓ = ϕ(y) ∈ LS be a simple q-loop. Then q ∈ S and
since σ(w) = σ(v) = S, we can write w = r(q1, x1, g1, q)s, r, s ∈ E∗. The fact that

w ∈ K̂ means in particular γ(w) = 1. Therefore, the word w′ = r(q1, x1, g1, q)ℓ
ks is

a q0, qf -computation for some qf ∈ F and satisfies γ(w′) = 1 since γ(ℓ)k = 1. This

means w′ ∈ K̂ and Ψ(w′) = Ψ(w) + k · Ψ(ℓ) = Ψ(v) + ϕ̃(µ + k · y). We also have
σ(ℓ) ⊆ S and hence v � w � w′. Therefore, µ′ = µ+ k · y ∈ Uv. This proves Uv to
be k-upward-closed and thus semilinear. �

14 P. BUCKHEISTER AND GEORG ZETZSCHE

Render [18] has shown that for every monoidM , the class VA(M) either (1) coin-
cides with the regular languages, (2) contains the blind one-counter languages, (3)
contains the partially blind one-counter languages, or (4) consists of those accepted
by valence automata over an infinite torsion group (which is not locally finite).
Hence, we obtain the following.

Corollary 19. For each monoid M , at least one of the following holds:

(1) VA(M) contains only semilinear languages.
(2) VA(M) contains the languages of blind one-counter automata.
(3) VA(M) contains the languages of partially blind one-counter automata.

Since there are torsion groups with an undecidable word problem [1], we have:

Corollary 20. There is a group G with an undecidable word problem such that all
languages in VA(G) are semilinear.

As another application, we can show that the one-sided Dyck language is not
accepted by any valence automaton over G × Zn, where G is a torsion group and
n ∈ N.

Corollary 21. For torsion groups G and n ∈ N, we have D1 /∈ VA(G× Zn).

Proof. First, observe that VA(B × B) is not contained in VA(G × Zn), since the
former contains a non-semilinear language by Lemma 15 and the latter contains
only semilinear ones by Theorem 18 and Lemma 13.

If D1 were contained in VA(G × Zn), then VA(B) ⊆ VA(G × Zn), since D1 is
an identity language of B. This means that VA(B × B) is contained in the class
of languages accepted by valence automata over (G × Zn)× (G × Zn). The latter
group, however, is isomorphic to G2×Z2n, contradicting our observation above. �

Acknowledgements. We are indebted to one of the anonymous referees for MFCS
2013, who pointed out a misuse of terminology in a previous version of Theorem 5.

References

[1] Sergei I Adian. The Burnside problem and related topics. Russian Mathematical Surveys,
65(5):805–855, 2010.

[2] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of context-free lan-
guages. In Computer Programming and Formal Systems, pages 118–161. North-Holland, Am-
sterdam, 1963.

[3] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics, 35(4):413–422, 1913.

[4] G.A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 25(1-2):71–76, 1961.

[5] Robert H. Gilman. Formal Languages and Infinite Groups, volume 25 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 27–51. American Mathe-
matical Society, 1996.

[6] Ruth Elisabeth Green. Graph Products of Groups. PhD thesis, University of Leeds, 1990.
[7] Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7(3):311–324, 1978.
[8] John M. Howie. Fundamentals of Semigroup Theory. Clarendon Press, Oxford, 1995.

[9] Matthias Jantzen. Eigenschaften von Petrinetzsprachen. PhD thesis, Universität Hamburg,
1979.

[10] Mark Kambites. Formal languages and groups as memory. Communications in Algebra,
37:193–208, 2009.

SEMLINEARITY AND CONTEXT-FREENESS 15

[11] E. Kopczynski and A.W. To. Parikh images of grammars: Complexity and applications. In
Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium on, pages 80–89,
2010.

[12] Joseph B Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Jour-
nal of Combinatorial Theory, Series A, 13(3):297–305, 1972.

[13] Markus Lohrey and Géraud Sénizergues. When is a graph product of groups virtually-free?
Communications in Algebra, 35(2):617–621, 2007.

[14] Markus Lohrey and Géraud Sénizergues. Rational subsets in HNN-extensions and amalga-
mated products. International Journal of Algebra and Computation, 18(01):111–163, 2008.

[15] Markus Lohrey and Benjamin Steinberg. The submonoid and rational subset membership
problems for graph groups. J. Algebra, 320(2):728–755, 2008.

[16] William Ogden. A helpful result for proving inherent ambiguity. Mathematical Systems The-
ory, 2(3):191–194, 1968.

[17] Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
[18] Elaine Render. Rational Monoid and Semigroup Automata. PhD thesis, University of Manch-

ester, 2010.
[19] Jan van Leeuwen. A generalisation of Parikh’s theorem in formal language theory. In

J. Loeckx, editor, Automata, Languages and Programming, volume 14 of Lecture Notes in
Computer Science, pages 17–26. Springer Berlin / Heidelberg, 1974.

[20] E. S. Wolk. A note on ”the comparability graph of a tree”. Proceedings of the American
Mathematical Society, 16(1):17–20, 1965.

[21] Georg Zetzsche. On the capabilities of grammars, automata, and transducers controlled by
monoids. In Luca Aceto et al., editor, Automata, Languages and Programming 38th Inter-
national Colloquium, ICALP 2011, Zürich, Switzerland, July 4-8, 2011, Proceedings, Part
II, volume 6756 of Lecture Notes in Computer Science, pages 222–233. Springer, 2011.

[22] Georg Zetzsche. Silent transitions in automata with storage, 2013. To appear in Proceedings
of ICALP 2013. Available at http://arxiv.org/abs/1302.3798 .

Fachbereich Informatik, Technische Universität Kaiserslautern, Postfach 3049, 67653
Kaiserslautern, Germany

http://arxiv.org/abs/1302.3798

	1. Introduction
	2. Basic notions
	3. Auxiliary Results
	4. Context-Freeness
	5. Semilinearity
	5.1. Torsion groups

	References

