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Abstract. Side-channel cube attacks are a class of leakage attacks on
block ciphers in which the attacker is assumed to have access to some
leaked information on the internal state of the cipher as well as the plain-
text/ciphertext pairs. The known Dinur-Shamir model and its variants
require error-free data for at least part of the measurements. In this pa-
per, we consider a new and more realistic model which can deal with the
case when all the leaked bits are noisy. In this model, the key recovery
problem is converted to the problem of decoding a binary linear code
over a binary symmetric channel with the crossover probability which
is determined by the measurement quality and the cube size. We use
the maximum likelihood decoding method to recover the key. As a case
study, we demonstrate efficient key recovery attacks on PRESENT. We
show that the full 80-bit key can be restored with 210.2 measurements
with an error probability of 19.4% for each measurement.
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1 Introduction

Cube attacks [8] were formally proposed by Dinur and Shamir at Eurocrypt 2009
as a new branch of algebraic attacks [7]. It is a generic key extraction attack,
applicable to any cryptosystem in which at least one single bit can be repre-
sented by an unknown low degree multivariate polynomial in the secret and
public variables. Several studies [1,2,8,9] have demonstrated that cube attack
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is a favorable cryptanalysis approach to many well-designed ciphers. However,
mainstream block ciphers tend to resist against cube attacks, since they itera-
tively apply a highly non-linear round function (based on Sboxes or arithmetic
operations) a large number of times and it is unlikely to obtain a low degree
polynomial representation for any ciphertext bit.

On the other hand, cube attacks seem to be a promising method for physical
attacks, where the attackers can learn some information about the intermediate
variables, i.e., state registers. It is likely that the master polynomials of some
intermediate variables in the early rounds are of relatively low degree. Since the
attack only needs to learn the value of a single wire or register in each execution,
it is ideal for probing attacks. The main challenge is overcoming measurement
errors. The known Dinur-Shamir model (DS model) treats the uncertain bits as
new erasure variables [10,11] and uses more measurements in a larger cube to
correct the measurement errors. It is required that the exact knowledge of error
positions is known to the adversary and at least part of the measurements are
error-free. This is a strong assumption, since in practice each measurement is
suspectable to some level of noise.

In this paper, we consider a side-channel cube attack model that can han-
dle errors in each measurement. The data observed by attackers is regarded as
the received channel output of some linear code transmitted through a binary
symmetric channel (BSC). The crossover probability of the BSC depends on
the accuracy of the measurements. Using this model, the problem of recovering
the n secret key bits in L linear equations can be considered as the problem
of decoding a binary linear [L, n] code with L being the code length and n the
dimension. Various decoding techniques can be used to address this problem. In
this paper, the maximum likelihood (ML) decoding algorithm is used. We also
derive the maximum error probability that each measurement can have in order
to successfully retrieve the key.

As a case study, we simulated the proposed model of side-channel cube attack
on PRESENT [5]. Since the ML decoding algorithm has a complexity of 2n, the
decoding becomes infeasible for PRESENT (n = 80). We solve this problem with
a divide-and-conquer strategy. The results are summarized in Table 1.

Table 1. Simulation results on PRESENT under our BSC model

Leakage HWa Data Timec Keyb Error
round leaked bit (measurements) tolerance

2 LSB 218.9 220.6 64 0.6%
2 2nd LSB 223.1 221.6 64 0.4%
1 LSB 210.2 221.6 64 19.4%
1 LSB (partial) 442 221.6 64 9.7%

aHamming weight.
bNumber of key bits recovered.
cNumber of key trials.

This paper is structured as follows. We first give a brief review of cube and
side-channel cube attacks in Section 2. In Section 3, we present the BSC model
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of error-tolerant side-channel cube attack (ET-SCCA). The decoding algorithms
are developed and analyzed in Section 4. Section 5 describes the evaluation of
ET-SCCA based on the application to PRESENT. In Section 6 we compare
ET-SCCA with other side-channel attacks and provide some countermeasures.
Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Cube and Side-Channel Cube Attacks

Cube attacks were introduced by Dinur and Shamir at Eurocrypt 2009 [8]. It is
closely related to high-order differential attacks [18] and algebraic IV differential
attacks [29][30]. The differences between cube attack and high order differential
attack are elaborated in [12]. Cube attacks consist of two phases: the off-line
phase and the on-line phase. The off-line phase determines which queries should
be made to a cryptosystem during the on-line phase of the attack. It is performed
once per cryptosystem. Note that the knowledge of the internal structure of the
cipher is not necessary. In the on-line phase, attackers deduce a group of linear
equations by querying the cryptosystem with tweakable public variables (e.g.,
chosen plaintexts). Finally, the attacker solves the linear equations to recover
the secret key bits. We give a toy example below.

Consider a block cipher T and its encryption function (c1, ..., cm) = E(k1, ...,
kn, v1, ..., vm), where ci, kj and vs are ciphertext, encryption key and plaintext
bits, respectively. One can always represent ci, i ∈ [1,m], with a multivariate
polynomial in the plaintext and key bits, namely, ci = p(k1, ..., kn, v1, ..., vm).
The polynomial p is called a master polynomial of ci.

Let I ⊆ {1, ...,m} be an index subset, and tI =
∏

i∈I vi, the polynomial p is
divided into two parts:

p(k1, ..., kn, v1, ..., vm) = tI · pS(I) + q(k1, ..., kn, v1, ..., vm),

where no item in q contains tI . Here pS(I) is called the superpoly of I in p. A
maxterm of p is a term tI such that deg(pS(I)) ≡ 1, i.e., the superpoly of I in p
is a linear polynomial which is not a constant.

Example 1. Let p(k1, k2, k3, v1, v2, v3) = v2v3k1 + v2v3k2 + v1v2v3 + v1k2k3 +
k2k3 + v3 + k1 +1 be a polynomial of degree 3 in 3 secret variables and 3 public
variables. Let I = {2, 3} be an index subset of the public variables. We can
represent p as p(k1, k2, k3, v1, v2, v3) = v2v3(k1+k2+ v1)+ (v1k2k3+k2k3+ v3+
k1 + 1), where

tI = v2v3,

pS(I) = k1 + k2 + v1,

q(k1, k2, k3, v1, v2, v3) = v1k2k3 + k2k3 + v3 + k1 + 1.
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Let d be the size of I, then a cube on I is defined as a set CI of 2d vectors that
cover all possible combinations of tI , while setting other public variables to be
constant. Any vector τ ∈ CI defines a new derived polynomial p|τ with n − d

variables. Summing these derived polynomials over all the 2d possible vectors in
CI results in exactly pS(I) (cf. Theorem 1, [8]). For p and I defined in Example
1, we have CI = {τ1, τ2, τ3, τ4}, where

τ1 = [k1, k2, k3, v1, 0, 0], τ2 = [k1, k2, k3, v1, 0, 1],

τ3 = [k1, k2, k3, v1, 1, 0], τ4 = [k1, k2, k3, v1, 1, 1].

It is easy to verify that p|τ1 + p|τ2 + p|τ3 + p|τ4 = k1 + k2 + v1 = pS(I). Here pS(I)

is called the maxterm equation of tI . In the off-line phase, the attacker tries to
find as many maxterms and their corresponding maxterm equations as possible.

In the on-line phase, the secret key is fixed. The attackers choose plaintexts
τ ∈ CI and obtain the evaluation of p at τ . By summing up p|τi for all the 2d

vectors in CI , the attacker obtain pS(I), a linear equation in ki. The attacker
repeats this process for all the maxterms found in the off-line phase, and obtains
a group of linear equations. If the number of independent equations is larger
than or equal to n, the bit-length of the key, then the attacker can solve the
linear equation system and recover the key.

2.2 Side-Channel Cube Attack

Side-channel cube attacks [10] use the knowledge about intermediate variables
(i.e., state registers) as the target bits, and consequently the evaluation of p
is obtained through side-channel leakage. Since side-channel leakage is likely to
contain noise, solving the linear equation system becomes a challenge. To tackle
this problem, Dinur and Shamir proposed to use error correction code to remove
the measurement errors. In DS model, each measurement can have three possible
outputs: 0, 1 and ⊥, where ⊥ indicates the measurement cannot be relied upon.
The attacker assigns a new variable yj to each ⊥ and computes the maxterm
equations. As a result, the maxterm equation has yj on the right hand side. As
for example 1, assuming the second measurement was not reliable, the obtained
maxterm equation is now k1+k2+v1 = p|τ1 +p|τ3 +⊥+p|τ4 . DS model replaces
the ⊥ in the maxterm equation with a new variable yi. As a result, the equation
becomes k1+ k2 + v1 = p|τ1 + p|τ3 + yi+ p|τ4 . For each cube, there might be new
variable introduced. In order to solve these equations, additional measurements
are required.

In the off-line phase, the attacker chooses a large cube of size k and computes
all the coefficients of all the

(
k

d−1

)
linear equations which are determined by

summing over all the possible subcubes of dimension d− 1. In the on-line phase,
the attacker obtains 2k leaked bits. Let ε be the fraction of the ⊥ among all
the measurements. Out of the 2k values, ε · 2k values are ⊥. It is assumed that
the errors are uniformly distributed and the leakage function is a d-random
multivariate polynomial. More precisely, the definition of d-random polynomial
[8] is as follows.
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Definition 1. A d-random polynomial with n+m variables is a polynomial p ∈
P
n+m
d such that each possible term of degree d which contains one secret variable

and d− 1 public variables is independently chosen to occur with probability 0.5,
and all the other terms can be chosen arbitrarily.

Let n be the number of secret key variables. The attacker chooses a big cube
with k ≥ d+ lognd public variables1. The attacker obtains a system of

(
k

d−1

)

linear equations in the ε ·2k+n variables yj and ki. As far as
(

k
d−1

) ≥ (ε ·2k+n),
the attacker can solve the linear equations and obtain the key. The error ratio ε
should satisfy the following condition:

ε ≤
(

k
d−1

)− n

2k
. (1)

The attacker can thus find the key when at most
( k
d−1)−n

2k
fraction of the leaked

bits are ⊥. This model was further enhanced in [11] by using more trivial equa-
tions of high dimension cubes to correct the errors. The number of measurements
increased exponentially when k increases. Such a large amount of measurements
is hard to obtain in side-channel analysis, especially in power analysis. Note that
the success of this model is based on the assumption that the attacker knows
which measurement is correct and which one is not. This is a strong assumption
since in reality every measurement is likely to be noisy. In the following section,
we consider a more practical model where each measurement is noisy.

3 A New Error-Tolerant Side-Channel Cube Attack

Note that all the coefficients of maxterm equations can be obtained in the off-line
phase. Suppose we can derive L linear equations in the off-line phase and the
average cube size of all the corresponding maxterms is d̄, then we have a linear
equation system as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1 : a11k1 + a21k2 + ...+ an1kn = b1
l2 : a12k1 + a22k2 + ...+ an2kn = b2

...
lL : a1Lk1 + a2Lk2 + ...+ anLkn = bL

(2)

where aji ∈ {0, 1} (1 ≤ i ≤ L, 1 ≤ j ≤ n) denotes the coefficient of a linear
equation. Note that bi ∈ {0, 1} is obtained by summing up the evaluation of
the maxterm equation over the ith cube Ci, namely, bi =

∑
τ∈Ci

p|τ . The value
of p|τ is obtained via measurements. Ideally, the measurement is error-free and
the attacker obtains the correct sequence B = [b1, b2, ..., bL]. In reality, however,
the attacker is likely to observe a different sequence Z = z1, z2, ..., zL due to the
measurement errors.

1 we only need about d+ lognd tweakable public variables in order to pack n different
maxterms among their products, since

(
d+lognd

d

)≈ dlog
n
d = n.
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Let q be the probability that the bit may flip in the observation of each
measurement. We can assume q < 1/2, then 1 − q = 1/2 + μ is the probability
that we get an accurate measurement and μ = 0 means a random guess. Since
bi =

∑
τ∈Ci

p|τ , and Ci has t = 2d̄ elements, and each measurement can be
treated as an independent event, according to the piling-up lemma [16], we can
derive

Pr{bi = zi} Δ
= 1− p =

1

2
+ 2t−1μt. (3)

Thus, the observed sequence Z = z1, z2, ..., zL can be regarded as the received
channel output and the sequence B = b1, b2, ..., bL is regarded as a codeword from
an [L, n] linear block code, where L is the code length and n is the dimension.
We can describe each zi as the output of the binary symmetric channel (BSC,
see Fig.1) with p = 1/2− ε (ε = 2t−1μt) being the crossover probability.

1-p

1-p

p

p

BSC

B Z
{bi} {zi}Linear Equation

System

Fig. 1. The error-tolerant side-channel attack model

Therefore, the key recovery problem is now converted to the problem of de-
coding a [L, n] linear code. Let H(x) = −xlog2x − (1 − x)log2(1 − x) be the
binary entropy function, if the code rate R = n/L is less than the capacity
C(p) = 1 − H(p), then in the ensemble of random linear [L, n] codes, the de-
coding error probability approaches zero. Various decoding techniques can be
adopted to recover the secret key.

4 Decoding Algorithms

4.1 Maximum Likelihood Decoding (ML-Decoding)

Siegenthaler [28] firstly proposed the use of ML-decoding in cryptanalysis of a
stream cipher by exhaustively searching through all the codewords of the above
[L, n]-code. The complexity of this algorithm is about O(2n · n/C(p)). We give
a brief introduction of ML-decoding below.

Let A = (aji )L×n (1 ≤ i ≤ L, 1 ≤ j ≤ n) be the generator matrix of (2) and
Ai denote the i-th row vector of A. The aim of the decoding is to find the closet
codeword (b1, b2, ..., bL) to the received vector (z1, z2, ..., zL), and decode the key
variables k = (k1, k2, ..., kn) such that bi = k · AT

i , where T denotes the matrix

transpose, i.e., find such k that minimizes D(k) =
∑L

i=1(zi
⊕

bi).
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It is known that ML-decoding is optimal since it has the smallest error prob-
ability among all decoding algorithms. We can apply the ML-decoding to the
code with length L satisfying the inequality n/L < C(p), that is L > n/C(p).
Recall that p = 1/2 − ε, we can approximate C(p) as C(p) ≈ ε2 · 2/(ln(2)).
Simulations [28] show that the critical length L = l0 ≈ 0.35 ·n · ε−2 provides the
probability of successful decoding close to 1/2, while for L = 2l0 the probability
is close to 1.

4.2 Error Probability Evaluation

In our model, we can get the following theorem on the theoretical relationship.

Theorem 1. If we derive L linear equations containing n key variables and the
average cube size of all the corresponding maxterms is d̄, then we can recover all
the n key bits with success probability close to 50% when the error probability q
of each measurement satisfies

q ≤ 1

2
· (1 − (

0.35 · n
L

)
1

2·t · 2 1
t ), (4)

where t = 2d̄ denotes the number of summations to evaluate each linear equation.

Proof. In order to have a probability of successful decoding close to 1/2 us-
ing the ML-decoding, the code length L should be larger than 0.35 · n · ε−2,

that is L ≥ 0.35 · n · ε−2. Thus we get ε ≥
√

0.35·n
L . Since ε = 2t−1μt holds,

then we can derive μ ≥ (0.35·nL )
1

2·t · 2 1
t −1. From q = 1/2 − μ, we have q ≤

1
2 · (1− (0.35·nL )

1
2·t · 2 1

t ) . �

Suppose the number of key variables is n = 80, the error probability can be
depicted in the following figure.

Fig. 2. Error probability q as a function
of d̄ and L (Given n = 80)

Fig. 3. Error probability q as a function
of d̄ (Given L = 1000, n = 80)

Theorem 1 gives an explicit equation to compute the error tolerance q. Fig.
2 shows that the error probability q as a function of L and d̄. To ensure a
higher error tolerance, the attacker needs to derive as many maxterm equations
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as possible, while keeping the corresponding cube size as low as possible. Fig.
3 shows the relationship between error probability q and the average cube size
when the number of linear equations L is fixed. Note that the error probability
q is exponentially decreased when the cube size increases.

Under the assumption that the master polynomial is a d-random multivariate
polynomial, L =

(
k

d−1

)
linear equations (containing n key variables) can be

derived with the corresponding maxterm size of d−1. Then we get the following
corollary.

Corollary 1. If the master polynomial is a d-random multivariate polynomial
and we choose a big cube with k ≥ d+ lognd public variables, then we can recover
all the n key bits with success probability close to 50% when the error probability
q of each measurement satisfies

q ≤ 1

2
· (1 − (

0.35 · n
(

k
d−1

) )
1

2·t · 2 1
t ), (5)

where t = 2d−1 denotes the number of summations to evaluate each maxterm
equation.

4.3 Improving the Success Rate and Decoding Complexity

When applying side-channel cube attacks to a specific cryptosystem, the num-
ber of linear equations we can derive might be limited. In other words, the code
length L may not be big enough to reach a high probability of successful decod-
ing. In this case, the decoding algorithm is likely to output wrong key, which
is not far from the correct key. To overcome this problem, we output a list of
candidates of the key and verify each solution using a valid plaintext/ciphertext
pair.

When n becomes larger, the ML-decoding process becomes expensive since it
has a time complexity of 2n. This problem can be solved if the linear equations
can be divided into almost disjoint sets. We first divide the set {k1, k2, ..., kn} into
η groups G1, G2, ..., Gη, each with roughly 	n/η
 key variables. For each group
Gi, we collect those linear equations only containing the secret variables in Gi.
The ML-decoding in each Gi has a complexity of O(2�n/η� · 	n/η
/C(p)). Note
that the linear equations are likely to be sparse, which makes the splitting strat-
egy easy to apply. Previous study on Trivium [8], Serpent [11,10] and KATAN
[15] shows that the linear equations generated by cube attacks are indeed sparse.

Note that the ML-decoding is not the only decoding algorithm of linear bi-
nary codes. In fact, since most of the linear equations derived from the cube
summations have a low density, other decoding algorithms [31,14,21,6] that ex-
ploit this properties may achieve better results. We do not claim to be experts
in the design and usage of coding. However, in this study, we want to highlight
the importance of the procedure of transforming the side-channel cube attack
within noise leakage to the decoding of a binary linear code.
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5 Evaluation of Our ET-SCCA on PRESENT

To check the correctness and the efficiency of the proposed model, we apply it
to PRESENT, a standardized round based lightweight block cipher. Details of
the cipher structure can be found in [5]. Previous results of cube attacks on
PRESENT [19,32,27] assume completely error-free measurements.

5.1 Hamming Weight Leakage

Like previous attacks [25,23,26], we assume the PRESENT cipher is implemented
on a 8-bit processor. The attacker exploits the hamming weight leakage when
the intermediate variables (state variables) are loaded from the memory to the
ALU. Let wH(x) be the Hamming weight function which outputs the number
of 1s in x. Let S = {s0, s1, ..., s7} be a 8-bit internal state, then the value
of wH(S) can be represented with a 4-bit value H = {h0, h1, h2, h3} and h0

denotes the least significant bit (LSB) and h3 denotes the most significant bit

(MSB). Each hi, 0 ≤ i ≤ 3 can be calculated2 as h0 =
∑7

i=0 si, h1 =
∑

(0≤i<j≤7) sisj , h2 =
∑

(0≤i<j<m<l≤7) sisjsmsl, h3 =
∏7

i=0 si. From
the expression of each hi, the algebraic degree increases from LSB to MSB and
each hi contains all the 8 internal state bits.

5.2 Cube Searching Strategy

The cube searching strategy in our attacks is as follows. We keep two types of
monomials for each round, one involving a single key variable and the other only
involving public variables. Then in the next round we compute the terms in the
polynomial of the state bit which are related to the selected terms only. And
we discard other terms involving more than one key variables. In this way, we
can explicitly compute the multivariate polynomials in the key variables and
plaintext variables for each state bit in the first few rounds of PRESENT and
treat the coefficient of the linear terms and constant terms as cubes.

5.3 Simulations on the Second Round

As shown above, in order to have a high error tolerance rate, the cube size
should not be too big. We start with by attacking the second round. The internal
state contains 8 bytes denoted by byte1, byte2, ..., byte8. In the off-line phase, we
have searched each state byte using our cube searching strategy. If the LSB of
the Hamming weight of byte8 after the second round is leaked, we can in total
obtain L = 2232 linear equations containing 64-bit key variables. The problem
of recovering those 64-bit key is now equivalent to the problem of decoding a
[2232, 64] linear code.

Since a direct application of the ML-decoding algorithm has a time complexity
of 264 attempts, we divide all the key variables into 4 groups G1, G2, G3 and G4

2 All the summations are based on finite field F2.
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and apply the ML-decoding in each group. To ensure the success probability,
we save a candidate list of the T closest solutions for each group. However, the
number of candidates becomes T 4, leading to an expensive verification step. A
more efficient way is to use overlapping groups where each group shares with
neighboring groups with 3-4 key bits. Now we only have to verify the combination
of candidates that agree in the overlapping bits, which can reduce the number
of verifications by a factor of about 29 to 212.

The grouping strategy here is to keep the code rate of each group as low as
possible by utilizing the sparse structure of the linear maxterm equations, since
it can further accelerate the decoding phase and the verification phase. Table 2
shows the configurations of the 4 groups and their overlapping bits.

Table 2. Groups on the LSB of the Hamming weight of byte8

Group [L, n] Key bits Overlapping bits

G1 [690, 19] [k17, k18, ..., k35] 3 with G2

G2 [690, 19] [k33, k34, ..., k51] 3 with G1, 3 with G3

G3 [690, 19] [k49, k50, ..., k67] 3 with G2, 3 with G4

G4 [558, 16] [k65, k66, ..., k80] 3 with G3

Using the same strategy, we also group the key variables in all the L = 10468
maxterm equations containing n = 64 key variables on the attack of the second
LSB leakage of the Hamming weight of byte1. The configurations are listed in
Table 3.

Table 3. Groups on the 2nd LSB of the Hamming weight of byte1

Group [L, n] Key bits Overlapping bits

G1 [2971, 20] [k17, k18, ..., k36] 4 with G2

G2 [2971, 20] [k33, k34, ..., k52] 4 with G1, 4 with G3

G3 [2971, 20] [k49, k50, ..., k68] 4 with G2, 4 with G4

G4 [2671, 16] [k65, k66, ..., k80] 4 with G3

Under these configurations, we have simulated the decoding algorithm for 100
runs with T = 200. For each run, we randomly generate a key and construct the
linear code in each group. The noise was simulated by a random binary number
generator according to the crossover probability p (e.g., suppose k0 = 1, k1 = 0
and there is a linear equation 1+ k0 + k1 = zi, the value of zi will flip to 1 with
probability p and remain unchanged with probability 1−p). We have conducted
the simulation for 10 times and the average number of successful decoding out of
a batch of 100 runs are recorded. The simulation results with various crossover
probability are given in Fig.4.

From Fig.4, with the crossover probability p = 0.44, the decoding success
probability of the LSB leakage of byte8 is 61.10%. When p = 0.47, the decoding
success probability of the 2nd LSB leakage of byte1 is 54.10%. Due to the lower
code rate, the decoding success probability of 2nd LSB leakage is relatively higher
than that of the LSB leakage.
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Fig. 4. Simulation results of list decoding

The value of p is the crossover probability for each evaluation of the maxterm
equations. In order to derive the crossover probability (error probability) q =
1/2−μ for each measurement from equation (3). We need to calculate the average
cube size for all the maxterms. The results are summarized in Table 4.

Table 4. Noise level under different leakage positions

HW Leakage Round p Average cube q
position size d

LSB (byte8) 2 44% 7.7 0.6%
2nd LSB (byte1) 2 47% 8.4 0.4%

The whole attack contains two phases, the first phase is the decoding in each
group. The results in this phase are the candidate lists. Let ti denote the time
complexity of decoding in group Gi, m denote the number of the groups and
ni denote the code dimension in Gi, thus the time complexity in this phase is∑m

i=1 ti where ti = 2ni key trials. The second phase is the verification phase, the
time complexity in this phase is Q(T ) = Tm/2r encryptions, where T denotes
the size of candidate list and 2r is the reduction factor. Therefore, the total
attack complexity is bounded by max{ ∑m

i=1 ti, T
m/2r }. The attack results on

PRESENT are given in Table 5.
It is clear to see that we can have an average successful probability of 61.1% to

restore 64 key bits with a time complexity of 220.6, negligible memory require-
ment and q = 0.6% error probability for each measurement. The rest 16 key
bits can be exhaustively searched. Although the BSC model can tolerant noise
in each measurement, the error tolerances are very low. The reason is that the
cube size in the second round is relatively big. The bigger cube size will lead to
an exponential increase of t in equation (3). Thus the error probability q become
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Table 5. Attack results on PRESENT

Leakage Timeb Memory Data r Success Error
position requirementa (measurements) probability probability

LSB 220.6 3 KB 218.9 9 61.1% 0.6%
2nd LSB 221.6 3 KB 223.1 12 54.1% 0.4%
a4 candidate lists of 4 · 200 entries, with each entry of 4 bytes.
bThe number of key trials.

very low. In the following section, we evaluate the model based on the leakage
of the first round, which shows better results.

5.4 Simulation on the First Round

The diffusion of the first round is far from complete, thus our attack need to
utilize more leaked bits instead of a single one to ensure the decoding success
probability. Using our cube searching, we derived all the possible cubes from the
LSB leakage of all the 8 bytes:byte1, byte2, ..., byte8 after the first round. Then we
perform the off-line phase by utilizing all those cubes and obtained hundreds of
maxterm equations (see Appendix B). According to the key variables distribution
in these maxterm equations, all the 8 bytes can be classified into 2 classes in
Table 6.

Table 6. Classification of state bytes after the first round

Class State byte Key No. of maxterm Average
variablesa equations cube size

Class1 byte1, byte3, byte5, byte7 k17, k18, ..., k48 150 1.90
Class2 byte2, byte4, byte6, byte8 k49, k50, ..., k80 152 1.89
aThe number of key variables for both classes are 32.

From Table 6, the average cube size for both classes are relatively smaller than
that of the second round. The grouping strategy is the same to that described
in section 5.2. We combine Class1 and Class2 and divide them into 4 groups in
Table 7.

Table 7. Groups on the LSB of the Hamming weight after the first round

Group [L, n] Key bits Overlapping bits

G1 [93, 20] [k17, k18, ..., k36] 4 with G2

G2 [95, 20] [k33, k34, ..., k52] 4 with G1, 4 with G3

G3 [95, 20] [k49, k50, ..., k68] 4 with G2, 4 with G4

G4 [76, 16] [k65, k66, ..., k80] 4 with G3
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We also simulate the decoding algorithm for 100 runs with T = 200 and var-
ious crossover probabilities. We conduct the simulation for 10 times and record
the average number of successful cases. Results show that when p = 42% the
decoding success probability is 50.1%. Thus the error probability of each mea-
surement is q = 19.4%. The results are summarized in the following Table 8.

Table 8. ET-SCCA on the first round

Leakage Timeb Memory Data r Success Error
position requirementa (measurements) probability probability

LSB 221.6 3 KB 210.2 12 50.1% 19.4%
a4 candidate lists of 4 · 200 entries, with each entry of 4 bytes.
bThe number of key trials.

Compared to the attack on the second round, a higher error probability is
achieved based on the leakage of the LSB of the state bytes after the first round.
We can have a success probability of 50.1% to recover all the 64 master key
bits diffused in the first round with time complexity of 221.6, negligible memory
requirement and 210.2 data complexity, when the error probability of each mea-
surement is at most 19.4%. We can further reduce the data complexity to 442 by
utilizing partial leaked bits after the first round, while the error tolerance level
also reduced to about 9.7% accordingly (see Appendix A for details). The data
complexity (measurements) in our estimation is the upper bound, since when we
target on the multiple bytes in the first round, we can reduce the measurements
by reusing the duplicate cubes.

Note that the time complexity can be further reduced by splitting the max-
terms into more groups with similar size to each other. Thus the cost for decoding
can be reduced, while the number of candidates increases (we can also reduce the
time complexity of verification phase by introducing more overlapping bits) and
the decoding success probability and error probability may also change accord-
ingly. There is a tradeoff between time, success probability and error probability.
We do not claim that our grouping is optimal as there may be better choices.

These results demonstrate that the cube size has a great influence on the
error tolerance, which is consistent with our previous analysis. To maximize the
efficiency, it is required to apply the attack to the early rounds of a cipher, in
which the algebraic degree of the state is relatively low. Even though we may
derive more maxterm equations in the later round to gain a higher crossover
probability p for each equation, the error probability q for each measurement
will drop very quickly due to the higher cube size.

6 Comparison and Discussion

Our model can be viewed as an instantiation of side-channel cube attack in the
presence of noise. Compared to the DS model, our model has weaker assump-
tions, namely, we allow possible errors in each measurement. As a consequence,
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the error-correction strategy is also different. We regard the key recovery prob-
lem as the decoding of some linear codes transmitted through the BSC, while
the DS model considers it as erasure codes.

Note that the DS model performs 2k measurements, while our model performs
less than L · 2d̄ measurements. For both models, the number of traces grows ex-
ponentially when the cube size goes up. The DS model targets the leakage round
where a complete diffusion is achieved [11]. Taking PRESENT as an example, af-
ter three rounds, d is around 20. Thus, to maximize the error tolerance according
to (1), k should be roughly 40. The attacker needs to perform 240 measurements,
which is order of magnitude larger than that of standard DPA.

The original algebraic side-channel attack (ASCA) [25,26] is sensitive to mea-
surement noise and the theoretical estimates of the attack complexities are hard
to derive. In addition, a large number of leakage information is required when
feeding the Biryukov-Cannière system [3] into the algebraic solvers. This at-
tack was later improved by Oren et al. [23] to handle more noisy leakage. They
consider the key recovery problem as a pseudo-Boolean optimization (PBOPT)
problem. However, a theoretic estimation of the error tolerance is missing. The
ASCA exploits multiple information leakage on a single power trace, while the
side-channel cube attack uses leakage from a single wire in many executions. The
ASCA also claims to be able to break masked implementations, while it is not
clear yet if ET-SCCA can also break masking.

In order to prevent side-channel cube attack, the design should add more noise
to increase the probability of measurement errors. Many known techniques can
be used here.

– Noise generation. The noise generator actively flattens the power trace with
noise.

– Dual-rail logic. Dual-rail logic hides data-dependent flips inside the combi-
national logic and registers. It helps to reduce the signal-to-noise ratio.

– Data-bus encryption. When the bus between the ALU and memory is en-
crypted, it is more difficult for the attackers to obtain the hamming weight
of the data.

– Random execution order. The order of internal operations (e.g. substitution)
in each round can be randomized. It becomes more difficult for the attackers
to locate the leakage of the target bit.

Note that countermeasures listed above are originally designed to thwart power
analysis. If the EM analysis is used, some of this countermeasures may be inef-
fective. For example, noise generation is not likely to prevent EM analysis that
uses only local EM leakage.

7 Conclusion and Open Problems

In this paper, we have presented a new and more realistic model for side-channel
cube attacks. The new model regards the measurement as the output of a binary
symmetric channel and the key recovery problem is converted to decoding a lin-
ear code. We theoretically analyzed the error tolerance capacity of the new model
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and verified our results with simulations on PRESENT. We also observed that
since the encoding matrix is sparse, it’s possible to speed up the decoding process
using a divide-and-conquer strategy. Our simulation results on PRESENT show
that given about 210.2 measurements, each with an error probability of 19.4%,
our model achieves 50.1% of success rate for the key recovery.

The study of side-channel cube attack is still at its early age. Here we list
several open problems.

1. How to select the best target bit and find more maxterm equations. The
current random walk method is very time-consuming.

2. Can side-channel cube attacks break masked implementations?
3. How to increase the error tolerance efficiently?
4. When using our new model, can we speed up the decoding process further

by exploiting the sparse structure of encoding matrix?
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A Reducing Data Complexity

We can further reduce the data complexity by utilizing the partial leaked bits
after the first round listed in the following Table 9.

Table 9. Classification of partial state bytes after the first round

Class State byte Key No. of maxterm Average
variablesa equations cube size

Class3 byte1, byte3 k17, k18, ..., k48 62 1.70
Class4 byte2, byte4 k49, k50, ..., k80 64 1.75
aThe number of key variables for both classes are 32.

Using the same grouping strategy described in section 5.3, the attack results
are summarized in the following Table 10.

Table 10. ET-SCCA on the first round

Leakage Time Memory Data r Success Error
position requirementa (measurements) probability probability

LSB 225.9 3 KB 442 12 53.2% 9.7%
a4 candidate lists of 4 · 200 entries, with each entry of 4 bytes.

These results demonstrate that we can further reduce the data complexity
to 442. Since we only utilize the partial leaked information to decode, the error
probability also reduced.

B Maxterms and Maxterm Equations
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Table 11. 150 maxterms and max-
term equations obtained from the LSB of
byte1, byte3, byte5, byte7

Cube Maxterm Cube Maxterm
Indexes equations indexes equations

{2} k19 {3} 1 + k18

{6} k23 {7} 1 + k22

{11} 1 + k26 {14} k31

{15} 1 + k30 {18} k35

{19} 1 + k34 {22} k39

{23} 1 + k38 {26} k43

{27} 1 + k42 {30} k47

{31} 1 + k46 {1, 3} k18 + k20

{1, 4} k18 + k19 {2, 3} k17

{2, 4} 1 + k17 {3, 4} 1 + k17

{5, 6} k23 + k24 {5, 7} k22 + k24

{5, 8} k22 + k23 {6, 7} k21

{6, 8} 1 + k21 {7, 8} 1 + k21

{1, 2} 1 + k20 {1, 3} k20

{1, 4} 1 + k18 + k19 {2, 4} 1 + k17

{3, 4} k17 {5, 6} 1 + k24

{5, 7} k24 {5, 8} 1 + k22 + k23

{6, 8} 1 + k21 {7, 8} k21

{1, 2} k19 + k20 {1, 3} k18 + k20

{1, 4} k18 + k19 {2, 3} 1 + k17

{2, 4} k17 {3, 4} k17

{5, 6} k23 + k24 {5, 7} k22 + k24

{5, 8} k22 + k23 {6, 7} 1 + k21

{6, 8} k21 {7, 8} k21

{9, 10} k27 + k28 {9, 11} k26 + k28

{9, 12} k26 + k27 {9, 10} 1 + k28

{9, 11} k28 {9, 12} 1 + k26 + k27

{9, 10} k27 + k28 {9, 11} k26 + k28

{9, 12} k26 + k27 {10, 11} k25

{10, 12} 1 + k25 {11, 12} 1 + k25

{13, 14} k31 + k32 {13, 15} k30 + k32

{13, 16} k30 + k31 {14, 15} k29

{14, 16} 1 + k29 {15, 16} 1 + k29

{17, 18} k35 + k36 {17, 19} k34 + k36

{17, 20} k34 + k35 {18, 19} k33

{18, 20} 1 + k33 {19, 20} 1 + k33

{21, 22} k39 + k40 {21, 23} k38 + k40

{21, 24} k38 + k39 {22, 23} k37

{22, 24} 1 + k37 {23, 24} 1 + k37

{25, 26} k43 + k44 {25, 27} k42 + k44

{25, 28} k42 + k43 {26, 27} k41

{26, 28} 1 + k41 {27, 28} 1 + k41

{29, 30} k47 + k48 {29, 31} k46 + k48

{29, 32} k46 + k47 {30, 31} k45

{30, 32} 1 + k45 {31, 32} 1 + k45

{10, 12} 1 + k25 {11, 12} k25

{13, 14} 1 + k32 {13, 15} k32

{13, 16} 1 + k30 + k31 {14, 16} 1 + k29

{15, 16} k29 {17, 18} 1 + k36

{17, 19} k36 {17, 20} 1 + k34 + k35

{18, 20} 1 + k33 {19, 20} k33

{21, 22} 1 + k40 {21, 23} k40

{21, 24} 1 + k38 + k39 {22, 24} 1 + k37

{23, 24} k37 {25, 26} 1 + k44

{25, 27} k44 {25, 28} 1 + k42 + k43

{26, 28} 1 + k41 {27, 28} k41

{29, 30} 1 + k48 {29, 31} k48

{29, 32} 1 + k46 + k47 {30, 32} 1 + k45

{31, 32} k45 {10, 11} 1 + k25

{10, 12} k25 {11, 12} k25

{13, 14} k31 + k32 {13, 15} k30 + k32

{13, 16} k30 + k31 {14, 15} 1 + k29

{14, 16} k29 {15, 16} k29

{17, 18} k35 + k36 {17, 19} k34 + k36

{17, 20} k34 + k35 {18, 19} 1 + k33

{18, 20} k33 {19, 20} k33

{21, 22} k39 + k40 {21, 23} k38 + k40

{21, 24} k38 + k39 {22, 23} 1 + k37

{22, 24} k37 {23, 24} k37

{25, 26} k43 + k44 {25, 27} k42 + k44

{25, 28} k42 + k43 {26, 27} 1 + k41

{26, 28} k41 {27, 28} k41

{29, 30} k47 + k48 {29, 31} k46 + k48

{29, 32} k46 + k47 {30, 31} 1 + k45

{30, 32} k45 {31, 32} k45

Table 12. 152 maxterms and maxterm
equations obtained from the LSB of
byte2, byte4, byte6, byte8

Cube Maxterm Cube Maxterm
Indexes equations indexes equations

{34} k51 {35} 1 + k50

{38} k55 {39} 1 + k54

{42} k59 {43} 1 + k58

{46} k63 {47} 1 + k62

{50} k67 {51} 1 + k66

{54} k71 {55} 1 + k70

{58} k75 {59} 1 + k74

{62} k79 {63} 1 + k78

{33, 34} k51 + k52 {33, 35} k50 + k52

{33, 36} k50 + k51 {34, 35} k49

{34, 36} 1 + k49 {35, 36} 1 + k49

{37, 38} k55 + k56 {37, 39} k54 + k56

{37, 40} k54 + k55 {38, 39} k53

{38, 40} 1 + k53 {39, 40} 1 + k53

{41, 42} k59 + k60 {41, 43} k58 + k60

{41, 44} k58 + k59 {42, 43} k57

{42, 44} 1 + k57 {43, 44} 1 + k57

{45, 46} k63 + k64 {45, 47} k62 + k64

{45, 48} k62 + k63 {46, 47} k61

{46, 48} 1 + k61 {47, 48} 1 + k61

{49, 50} k67 + k68 {49, 51} k66 + k68

{49, 52} k66 + k67 {50, 51} k65

{50, 52} 1 + k65 {51, 52} 1 + k65

{53, 54} k71 + k72 {53, 55} k70 + k72

{53, 56} k70 + k71 {54, 55} k69

{54, 56} 1 + k69 {55, 56} 1 + k69

{57, 58} k75 + k76 {57, 59} k74 + k76

{57, 60} k74 + k75 {58, 59} k73

{58, 60} 1 + k73 {59, 60} 1 + k73

{61, 62} k79 + k80 {61, 63} k78 + k80

{61, 64} k78 + k79 {62, 63} k77

{62, 64} 1 + k77 {63, 64} 1 + k77

{33, 34} 1 + k52 {33, 35} k52

{33, 36} 1 + k50 + k51 {34, 36} 1 + k49

{35, 36} k49 {37, 38} 1 + k56

{37, 39} k56 {37, 40} 1 + k54 + k55

{38, 40} 1 + k53 {39, 40} k53

{41, 42} 1 + k60 {41, 43} k60

{41, 44} 1 + k58 + k59 {42, 44} 1 + k57

{43, 44} k57 {45, 46} 1 + k64

{45, 47} k64 {45, 48} 1 + k62 + k63

{46, 48} 1 + k61 {47, 48} k61

{49, 50} 1 + k68 {49, 51} k68

{49, 52} 1 + k66 + k67 {50, 52} 1 + k65

{51, 52} k65 {53, 54} 1 + k72

{53, 55} k72 {53, 56} 1 + k70 + k71

{54, 56} 1 + k69 {55, 56} k69

{57, 58} 1 + k76 {57, 59} k76

{57, 60} 1 + k74 + k75 {58, 60} 1 + k73

{59, 60} k73 {61, 62} 1 + k80

{61, 63} k80 {61, 64} 1 + k78 + k79

{62, 64} 1 + k77 {63, 64} k77

{33, 34} k51 + k52 {33, 35} k50 + k52

{33, 36} k50 + k51 {34, 35} 1 + k49

{34, 36} k49 {35, 36} k49

{37, 38} k55 + k56 {37, 39} k54 + k56

{37, 40} k54 + k55 {38, 39} 1 + k53

{38, 40} k53 {39, 40} k53

{41, 42} k59 + k60 {41, 43} k58 + k60

{41, 44} k58 + k59 {42, 43} 1 + k57

{42, 44} k57 {43, 44} k57

{45, 46} k63 + k64 {45, 47} k62 + k64

{45, 48} k62 + k63 {46, 47} 1 + k61

{46, 48} k61 {47, 48} k61

{49, 50} k67 + k68 {49, 51} k66 + k68

{49, 52} k66 + k67 {50, 51} 1 + k65

{50, 52} k65 {51, 52} k65

{53, 54} k71 + k72 {53, 55} k70 + k72

{53, 56} k70 + k71 {54, 55} 1 + k69

{54, 56} k69 {55, 56} k69

{57, 58} k75 + k76 {57, 59} k74 + k76

{57, 60} k74 + k75 {58, 59} 1 + k73

{58, 60} k73 {59, 60} k73

{61, 62} k79 + k80 {61, 63} k78 + k80

{61, 64} k78 + k79 {62, 63} 1 + k77

{62, 64} k77 {63, 64} k77
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