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Abstract. We study certain combinatorial aspects of list-decoding, mo-
tivated by the exponential gap between the known upper bound (of
O(1/γ)) and lower bound (of Ωp(log(1/γ))) for the list-size needed to
list decode up to error fraction p with rate γ away from capacity, i.e.,
1−h(p)−γ (here p ∈ (0, 1

2
) and γ > 0). Our main result is the following:

We prove that in any binary code C ⊆ {0, 1}n of rate 1−h(p)−γ,
there must exist a set L ⊂ C of Ωp(1/

√
γ) codewords such that

the average distance of the points in L from their centroid is at
most pn. In other words, there must exist Ωp(1/

√
γ) codewords

with low “average radius.” The standard notion of list-decoding
corresponds to working with the maximum distance of a col-
lection of codewords from a center instead of average distance.
The average-radius form is in itself quite natural; for instance,
the classical Johnson bound in fact implies average-radius list-
decodability.

The remaining results concern the standard notion of list-decoding, and
help clarify the current state of affairs regarding combinatorial bounds
for list-decoding:
– We give a short simple proof, over all fixed alphabets, of the above-

mentioned Ωp(log(1/γ)) lower bound. Earlier, this bound followed
from a complicated, more general result of Blinovsky.

– We show that one cannot improve the Ωp(log(1/γ)) lower bound via
techniques based on identifying the zero-rate regime for list-decoding
of constant-weight codes. On a positive note, our Ωp(1/

√
γ) lower

bound for average-radius list-decoding circumvents this barrier.
– We exhibit a “reverse connection” between the existence of constant-

weight and general codes for list-decoding, showing that the best
possible list-size, as a function of the gap γ of the rate to the capacity
limit, is the same up to constant factors for both constant-weight
codes (whose weight is bounded away from p) and general codes.

– We give simple second moment based proofs that w.h.p. a list-size
of Ωp(1/γ) is needed for list-decoding random codes from errors as
well as erasures. For random linear codes, the corresponding list-size
bounds are Ωp(1/γ) for errors and exp(Ωp(1/γ)) for erasures.

? Full version can be found at http://eccc.hpi-web.de/report/2012/017/
?? Research supported in part by NSF grant CCF 0953155 and a Packard Fellowship.



1 Introduction

The list-decoding problem for an error-correcting code C ⊆ Σn consists of finding
the set of all codewords of C with Hamming distance at most pn from an input
string y ∈ Σn. Though it was originally introduced in early work of Elias and
Wozencraft [6, 15] in the context of estimating the decoding error probability
for random error models, recently the main interest in list-decoding has been for
adversarial error models. List decoding enables correcting up to a factor two more
worst-case errors compared to algorithms that are always restricted to output a
unique answer, and this potential has even been realized algorithmically [10, 8].

In this work, we are interested in some fundamental combinatorial questions
concerning list-decoding, which highlight the important tradeoffs in this model.
Fix p ∈ (0, 12 ) and a positive integer L. We say that a binary code C ⊆ {0, 1}n
is (p, L) list-decodable if every Hamming ball of radius pn has less than L code-
words. Here, p corresponds to the error-fraction and L to the list-size needed
by the error-correction algorithm. Note that (p, L) list-decodability imposes a
sparsity requirement on the distribution of codewords in the Hamming space. A
natural combinatorial question that arises in this context is to place bounds on
the largest size of a code meeting this requirement. In particular, an outstanding
open question is to characterize the maximum rate (defined to be the limiting
ratio 1

n log |C| as n→∞) of a (p, L) list-decodable code.
By a simple volume packing argument, it can be shown that a (p, L) list-

decodable code has rate at most 1− h(p) + o(1). (Throughout, for z ∈ [0, 12 ], we
use h(z) to denote the binary entropy function at z.) Indeed, picking a random
center x, the Hamming ball B(x, pn) contains at least |C| ·

(
n
pn

)
2−n codewords

in expectation. Bounding this by (L − 1), we get the claim. On the positive
side, in the limit of large L, the rate of a (p, L) list-decodable code approaches
the optimal 1 − h(p). More precisely, for any γ > 0, there exists a (p, 1/γ)
list-decodable code of rate at least 1 − h(p) − γ. In fact, a random code of
rate 1 − h(p) − γ is (p, 1/γ) list-decodable w.h.p. [16, 7], and a similar result
holds for random linear codes (with list-size Op(1/γ)) [9]. In other words, a
dense random packing of 2(1−h(p)−γ)n Hamming balls of radius pn (and therefore
volume ≈ 2h(p)n each) is “near-perfect” w.h.p. in the sense that no point is
covered by more than Op(1/γ) balls.

The determination of the best asymptotic code rate of binary (p, L) list-
decodable codes as p, L are held fixed and the block length grows is wide open
for every choice of p ∈ (0, 12 ) and integer L > 1. However, we do know that
for each fixed p ∈ (0, 12 ), this rate approaches 1 − h(p) in the limit as L → ∞.
To understand this rate of convergence as a function of list-size L, following
[9], let us define Lp,γ to be the minimum integer L such that there exist (p, L)
list-decodable codes of rate 1− h(p)− γ for infinitely many block lengths n (the
quantity γ is the “gap” to “list-decoding capacity”). In [1], Blinovsky showed that
a (p, L) list-decodable code has rate at most 1−h(p)−2−Θp(L). In particular, this
implies that for any finite L, a (p, L) list-decodable code has rate strictly below
the optimal 1 − h(p). Stated in terms of Lp,γ , his result implies the corollary
Lp,γ > Ωp(log(1/γ)) for rates γ-close to capacity. We provide a short and simple



proof of this corollary in Section 4. Our proof works almost as easily over non-
binary alphabets. (Blinovsky’s subsequent proof for the non-binary case in [3,
4] involved substantial technical effort. However, his results also give non-trivial
bounds for every finite L, as opposed to just the growth rate of Lp,γ .)

Observe the exponential gap (in terms of the dependence on γ) between the
O(1/γ) upper bound and Ωp(log(1/γ)) lower bounds on the quantity Lp,γ . De-
spite being a basic and fundamental question about sphere packings in the Ham-
ming space and its direct relevance to list-decoding, there has been no progress
on narrowing this asymptotic gap in the 25 years since the works of Zyablov-
Pinsker [16] and Blinovsky [1]. This is the motivating challenge driving this
work.

1.1 Prior work on list-size lower bounds
We now discuss some lower bounds (besides Blinovsky’s general lower bound)
on list-size that have been obtained in restricted cases.

Rudra shows that the Op(1/γ) bound obtained via the probabilistic method
for random codes is, in fact, tight up to constant factors [14]. Formally, there
exists L = Ωp(1/γ) such that a random code of rate 1 − h(p) − γ is not (p, L)
list-decodable w.h.p. His proof uses near-capacity-achieving codes for the binary
symmetric channel, the existence of which is promised by Shannon’s theorem,
followed by a second moment argument. We give a simpler proof of this result
via a more direct use of the second moment method. This has the advantage
that it works uniformly for random general as well as random linear codes, and
for channels that introduce errors as well as erasures.

Guruswami and Vadhan [12] consider the problem of establishing list-size
bounds when the channel may corrupt close to half the bits, that is, when p =
1
2 − ε, and more generally p = 1 − 1/q − ε for codes over an alphabet of size
q. (Note that decoding is impossible if the channel could corrupt up to a half
fraction of bits.) They show that there exists c > 0 such that for all ε > 0 and all
block lengths n, any ( 12 − ε, c/ε

2) list-decodable code contains Oε(1) codewords.
For p bounded away from 1

2 (or 1− 1/q in the q-ary case), their methods do not
yield any nontrivial list-size lower bound as a function of gap γ to list-decoding
capacity.

1.2 Our main results
We have already mentioned our new proof of the Ω(log(1/γ)) list-size lower
bound for list-decoding general codes, and the asymptotically optimal list-size
lower bound for random (and random linear) codes.

Our main result concerns an average-radius variant of list-decoding. This
variant was implicitly used in [1, 12] en route their list-size lower bounds for
standard list-decoding. In this work, we formally abstract this notion of average-
radius list-decodability: a code is (p, L) average-radius list-decodable if for every L
codewords, the average distance of their centroid from the L codewords exceeds
pn. Note that this is a stronger requirement than (p, L) list-decodability where
only the maximum distance from any center point to the L codewords must
exceed pn.



We are able to prove nearly tight bounds on the achievable rate of a (p, L)
average-radius list-decodable code. To state our result formally, denote by Lavg

p,γ

the minimum L such that there exists a (p, L) average-radius list-decodable
code family of rate 1−h(p)−γ. A simple random coding argument shows that a
random code of 1− h(p)− γ is (p, 1/γ) average-radius list-decodable (matching
the list-decodability of random codes). That is, Lavg

p,γ 6 1/γ. Our main technical
result is a lower bound on the list-size that is polynomially related to the upper
bound, namely Lavg

p,γ > Ωp(γ
−1/2).

We remark that the classical Johnson bound in coding theory in fact proves
the average-radius list-decodability of codes with good minimum distance —
namely, a binary code of relative distance δ is (J(δ − δ/L), L) average-radius
list-decodable, where J(z) = (1 −

√
1− 2z)/2 for z ∈ [0, 12 ]. (This follows from

a direct inspection of the proof of the Johnson bound [11].) Also, one can show
that if a binary code is ( 12 −2iε,O(1/(22iε2)) list-decodable for all i = 0, 1, 2, . . .,
then it is also ( 12−2ε,O(1/ε2)) average-radius list-decodable [5]. This shows that
at least in the high noise regime, there is some reduction between these notions.
Further, a suitable soft version of average-radius list-decodability can be used
to construct matrices with a certain restricted isometry property [5]. For these
reasons, we feel that average-radius list-decodability is a natural notion to study,
even beyond treating it as a vehicle to understand (standard) list-decoding.

1.3 Our other results
We also prove several other results that clarify the landscape of combinato-
rial limitations of list-decodable codes. Many results showing rate limitations in
coding theory proceed via a typical approach in which they pass to a constant
weight λ ∈ (p, 12 ]; i.e., they restrict the codewords to be of weight exactly λn.
They show that under this restriction, a code with the stated properties must
have a constant number of codewords (that is, asymptotically zero rate). Map-
ping this bound back to the unrestricted setting one gets a rate upper bound of
1−h(λ)+o(1) for the original problem. For instance, the Elias-Bassalygo bound
for rate R vs. relative distance δ is of this nature (here λ is picked to be the
Johnson radius for list-decoding for codes of relative distance δ).

The above is also the approach taken in Blinovsky’s work [1] as well as that
of [12]. We show that such an approach does not and cannot give any bound
better than Blinovsky’s Ωp(log(1/γ)) bound for Lp,γ . More precisely, for any
λ > p+2−bpL for some bp > 0, we show that there exists a (p, L) (average-radius)
list-decodable code of rate Ωp,L(1). Thus in order to improve the lower bound,
we must be able to handle codes of strictly positive rate, and cannot deduce
the bound by pinning down the zero-rate regime of constant-weight codes. This
perhaps points to why improvements to Blinovsky’s bounds have been difficult.
On a positive note, we remark that we are able to effect such a proof for average-
radius list-decoding (some details follow next).

To describe the method underlying our list-size lower bound for average-
radius list-decoding, it is convenient to express the statement as an upper bound
on rate in terms of list-size L. Note that a list-size lower bound of L > Ωp(1/

√
γ)

for (p, L) average-radius list-decodable codes of rate 1 − h(p) − γ amounts to



proving an upper bound of 1 − h(p) − Ωp(1/L2) on the rate of (p, L) average-
radius list-decodable codes. Our proof of such an upper bound proceeds by first
showing a rate upper bound of h(λ) − h(p) − ap/L2 for such codes when the
codewords are all restricted to have weight λn, for a suitable choice of λ, namely
λ = p+a′p/L. To map this back to the original setting (with no weight restrictions
on codewords), one simply notes that every (p, L) average-radius list-decodable
code of rate R contains as a subcode, a translate of a constant λn-weight subcode
of rate R− (1− h(λ)). (The second step uses a well-known argument.)

Generally speaking, by passing to a constant-weight subcode, one can trans-
late combinatorial results on limitations of constant-weight codes to results show-
ing limitations for the case of general codes. But this leaves open the possibility
that the problem of showing limitations of constant-weight codes may be harder
than the corresponding problem for general codes, or worse still, have a differ-
ent answer making it impossible to solve the problem for general codes via the
methodology of passing to constant-weight codes. We show that for the problem
of list-decoding this is fortunately not the case, and there is, in fact, a “reverse
connection” of the following form: A rate upper bound of 1− h(p)− γ for (p, L)
list-decodable codes implies a rate upper bound of h(λ) − h(p) −

(
λ−p
1
2−p

)
γ for

(p, L) list-decodable codes whose codewords must all have Hamming weight λn.
A similar claim holds also for average-radius list-decodability, though we don’t
state it formally.

1.4 Our proof techniques

Our proofs in this paper employ variants of the standard probabilistic method.
We show an extremely simple probabilistic argument that yields a Ωp(log(1/γ))
bound on the list-size of a standard list-decodable code; we emphasize that this
is qualitatively the tightest known bound in this regime.

For the “average-radius list-decoding” problem that we introduce, we are able
to improve this list-size bound to Ωp(1/

√
γ). The proof is based on the idea that

instead of picking the “bad list-decoding center” x uniformly at random, one can
try to pick it randomly very close to a special codeword c∗, and this still gives
similar guarantees on the number of near-by codewords. Now since the quantity
of interest is the average radius, including this close-by codeword in the list
gives enough savings for us. In order to estimate the probability that a typical
codeword c belongs to the list around x, we write this probability explicitly as a
function of the Hamming distance between c∗ and c, which is then lower bounded
using properties of hypergeometric distributions and Taylor approximations for
the binary entropy function.

For limitations of list-decoding random codes, we define a random variable
W that counts the number of “violations” of the list-decoding property of the
code. We then show that W has a exponentially large mean, around which it
is concentrated w.h.p. This yields that the code cannot be list-decodable with
high probability, for suitable values of rate and list-size parameters. We skip the
formal statement of these results and their proofs in this version (due to space
restrictions); these can be found in the full version.



1.5 Organization

We define some useful notation and the formal notion of average-radius list-
decodability in Section 2. Our main list-size lower bound for average-radius list-
decoding appears in Section 3. We give our short proof of Blinovsky’s lower
bounds for binary and general alphabets in Section 4. Our results about the
zero-error rate regime for constant-weight codes and the connection between
list-decoding bounds for general codes and constant-weight codes appear in Sec-
tion 5. For reasons of space, many of the proofs, and all results on list-size lower
bounds for random codes, are skipped and can be found in the full version.

2 Notation and Preliminaries

2.1 List decoding

We recall some standard terminology regarding error-correcting codes. Let [n]
denote the index set {1, 2, . . . , n}. For q > 2, let [q] denote the set {0, 1, . . . , q−1}.
A q-ary code refers to any subset C ⊆ [q]n, where n is the blocklength of C. We
will mainly focus on the special case of binary codes corresponding to q = 2. The
rate R = R(C) is defined to be log |C|

n log q . For x ∈ [q]n and S ⊆ [n], the restriction
of x to the coordinates in S is denoted x|S . Let Supp(x) := {i ∈ [n] : xi 6= 0}.
A subcode of C is a subset C ′ of C. We say that C is a constant-weight code with
weight w ∈ [0, n], if all its codewords have weight exactly w. (Such codes are
studied in Section 5.)

For x, y ∈ [q]n, define the Hamming distance between x and y, denoted
d(x, y), to be the number of coordinates in which x and y differ. The (Hamming)
weight of x, denoted wt(x), is d(0, x), where 0 is the vector in [q]n with zeroes in
all coordinates. The (Hamming) ball of radius r centered at x, denoted B(x, r),
is the set {y ∈ [q]n : d(x, y) 6 r}. In this paper, we need the following
nonstandard measure of distance of a (small) “list” L of vectors from a “center”
x: For a nonempty L ⊆ [q]n, define

Dmax(x,L) := max{d(x, y) : y ∈ L},

and
Davg(x,L) := Ey∈L

[
d(x, y)

]
=

1

|L|
∑
y∈L

d(x, y).

We formalize the error recovery capability of the code using list-decoding.

Definition 1. Fix 0 < p < 1
2 and a positive integer L. Let C be a q-ary code

with blocklength n.

1. C is said to be (p, L) list-decodable if for all x ∈ [q]n, B(x, pn) contains at
most L − 1 codewords from C. Equivalently, for any x and any list L ⊆ C
of size at least L, we have Dmax(x,L) > pn.

2. C is said to be (p, L) average-radius list-decodable if for any x and L as in
Item 1, we have Davg(x,L) > pn.



For constant-weight codes, it is convenient to augment the notation with the
weight parameter:

Definition 2. Let p, L, q, n, C be as in Definition 1, and let 0 < λ 6 1
2 . C is

said to be (λ; p, L) (average-radius) list-decodable if C is (p, L) (average-radius)
list-decodable, and every codeword in C has weight exactly λn.

We remark that the list-decodability property is standard in literature. Moreover,
while the notion of (p, L) average-radius list-decodability is formally introduced
by this paper, it is already implicit in [1, 2, 12].

Since the max-distance of a list from a center always dominates its aver-
age distance, every (p, L) average-radius list-decodable code is also (p, L) list-
decodable. That is, average-radius list-decodability is a syntactically stronger
property than its standard counterpart, and hence any limitation we establish
for the standard list-decodable codes also carries over for average-radius list-
decodability.

Following (and extending) the notation in [9], we make the following defini-
tions to quantify the tradeoffs in the different parameters of a code: the rate R,
the error-correction radius p, list-size L, and the weight λ of the codewords (for
constant-weight codes). Further, for general codes (without the constant-weight
restriction), it is usually more convenient to replace the rate R by the parameter
γ := 1−h(p)−R; this measures the “gap” to the “limiting rate” or the “capacity”
of 1− h(p) for (p,O(1)) list-decodable codes.

Fix p, λ ∈ (0, 12 ] such that p < λ, R ∈ (0, 1), and a positive integer L.

Definition 3. 1. Say that the triple (p, L;R) is achievable for list-decodable
codes if there exist (p, L) list-decodable codes of rate R for infinitely many
lengths n.
Define Rp,L to be the supremum over R such that (p, L;R) is achievable for
list-decodable codes, and γp,L := 1− h(p)− Rp,L. Also define Lp,γ to be the
least integer L such that (p, L; 1− h(p)− γ) is achievable.

2. (For constant weight codes.) Say that the 4-tuple (λ; p, L;R) is achievable
if there exists (λ; p, L) list-decodable codes of rate R. Define Rp,L(λ) to be
the supremum rate R for which the 4-tuple (λ; p, L;R) is achievable.

We can also define analogous quantities for average-radius list-decoding (denoted
by a superscript avg), but to prevent notational clutter, we will not explicitly do
so. Throughout this paper, p is treated as a fixed constant in (0, 12 ), and we will
not attempt to optimize the dependence of our bounds on p.

2.2 Standard distributions and functions

In this paper, we use ‘log’ for logarithms to base 2 and ‘ln’ for natural logarithms.
Also, to avoid cumbersome notation, we often denote bz by expb(z). Standard
asymptotic notation (big O, little o, and big Omega) is employed liberally in
this paper; when subscripted by a parameter (typically p), the notation hides a
constant depending arbitrarily on the parameter.



Our proofs also make repeated use of hypergeometric distributions, which
we review here for the sake of completeness, as well as to set the notation.
Suppose a set contains n objects, exactly m < n of which are marked, and
suppose we sample s < n objects uniformly at random from the set without
replacement. Then the random variable T counting the number of marked objects
in the sample follows the hypergeometric distribution with parameters (n,m, s).
A simple counting argument shows that, for t 6 min{m, s},

Pr[T = t] =

(
m
t

)(
n−m
s−t
)(

n
s

) .

We will denote the above expression by f(n,m, s, t). By convention, f(n,m, s, t)
is set to 0 if n < max{m, s} or t > min{m, s}. Hypergeometric distributions
satisfy a useful symmetry property:

Lemma 1. For all integers n,m, s with n > max{m, s}, the hypergeometric dis-
tribution with parameters (n,m, s) is identical to that with parameters (n, s,m).
That is, for all t, we have f(n,m, s, t) = f(n, s,m, t).

Throughout this paper, we are especially concerned with the asymptotic
behaviour of binomial coefficients, which is characterized in terms of the binary
entropy function, defined as h(z) := −z log z− (1− z) log(1− z). We will use the
following standard estimate without proof: For z ∈ (0, 1) and n → ∞, if zn is
an integer, then

exp2(h(z)n− o(n)) 6
(
n

zn

)
6

zn∑
i=0

(
n

i

)
6 exp2(h(z)n).

3 Bounds for average-radius list-decodability

In this section, we bound the rate of a (p, L) average-radius list-decodable code
as:

1− h(p)− 1

L
− o(1) 6 R 6 1− h(p)− ap

L2
+ o(1),

where ap is a constant depending only on p. (Here p is a fixed constant bounded
away from 0 and 1

2 .) Note that, ignoring the dependence on p, the corresponding
upper and lower bounds on γ := 1− h(p)−R are polynomially related.

We first state the rate lower bound.

Theorem 1. Fix p ∈ (0, 12 ) and a positive integer L. Then, for all ε > 0 and
all sufficiently large lengths n, there exists a (p, L) average-radius list-decodable
code of rate at least 1− h(p)− 1/L− ε.

In fact, a random code of the above rate has the desired property w.h.p. This
calculation is routine and omitted here, and can be found in the full version.

We now show an upper bound of 1 − h(p) − ap/L2 on the rate of a (p, L)
average-radius list-decodable code. As stated in the Introduction, the main idea



behind the construction is that instead of picking the “bad list decoding center”
x uniformly at random, we pick it randomly very close to a designated codeword
c∗ (which itself is a uniformly random element from C). Now as long as we are
guaranteed to find a list of L − 1 other codewords near x, we can include c∗ in
our list to lower the average radius of the list.

However formalizing the above intuition into a proof is nontrivial, since our
restriction of the center x to be very close to c∗ introduces statistical dependen-
cies while analyzing the number of codewords near x. We are able to control these
dependencies, but this requires some heavy calculations involving the entropy
function and hypergeometric distribution.

We are now ready to state our main result establishing a rate upper bound
for (p, L) average-radius list-decodable codes. In fact, the bulk of the work is to
show an analogous upper bound for the special case of a constant-weight code C,
i.e., all codewords have weight exactly λn, for some λ ∈ (p, 12 ]. We can then map
this bound for general codes using a standard argument (given in Lemma 2).

Theorem 2 (Main theorem). Fix p ∈ (0, 12 ), and let L be a sufficiently large
positive integer. Then there exist ap, a′p > 0 (depending only on p) such that the
following holds (for sufficiently large lengths n):
1. If C is a (p, L) average-radius list-decodable code, then C has rate at most

1− h(p)− ap/L2 + o(1).
2. For λ := p+a′p/L, if C is a (λ; p, L) average-radius list-decodable code, then

C has rate at most h(λ)− h(p)− ap/L2 + o(1).

As already mentioned in Section 1.3, the second claim readily implies the first
via the following well-known argument (a partial converse to this statement for
list-decoding will be given in Section 5):

Lemma 2. Let λ ∈ (p, 12 ] be such that λn is an integer. If C is a (p, L) average-
radius list-decodable code of rate R = 1 − h(p) − γ, then there exists a (λ; p, L)
average-radius list-decodable code C ′ of rate at least R′ − o(1), where R′ :=
h(λ)− h(p)− γ.

Proof: For a random center x, let C ′(x) be the subcode of C containing the
codewords c with d(x, c) = λn. The expected size of C ′(x) at least |C| ·

(
n
λn

)
2−n,

which, for the assumed value of R, is exp2(R′n − o(n)); thus for some x, C ′(x)
has rate at least R′ − o(1). The claim follows by translating C ′(x) by −x. 2

Before we proceed to the proof of (the first part of) Theorem 2, we will
establish the following folklore result, whose proof illustrates our idea in a simple
case.

Lemma 3 (A warm-up lemma). Fix p, λ so that p < λ 6 1
2 . Then, if C is a

(λ; p, L) list-decodable code, then C has rate at most h(λ)− h(p) + o(1).

Proof: The main idea behind the proof is that a random center of a particular
weight (carefully chosen) is close to a large number of codewords in expectation.
Pick a random subset S ⊆ [n] of coordinates of size αn, with α := (λ−p)/(1−2p),
and let S = [n] r S. (The motivation for this choice of α will be clear shortly.)
Define the center x be the indicator vector of S, so that Supp(x) = S.



Consider the set L of codewords c ∈ C such that wt(c|S) > (1 − p)αn; this
is our candidate bad list of codewords. Then each c ∈ L is close to c:

d(x, c) = (αn− wt(c|S)) + wt(c|S) 6 αpn+ (λ− α(1− p))n = (λ− α(1− 2p))n,

which equals pn for the given choice of α. Hence the size of L is a lower bound
on the list-size of the code.

We complete the proof by computing E |L|. For any fixed c ∈ C, the ran-
dom variable wt(c|S) follows the hypergeometric distribution with parameters
(n, λn, αn), , which is identical to the hypergeometric distribution with param-
eters (n, αn, λn) (see Lemma 1). Hence the probability that c is included in the
list L is at least

f(n, αn, λn, α(1− p)n) :=

(
αn

(1−p)αn
)(

(1−α)n
(λ−α(1−p))n

)(
n
λn

) =

(
αn
pαn

)(
(1−α)n
p(1−α)n

)(
n
λn

) ,

where the second step holds because of the identity λ − (1 − p)α = p(1 − α),
which holds for our particular choice of α. As n→∞, this is equal to

exp2 (αnh(p) + (1− α)nh(p)− h(λ)n− o(n)) = exp2((h(p)− h(λ)− o(1))n).

Thus, by linearity of expectations, the expected size of L is at least |C| ·
exp2((h(p)−h(λ)− o(1))n). On the other hand, the (p, L) list-decodability of C
says that |L| 6 L (with probability 1). Comparing these lower and upper bounds
on E |L| yields the claim. 2

Proof of Theorem 2 (part 2): At a high level, we proceed as in the proof
of Lemma 3, but in addition to the bad list L of codewords, we will a special
codeword c∗ ∈ C such that d(x, c∗) is much smaller than the codewords in L.
Then defining L∗ to consist of c∗ and (L − 1) other codewords from L, we see
that the average distance of L∗ is much smaller than before, thus enabling us to
obtain an improved rate bound.

We now provide the details. Pick a uniformly random codeword c∗ ∈ C. Let
S ⊆ [n] be a random subset of Supp(c∗) of size βn, where the parameter β is
chosen appropriately later1 (this plays the role of α in Lemma 3). Also, let x be
the indicator vector of S.

As before, consider the set L of codewords c ∈ C such that wt(c|S) > (1 −
p)|S|. For a fixed c ∈ C, the random variable wt(c|S) follows the hypergeometric
distribution with parameters (λn, (λ− δ)n, βn), where δ = δ(c∗, c) is defined by
d(c∗, c) := 2δn. (Observe that the normalization ensures that 0 6 δ 6 λ for
all pairs c∗, c ∈ C.) To see this, notice that we are sampling βn coordinates
from Supp(c∗) without replacement, and that wt(c|S) simply counts the number
of coordinates picked from Supp(c∗) ∩ Supp(c) (the size of this intersection is
exactly (λ− δ)n). Thus, conditioned on c∗, the probability that a fixed c ∈ C is

1 The reader might find it helpful to think of β as O(1/L); roughly speaking, this
translates to a rate upper bound of h(λ)− h(p)−Ω(β/L).



included in L is

Q(δ) :=

βn∑
w=(1−p)βn

f(λn, (λ− δ)n, βn,w). (1)

By linearity of expectations, and taking expectations over c∗, the expected size
of L can be written as Ec∗∈C

[∑
c∈C Q(δ(c∗, c))

]
= |C| · E Q(δ(c∗, c)), where

both c∗ and c are picked uniformly at random from C. The bulk of the work lies
in obtaining a lower bound on this expectation, which we state below.

Claim. For A1 := (1− p) log
(
1−p
λ

)
+ p log

(
p

1−λ

)
and A2 = 5

p2 , we have

E Q(δ(c∗, c)) > exp2
(
−(A1β +A2β

2 + o(1))n
)
.

Proof Sketch: A standard application of the Cauchy-Schwarz inequality shows
that E δ 6 λ(1− λ), and hence Markov’s inequality implies that

δ 6 λ(1− λ) + 1

n
= λ(1− λ) + o(1)

with probability at least 1/n. Moreover, since Q(δ) is a monotone decreasing
function of δ, we have

E Q(δ) >
1

n
·Q(λ(1− λ) + o(1)).

The rest of the proof is technical and involves lower bounding the right hand
side using properties of binomial coefficients and Taylor approximations for the
binary entropy function. Due to lack of space, we skip the detailed calculations,
which can be found in the full version. 2

Therefore, as before, if the code C has rate A1β+A2β
2+o(1) (for a suitable

o(1) term), the list L has size at least L in expectation. Fix some choice of c∗
and S such that |L| > L. Let L∗ be any list containing c∗ and L − 1 other
codewords from L; we are interested in Davg(x,L∗). Clearly, d(x, c∗) = (λ−β)n.
On the other hand, for c ∈ L∗ r {c∗}, we can bound its distance from x as:
d(x, c) 6 βpn + (λ − β(1 − p))n = (λ − β(1 − 2p))n, where the two terms are
respectively the contribution by S and [n]r S. Averaging these L distances, we
get that

Davg(x,L∗) 6 (λ− β(1− 2p+ 2p/L))n.

Now, we pick β so that this expression is at most pn; i.e., set

β :=
λ− p

1− 2p+ 2p/L
. (2)

(Compare with the choice of α in Lemma 3.) For this choice of β, the list L∗
violates the average-radius list-decodability property of C.



Thus the rate of a (p, L) average-radius list-decodable code is upper bounded
by R 6 A1β + A2β

2 + o(1), where β is given by (2). Further technical manipu-
lations brings this to the following more convenient form: If L > 2p

1−2p , then

R 6 (h(λ)− h(p))− B1(λ− p)
L

+B2(λ− p)2 + o(1).

for some constants B1 and B2 depending only on p. (See the full version for a
detailed calculation.) Setting λ := p+B1/(2B2L), the rate is upper bounded by
R 6 h(λ)− h(p)−B2

1/(4B2L
2) + o(1). 2

4 Bounds for (standard) list-decodability

In this section, we consider the rate vs. list-size tradeoff for the traditional list-
decodability notion. For the special case when the fraction of errors is close to 1

2 ,
[12] showed that any code family of growing size correcting up to 1

2 − ε fraction
of errors must have a list-size Ω(1/ε2), which is optimal up to constant factors.
When p is bounded away from 1/2, Blinovsky [1, 3] gives the best known bounds
on the rate of a (p, L) list-decodable code. His results imply (see [14] for the
calculations) that any (p, L) list-decodable code of rate 1−h(p)− γ has list-size
L at least Ωp(log(1/γ)). We give a short and simple proof of this latter claim in
this section.

Theorem 3 ([1, 3]).

1. Suppose C is (λ; p, L) list-decodable code with λ = p + 1
2p
L. Then |C| 6

2L2/p, independent of its blocklength n. (In particular, the rate approaches
0 as n→∞.)

2. Any (p, L) list-decodable code has rate at most 1− h(p)−Ωp(pL).

Proof: For the first part, assume for the sake of contradiction that |C| > 2L2/p.
Pick a random L-tuple of codewords (without replacement) L = {c1, c2, . . . , cL},
and let S be the set of indices i ∈ [n] such that each cj ∈ L has 1 in the
ith coordinate. Define x to be the indicator vector of S. Note that d(x, cj) =
λn − wt(x) = λn − |S|, so that E Dmax(x,L) = λn − E |S|. Thus to obtain a
contradiction, it suffices to show that E |S| > λ− p = 1

2p
L.

Let M := |C| be the total number of codewords in C, and let Mi be the
number of codewords of C with 1 in the ith position. Then the probability that
i ∈ S is equal to g(Mi)/

(
M
L

)
, where the function g : R>0 → R>0 is defined by

g(z) :=
(
max{z,L−1}

L

)
. By standard closure properties of convex functions, g is

convex on R. (Specifically, z 7→ max{z, L − 1} is convex over R, and restricted
to its image (i.e., the interval [L−1,∞)), the function z 7→

(
z
L

)
is convex. Hence

their composition, namely g, is convex as well.)
We are now ready to bound E |S|:

1

n
E |S| (a)= 1(

M
L

) · 1
n

n∑
i=1

g(Mi)
(b)

>
1(
M
L

) · g( 1

n

n∑
i=1

Mi

)
=
g(λM)(
M
L

) (c)
=

(
λM
L

)(
M
L

) .



Here we have used (a) the linearity of expectations, (b) Jensen’s inequality,
and (c) the fact that λM > 2L2 > L − 1. We complete the proof using a
straightforward approximation of the binomial coefficients.

E |S| > (λM − L)L

ML
= λL

(
1− L

λM

)L
> λL

(
1− L2

λM

)
>

1

2
λL >

1

2
pL.

For the second part, by Lemma 2, the rate of a general (p, L) list-decodable
code is upper bounded by 1− h

(
p+ 1

2p
L
)
+ o(1), which can be shown to be at

most 1− h(p)− 1
4 (1− 2p) · pL + o(1). 2

The above method can be adapted for q-ary codes with an additional trick:

Theorem 4. 1. Suppose C is a q-ary (λ; p, L) list-decodable code with λ =
p+ 1

2Lp
L. Then |C| 6 2L2/λ.

2. Suppose C is a q-ary (p, L) list-decodable code. Then there exists a constant
b = bq,p > 0 such that the rate of C is at most 1− hq(p)− 2−bL.

Before we provide a proof of this theorem, we will state a convenient lemma
due to Erdös. (See Section 2.1 of [13] for reference.) This result was implicitly
established in our proof of Theorem 3, so we will omit a formal proof.

Lemma 4 (Erdös 1964). Suppose A is a set system over the ground set [n],
such that each A ∈ A has size at least λn. Then if |A| > 2L2/λ, then there exist
distinct A1, A2, . . . , AL in A such that

⋂L
i=1Ai has size at least 1

2nλ
L.

Proof of Theorem 4: As in Theorem 3, the second part follows from the
first. To prove the first claim, assume towards a contradiction that |C| > 2L2/λ.
Consider the family of setsA := {Supp(c) : c ∈ C}. By Lemma 4, there exists an
L-tuple {c1, c2, . . . , cL} of codewords such that the intersection of their support,
say S, has size at least 1

2nλ
L > 1

2np
L. Arbitrarily partition the coordinates in S

into L parts, say S1, . . . , SL, of almost equal size 1
2Lp

L · n.
Now consider the center x such that x agrees with cj on all coordinates i ∈ Sj .

For i /∈ S, set xi to be zero. Then, clearly, d(x, cj) 6 λn− 1
2Lp

L · n = pn. Thus
the list {c1, . . . , cL} contradicts the (p, L) list-decodability of C. 2

5 Constant-weight vs. General codes

In this section, we will understand the rate vs. list-size trade-offs for constant-
weight codes, that is, codes with every codeword having weight λn, where λ ∈
(p, 12 ] is a parameter. (Setting λ = 1

2 roughly corresponds to arbitrary codes
having no weight restrictions.) As observed earlier, a typical approach in coding
theory to establish rate upper bounds is to study the problem under the above
constant-weight restriction. One then proceeds to show a strong negative result
of the flavor that a code with the stated properties must have a constant size
(and in particular zero rate). For instance, the first part of Theorem 3 above is
of this form. Finally, mapping this bound to arbitrary codes, one obtains a rate
upper bound of 1− h(λ) for the original problem. (Note that Lemma 2 provides
a particular formal example of the last step.)



In particular, Blinovsky’s rate upper bound (Theorem 3) of 1−h(p)−2−O(L)

for (p, L) list-decodable codes follows this approach. (For notational ease, we sup-
press the dependence on p in the O and Ω notations in this informal discussion.)
More precisely, he proves that, under the weight-λ restriction, such code must
have zero rate for all λ 6 p + 2−bpL for some bp < ∞. One may then imagine
improving the rate upper bound to 1 − h(p) − L−O(1) simply by establishing
the latter result for correspondingly higher values of λ (i.e., up to p + L−O(1)).
We show that this approach cannot work by establishing that (average-radius)
list-decodable codes of positive (though possibly small) rates exist as long as
λ − p > 2−O(L). Thus Blinovsky’s result identifies the correct zero-rate regime
for the list-decoding problem; in particular, his bound is also the best possible
if we restrict ourselves to this approach. In this context, it is also worth noting
that for average-radius list-decodable codes, Theorem 2 already provides a better
rate upper bound than what the zero-rate regime suggests, thus indicating that
the ‘zero-rate regime barrier’ is not an inherent obstacle, but more a limitation
of the current proof techniques.

In the opposite direction, we show that the task of establishing rate upper
bounds for constant weight codes is not significantly harder than the general
problem. Formally, we state that that if the “gap to list-decoding capacity” for
general codes is γ, then the gap to capacity for weight-λn codes is at least(
λ−p
1
2−p

)
γ. Stated differently, if our goal is to establish a L−O(1) lower bound on

the gap γ, then we do not lose by first passing to a suitable λ (that is not too
close to p).

5.1 Zero-rate regime

Theorem 5. Fix p ∈ (0, 12 ), and set b = bp := 1
2

(
1
2 − p

)2. Then for all suffi-
ciently large L, there exists a (λ; p, L) average-radius list-decodable code of rate
at least R − o(1), with p 6 λ 6 p + 5e−bL and R := min{e−2bL, e−bL/(6L)} =
Ωp,L(1).

Proof Sketch: We only provide a sketch of the proof here; see the full version
for the complete proof. We obtain this result by random coding followed by
expurgation. Set ε := e−bL and λ′ := p + 4ε. Consider a random code C of
size 2Rn such that each coordinate of each codeword in C is independently set
to 1 with probability λ′ and to 0 with probability 1 − λ′. For our choice of
parameters, we can show that w.h.p., C satisfies the following properties: (a) C
is (p, L) average-radius list-decodable; and (b) every codeword in C has weight
in the range (λ′± ε)n. In particular, the maximum weight of any codeword is at
most (p+ 5ε)n.

Now, pick any C satisfying these two properties, and let Cw denote the
subcode of C consisting of the weight-w codewords. Then, if we define w0 = λn
to be the “most popular” weight, then the code Cw0

satisfies all our requirements.
Note that the final step incurs only a o(1) loss in the rate, since by the pigeonhole
principle, the resulting code has size at least 2Rn/(n+1) = exp2 (Rn− o(n)). 2



5.2 A reverse connection between constant-weight and arbitrary
codes

Lemma 5. Fix p, λ such that 0 < p < λ < 1
2 . Then in the notation of Defini-

tion 3, if γ := 1− h(p)−Rp,L, then

h(λ)− h(p)− γ 6 Rp,L(λ) 6 h(λ)− h(p)−
(
λ− p
1
2 − p

)
γ.

Proof: The left inequality is essentially the content of Lemma 2; we show the
second inequality here. The manipulations in this proof are of a similar flavor to
those in Lemma 3, but the exact details are different.

Suppose C is a (λ; p, L) list-decodable code of blocklength n and rate R, such
that each codeword in C has weight exactly λn. Pick a random subset S ⊆ [n]
of coordinates of size α2n, with α2 := (λ − p)/( 12 − p), and let S := [n] r S.
(Interestingly, our setting of α2 differs from the parameter α employed in the
proof of Lemma 3 only by a factor of 2. The motivation for this choice of α2 will
become clear shortly.) Consider the subcode C ′ consisting of codewords c ∈ C
such that wt(c|S) > α2n/2. For our choice of α2, one can verify that if c ∈ C ′,
then c has weight at most p(1− α2)n = p|S| when restricted to S.

Our key insight now is that the code C ′|S := {c|S : c ∈ C ′} (of blocklength
α2n) is (p, L) list-decodable. Suppose not. Then there exists a center x′ ∈ {0, 1}S
and a size-L list L ⊆ C such that d(x′, c|S) 6 pα2n for all c ∈ L. Now, extend x′
to x ∈ {0, 1}n such that x agrees with x′ on (the coordinates in) S and is zero
on the remaining coordinates. Then L violates the (p, L) list-decodability of C,
since for every c ∈ L,

d(x, c) = d(x′, c|S) + wt(c|S) 6 pα2n+ p(1− α2)n = pn.

Hence C ′|S must be (p, L) list-decodable as well. For a fixed c ∈ C, the ran-
dom variable wt(c|S) follows the hypergeometric distribution with parameters
(n, λn, α2n), which is identical to the hypergeometric distribution with param-
eters (n, α2n, λn). Hence, the probability that c is included in C ′ is at least

f(n, α2n, λn, α2n/2) =

(
α2n
α2n/2

)(
(1−α2)n

(λ−α2/2)n

)(
n
λn

)
(∗)
=

(
α2n
α2n/2

)(
(1−α2)n
p(1−α2)n

)(
n
λn

)
> exp2 (α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .

In the step marked (∗), we have used the the identity λ − α2/2 = p(1 − α2),
which holds for our particular choice of α2. Thus, summing this over all c ∈ C,
the expected size of C ′|S is at least

exp2 (Rn+ α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .

On the other hand, since C ′|S is (p, L) list-decodable, the hypothesis of the
lemma implies that its size is at most exp2((1− h(p)− γ)α2n) with probability



1. (It is crucial for our purposes that the blocklength of C ′ is α2n, which is
significantly smaller than n.) Comparing the upper and lower bound on the
expected size of C ′|S , we get R+ α2 + (1− α2)h(p)− h(λ) 6 (1− h(p)− γ)α2,
which can be rearranged to give the desired bound R 6 h(λ)− h(p)− α2γ. 2
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