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Abstract

Optimal linear-time algorithms for testing the planarity of a graph are well-
known for over 35 years. However, these algorithms are quite involved and recent
publications still try to give simpler linear-time tests. We give a simple reduction
from planarity testing to the problem of computing a certain construction of a
3-connected graph. The approach is different from previous planarity tests; as key
concept, we maintain a planar embedding that is 3-connected at each point in time.
The algorithm runs in linear time and computes a planar embedding if the input
graph is planar and a Kuratowski-subdivision otherwise.

1 Introduction

Testing the planarity of a graph is a fundamental algorithmic problem that has ini-
tiated significant contributions to data structures and the design of algorithms in the
past. Although optimal linear-time algorithms for this problem are known for over 35
years [12, 3], they are involved and recent publications still try to give simpler linear-time
algorithms [4, 5, 8, 10, 23].

The aim of this paper is a linear-time planarity test that is based on a simple re-
duction to the problem of computing a certain construction C' of a 3-connected graph
(we will give a precise definition of C' in Chapter 3). The existence of the construction
C has also been used by Kelmans [13] and Thomassen [25] to give a short proof of
Kuratowski’s Theorem. Although their proof itself is constructive (in the sense that
it gives a polynomial-time planarity test) and received much attention in graph theory
due to its simplicity, it has not been utilized algorithmically to establish a linear-time
planarity test. Our hope is that the linear-time algorithm presented here will lead to
simple planarity tests just as the same concept led to simple proofs of Kuratowski’s
Theorem.

Currently, the fastest algorithm known for computing C' achieves a linear running
time [21], but is quite involved. For that reason, the resulting planarity test does not
qualify to be regarded as simple yet. However, every simplification made for comput-
ing C' will immediately result in a simpler linear-time planarity test. If we allow a
quadratic running time, a very simple algorithm that computes C' (and thus planarity)
is known [22].

Recent planarity tests like [4, 5, 8, 10, 23] maintain a planar embedding at each
step, where all steps either add paths/edges (path addition method) or vertices (vertex
addition method) to the embedding (for an extensive survey, we refer to the chapter
of Patrignani in [24]). In our algorithm, each step will essentially add an edge, whose
endpoints might subdivide other edges before.

Unlike previous planarity tests, we maintain a planar embedding that is always 3-
connected. This is a key concept for the following reason. The 3-connectivity constraint
fixes the planar embedding (up to flipping), which will allow to test very easily whether
the addition of a next edge e preserves planarity.



A planarity test can be made certifying in the sense of [15] by augmenting its
yes/no-output with a planar embedding if the input graph is planar and a Kuratowski-
subdivision otherwise. The first two linear-time planarity tests of Hopcroft and Tar-
jan [12] and Booth and Lueker [3] did not give a planar embedding for planar in-
put graphs, respectively. Mehlhorn and Mutzel [17] and Chiba, Nishizeki, Abe and
Ozawa [6], respectively, extended these tests to compute a planar embedding in the
same asymptotic running time. The algorithm presented here is certifying.

2 Preliminaries

We use standard graph-theoretic terminology from [2]. Let G = (V, E) be a simple finite
graph with n := |V|] and m := |E|. Multiedges do not matter for planarity and can be
removed in advance by performing two bucket sorts on the endpoints of edges in F.

A vertex whose deletion increases the number of connected components is called a
cut verter. A graph G is biconnected if it is connected and contains no cut vertex. A
biconnected component of a graph G is a maximal biconnected subgraph of G. A pair of
vertices whose deletion disconnects a graph is called a separation pair. A biconnected
graph is triconnected if it contains no separation pair. A subdivision of a graph G (a G-
subdivision) is a graph obtained by replacing the edges of G with internally disjoint paths
of length at least one. Triconnected graphs and their subdivisions have the following
property, which we will use throughout this paper.

Lemma 1 (Whitney [29], Theorem 1.1 in [19]). Ewvery subdivision of a triconnected
graph has a unique planar embedding (up to flipping).

The triconnected components of a graph G are obtained by the following recursive
process on every biconnected component H of G: As long as there is a separation pair
{z,y} in H, we split H into two subgraphs H; and H» that partition E(H) and have
only z and y in common, followed by adding the edge e = xy to both H; and Hs. We
refer to [9] for a precise definition of this process. The edge e that was added to Hy
(respectively, Hs) is called the virtual edge of Hy (Hs) and can be seen as a replacement
of the graph Hy (H;) in this decomposition.

The graphs resulting from this process are either sets of three parallel edges (triple-
bonds), triangles or simple triconnected graphs. To obtain the triconnected components
of G, triple-bonds containing the same virtual edge are successively merged to maximal
sets of parallel edges (bonds); similarly, triangles containing the same virtual edge are
successively merged to maximal cycles (polygons). Thus, a triconnected component of
G is either a bond, a polygon, or a simple triconnected graph.

It is well-known that a graph G is planar if and only if all its biconnected components
are planar [12]. A similar result holds for the triconnected components of G: If G is
planar, all triconnected components of G are planar, as every triconnected component is
a minor of G. Conversely, if all triconnected components of a graph G are planar, we can
successively merge the planar embeddings of two triconnected components containing
the same virtual edge to a bigger planar embedding [28, Lemma 6.2.6], and obtain a
planar embedding for G in linear time. This gives the following result.

Lemma 2 ([16]). A graph is planar if and only if all its triconnected components are
planar.

As bonds and cycles are planar, planarity has only to be checked for simple tricon-
nected graphs. The triconnected components can be computed in linear time [11, 9] and
reliable implementations are publicly available [20].



3 Constructions of Triconnected Graphs

With the above arguments we can assume that the input graph G is simple and tri-
connected. We will make use of a special construction of triconnected graphs due to
Barnette and Griinbaum [1].

Definition 3. Let G be a simple triconnected graph with n > 4. We define the following
operations on G (all vertices and edges are assumed to be distinct; see Figure 1).

(a) Add an edge xy between two non-adjacent vertices x and y.
(b) Subdivide an edge ab by a vertex x and add the edge zy for a vertex y ¢ {a, b}.

(¢) Subdivide two non-parallel edges e and f by vertices x and y, respectively, and
add the edge zy (note that e and f may intersect in one vertex).

(d) Add a new vertex z and join it to exactly three old vertices a, b and c.
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Figure 1: Operations on triconnected graphs

Operations 3a-c correspond to adding edges (the added edge is xy) while Opera-
tion 3d corresponds to adding a claw (i.e., Ky 3) with a designated center vertex x.
The attachments of an operation O on G are the vertices and edges in G involved in
the operation, i. e., the attachments of Operations 3a—d are {z,y}, {ab,y}, {ab, vw} and
{a, b, c}, respectively. Let suppressing a vertex x with exactly two neighbors y and z be
the operation of deleting x and adding the edge yz.

Applying any of the Operations 3a—d to G generates a graph that is simple and
triconnected again. A classical result of Barnette and Grimbaum [1] and Tutte [26]
characterizes the triconnected graphs in terms of the first three operations.

Theorem 4 ([1, 26]). A simple graph G with n > 4 is triconnected if and only if G can
be constructed from K4 using only operations of Types 3a—c.

For testing planarity, we will use the following slightly modified construction. It
restricts operations of Type 3a to be at the end of the construction and uses additional
operations of Type 3d. This will allow for an easier efficient data structure in the
planarity test.

Theorem 5 ([22]). A simple graph G with n > 4 is triconnected if and only if G can
be constructed from K4 using only operations of Types 3a—d such that all operations of
Type 3a are applied last.



A construction sequence C' of GG is a sequence of operations that constructs G from Ky
precisely as stated in Theorem 5. Note that any edge that was added by an Operation 3a
in C will not be subdivided by later operations.

A construction sequence can be represented in space linearly dependent on the size
of G by using a labeling scheme on vertices and edges that essentially assigns a new
label to one half of an edge e after e was subdivided by an operation [22]. The labeling
scheme allows additionally for a constant-time access to the edges and vertices that are
involved in an operation O, i.e., to the edge e that is added by O and to the vertices
and edges on which the endpoints of e lie.

Recently, it was shown that a construction C’ of G as stated in Theorem 4 can
be computed in linear time [21]. Although the algorithm is somewhat involved, it
is certifying and an implementation has already been made publicly available [18]. A
construction sequence C' can be obtained from C” by a simple linear-time transformation
as pointed out in [22].

4 The Planarity Test

We can assume that the input graph G is simple and triconnected. If n < 3, G is planar,
so assume n > 4. Let C be a construction sequence of G.

The planarity test starts with the (unique) planar embedding of K4 and computes
iteratively a planar embedding for the graph that is obtained from the next operation O
in C' if possible. We have to know under which conditions an operation O in C' preserves
planarity.

Lemma 6. Let H be a planar embedding of a simple triconnected graph on at least 4
vertices and let H' be the graph that is obtained from H by applying an operation O of
Type Sa—d. Then H' is planar if and only if all attachments of O are contained in one

face f of H.

Proof. =: Let H' be planar and assume to the contrary that O has two attachments a
and b that are not contained in one face of H. In particular, H' has a planar embedding
Eml’'. Let Emb be the planar embedding that is obtained from Emb’ by inversing
Operation O, i.e., by deleting the added edge in Emb’ and suppressing all vertices of
degree two if O is of Type 3a—c, and by deleting the center vertex of the added claw in
Emb' if O is of Type 3d. Then Emb and H embed the same simple triconnected graph.
Moreover, Emb and H are combinatorially different embeddings, as Emb has a face
containing both a and b, while H has no face containing both a and b. This contradicts
Lemma 1.

«<: Clearly, subdividing edges in the face cycle of f preserves planarity and so does
the addition of an edge inside f that has the new vertices of the subdivided edges as
endpoints. Similarly, adding a claw inside f preserves planarity when all its attachments
are contained in f. Thus, applying O results in a planar embedding for H’, which proves
that H’ is planar. O

Clearly, if all the attachments of O are in f, adding the new edge or vertex of O inside
f gives immediately a planar embedding of G. If all operations in C' preserve planarity,
we obtain a planar embedding of G. Otherwise, G' contains a Kuratowski-subdivision;
we will show how to extract this subdivision in linear time in the next chapter. Lemma 6
suggests the following Algorithm 1.

It remains to discuss how the condition in Lemma 6 can be checked efficiently for
every operation in C.

A plane st-graph is an embedding of a directed acyclic graph with exactly one source
s and exactly one sink ¢ such that s and ¢ are contained in the external face of the



Algorithm 1 PlanarityTest(G) > G simple and triconnected with n > 4
1: compute a construction sequence C' = Oq,...,0f of G

2: initialize the (unique) planar embedding H of K4
3: fori=1to k do

4: if all attachments of O; are in one face f of H then > planar
5 apply O; to H by adding the edge or claw inside f

6: else > non-planar
7 compute a Kuratowski-subdivision

embedding. It is well-known that every biconnected graph can be drawn as plane st-
graph. The plane embedding H is triconnected and thus biconnected in every step of
algorithm 1. To check the condition in Lemma 6 efficiently, we will maintain H as plane
st-graph and use a data structure that is able to answers queries whether edges and
vertices are contained in the same face of H in amortized constant time.

The data structure is due to Djidjev [7] and runs on a standard word-RAM. It
maintains a plane st-graph H in which the incoming and the outgoing edges for any
vertex x appear consecutively around x; hence, the boundary of each face f in H consists
of two oriented paths from a common start vertex (the source of f) to a common end
vertex (the sink of f). Additionally, every vertex = ¢ {s,t} is contained in exactly two
faces for which z is neither source nor sink; we call these faces the left and the right
face of x, respectively. The data structure maintains pointers to the source and sink for
each face in H and a pointer from each vertex x ¢ {s,t} to its left and right face. The
following queries for triconnected graphs H are supported.

(1) Given a vertex a and an edge b of H, output a face of H that contains a and b or
report that there is none.

(2) Given two vertices a and b of H such that a is source or sink in at most 11 faces,
output a face of H that contains a and b or report that there is none.

Each of the queries takes worst-case time O(1). We show that also the following
query can be computed in worst-case time O(1).

(3) Given three vertices a, b and ¢ of H, output a face of H that contains a, b and ¢
or report that there is none.

We can compute the set F' of all left and right faces of the vertices a, b and ¢ in
constant time. If there is a face f in H containing a, b and ¢, at least one vertex in
{a, b, c} is neither source nor sink of f, which implies that f € F. It therefore suffices
for a query (3) to test each face f € F on containing a, b and ¢, respectively. A vertex
v is contained in f if and only if v is either source or sink of f, which can be checked in
time O(1), or one of the remaining vertices in f, which can be checked in time O(1) by
testing whether f is left or right face of v.

The data structure supports additionally each of the following modifications to H in
amortized time O(1) and maintains a plane st-graph after every modification.

(4) Subdivide an edge.

(5) Given two non-adjacent vertices a and b and a face f of H that contains a and b,
add the edge ab inside f.

Clearly, K4 can be embedded as a plane st-graph and we initialize H with this
embedding. Every operation O of Type 3a—d can be converted into at most three of the



modifications (4) and (5). E.g., we can add a claw having its attachments {a,b,c} in a
common face by consecutively inserting the edge ab, subdividing ab with a new vertex
x and adding the edge xzc. For operations O of Type 3b-d, the condition in Lemma 6
can be checked in constant time by one query (1) or one query (3).

It only remains to show how we can check the condition in Lemma 6 if O is of
Type 3a. According to Theorem 5, all operations in C' that follow O will be of Type 3a,
which implies that H is a spanning subgraph of G. In other words, each of the remaining
operations in C' adds only an edge that will not be subdivided. Hence, the order in which
these remaining edges E’ are added does not matter; we sort them lexicographically
according to their endpoints.

We use a trick given by Djidjev (Lemma 3.2 in [7]) and maintain an auxiliary graph
H* whose vertex set consists of all vertices in V' (H) that are source or sink in some face
of H and which are incident to an edge in E’. There is an edge between two vertices
a and b in H4 if a and b are source and sink vertices of the same face. The graph H*
can be constructed in linear time when the first operation 3a in C' is encountered; after
every modification (5), H* can be updated in time O(1), as each face f stores a pointer
to its source and sink.

As H* is planar and has at most two parallel edges between every two vertices (as
H is simple and triconnected), it contains at most 6|V (H*)| — 12 edges. Hence, there
is at least one vertex of degree at most 11 in H#. Before the first Operation 3a in C' is
applied to H, we construct a list Small of all vertices in H* having degree at most 5
in linear time; again, this list is easy to maintain under modifications (5) in time O(1).
Now we just choose successively a vertex v € Small and an edge ¢ = vw in E' and
perform modification (5) with v and w (if v and w have been reported to be in the same
face). This allows to check the condition in Lemma 6 for each of the remaining edges in
E’ in constant time with query (2). We conclude the following theorem.

Theorem 7. The planarity test Algorithm 1 can be implemented in linear time.

5 Extensions

We show how a Kuratowski-subdivision can be computed if an operation O is encoun-
tered that has not all attachment vertices on one face in H. For the computation, we
will go along the arguments given in the short proof of Kuratowski’s Theorem in [25].

We first recall planarity-related terminology. For a cycle C' in a graph G, let a C-
component be either an edge e ¢ C with both endpoints in C' or a connected component
of G\ V(C) together with all edges that join the component to C' and all endpoints of
these edges. The vertices of attachment of a C-component H are the vertices in HNC.
Two C-components Hy; and Hs avoid each other if C' contains two vertices u and v such
that H; has all vertices of attachment on one path in C' from u to v and Hs has all
vertices of attachment on the other path in C' from u to v.

Two C-components overlap if they do not avoid each other. Let two C-components
H, and Hs be C-equivalent if Hy N C' = Hy N C and this set contains exactly three
vertices. Let H; and Hs be skew if C' contains four distinct vertices x1, xo, 3 and x4
in cyclic order such that x; and z3 are in H; and z5 and x4 are in Hy. We will need
the following basic fact about C-components.

Lemma 8 ([25]). Two C-components overlap if and only if they are either skew or
C-equivalent.

Now we are prepared to compute a Kuratowski-subdivision.

Lemma 9. Let H be a planar embedding of a simple triconnected graph on at least 4
vertices and let O be an operation of Type Sa—d on H whose attachments are not all



contained in one face of H. Then the graph H' that is obtained from H by applying O
contains a subdivision of K5 or Kz 3, which can be computed in linear time.

Proof. The proof follows the arguments given in [25] and [27]. Let a and b be two
attachments of O that are not contained in one face of H; note that a may be an edge.
As H \ a is 2-connected, it contains a cycle C' that is the boundary of the face which
contains a in its interior. By assumption, b ¢ C. Let H, and H}, be the C-components
of H containing a and b, respectively. By definition of C, H, is the only C-component
in the interior of C.

We show that H, and Hp overlap. Assume the contrary. Then H}, has two vertices
of attachment u and v such that H, has all vertices of attachment on one path P, C C'
from u to v and Hp has all vertices of attachment on the other path P, € C from u to
v. If a is a vertex, a and b are in different components of H \ {u, v}, since H is a planar
embedding. This contradicts H to be triconnected. Otherwise, a is an edge (which will
be subdivided by O) and H, = a. Then, as H is simple, P, has length at least two,
which implies that an inner vertex in P, is in a different component of H \ {u,v} than
b. This contradicts H to be triconnected. Thus, H, and H overlap.

According to Lemma 8, H, and H, are either skew or C-equivalent. The cycle C,
H, and Hj can be easily computed in linear time. Deciding whether H, and H; are
skew and computing the vertices x1, x2, 3 and x4 on C, whose existence defines this
property amounts to one traversal along C. If a is an edge, subdivide a and let a’ be the
new vertex of degree two; otherwise let @’ = a. Define b’ accordingly. Due to Menger’s
Theorem, there are either two or three internally disjoint paths from o’ to C' in H, (and
from o’ to C in Hy), depending on whether H, (Hp) is an edge. These paths can be
computed by any graph traversal such as depth-first search that starts with the desired
vertex.

If H, and Hj are skew, we compute two of these paths in H, that end at z; and z3,
respectively, and two in Hj that end at xo and x4, respectively. Taking the union of these
paths, C' and T', where T is either the added edge of O or the path of length two from a
to b if O adds a claw forms a K3 3-subdivision. If H, and H} are C-equivalent, the union
of the three paths in H, and Hy, respectively, C' and T, gives a K5-subdivision. O

We remark that Lemma 9 can be easily extended to output always a K3 3-subdivision
when H' # Kj is non-planar in linear time. This is based on the following variant of
Kuratowski’s Theorem for triconnected graphs.

Lemma 10 ([14]). A simple triconnected graph G # Kj is planar if and only if G does
not contain a Ks 3-subdivision.

Note that we get a Ks-subdivision K only in the case that O adds a claw. The
desired K3 3-subdivision can then be obtained from K by rerouting one of the paths of
K that ends at a to the center vertex of the claw.

Open Questions. Probably the most immediate question is whether there is a sim-
ple linear-time algorithm that computes the construction sequence C' of a triconnected
graph. This would immediately imply a simple planarity test. Further, it seems possi-
ble that such an algorithm, or the existing one in [21], can be extended to compute the
triconnected components of the input graph, similarly as in the triconnectivity test of
Hopcroft and Tarjan [11]. This would subsume the computation of C' and the prepro-
cessing of the graph into triconnected components.
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