Skip to main content

Hardness of Classically Simulating Quantum Circuits with Unbounded Toffoli and Fan-Out Gates

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

We study the classical simulatability of constant-depth quantum circuits followed by only one single-qubit measurement, where they consist of universal gates on at most two qubits and additional gates on an unbounded number of qubits. First, we consider unbounded Toffoli gates as additional gates and deal with the weak simulation, i.e., sampling the output probability distribution. We show that there exists a constant-depth quantum circuit with only one unbounded Toffoli gate that is not weakly simulatable, unless BQP ⊆ PostBPP ∩ AM. Then, we consider unbounded fan-out gates as additional gates and deal with the strong simulation, i.e., computing the output probability. We show that there exists a constant-depth quantum circuit with only two unbounded fan-out gates that is not strongly simulatable, unless P = PP. These results are in contrast to the fact that any constant-depth quantum circuit without additional gates is strongly and weakly simulatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: BQP and the polynomial hierarchy. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC, pp. 141–150 (2010)

    Google Scholar 

  2. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pp. 333–342 (2011)

    Google Scholar 

  3. Arora, S., Barak, M.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  4. Bera, D., Fenner, S., Green, F., Homer, S.: Efficient universal quantum circuits. Quantum Information and Computation 10(1&2), 16–27 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bremner, M.J., Jozsa, R., Shepherd, D.J.: Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A 467, 459–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawson, C.M., Hines, A.P., Mortimer, D., Haselgrove, H.L., Nielsen, M.A., Osborne, T.J.: Quantum computing and polynomial equations over the finite field ℤ2. Quantum Information and Computation 5(2), 102–112 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Fenner, S., Green, F., Homer, S., Zhang, Y.: Bounds on the power of constant-depth quantum circuits. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 44–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Han, Y., Hemaspaandra, L.A., Thierauf, T.: Threshold computation and cryptographic security. SIAM Journal on Computing 26(1), 59–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. van den Nest, M.: Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. Quantum Information and Computation 10(3&4), 258–271 (2010)

    MathSciNet  MATH  Google Scholar 

  10. van den Nest, M.: Simulating quantum computers with probabilistic methods. Quantum Information and Computation 11(9&10), 784–812 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Ni, X., van den Nest, M.: Commuting quantum circuits: efficient classical simulations versus hardness results. Quantum Information and Computation 13(1&2), 54–72 (2013)

    MathSciNet  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  13. Takahashi, Y., Tani, S.: Collapse of the hierarchy of constant-depth exact quantum circuits. In: Proceedings of the 28th IEEE Conference on Computational Complexity, CCC, pp. 168–178 (2013)

    Google Scholar 

  14. Terhal, B.M., DiVincenzo, D.P.: Adaptive quantum computation, constant-depth quantum circuits and Arthur-Merlin games. Quantum Information and Computation 4(2), 134–145 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, Y., Yamazaki, T., Tanaka, K. (2013). Hardness of Classically Simulating Quantum Circuits with Unbounded Toffoli and Fan-Out Gates. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics