arXiv:1306.4521v1 [cs.DS] 19 Jun 2013

Empirical Evaluation of the Parallel Distribution Sweeping
Framework on Multicore Architectures

Deepak Ajwani Nodari Sitchinava
Bell Laboratories Ireland Institute of Theoretical Informatics
Dublin, Ireland Karlsruhe Institute of Technology
Email: deepak.ajwani@alcatel-lucent.com Karlsruhe, Germany

Email: nodari@ira.uka.de

Abstract

In this paper, we perform an empirical evaluation of the Parallel External Memory (PEM)
model in the context of geometric problems. In particular, we implement the parallel distribu-
tion sweeping framework of Ajwani, Sitchinava and Zeh to solve batched 1-dimensional stabbing
max problem. While modern processors consist of sophisticated memory systems (multiple lev-
els of caches, set associativity, TLB, prefetching), we empirically show that algorithms designed
in simple models, that focus on minimizing the I/O transfers between shared memory and single
level cache, can lead to efficient software on current multicore architectures. Our implementa-
tion exhibits significantly fewer accesses to slow DRAM and, therefore, outperforms traditional
approaches based on plane sweep and two-way divide and conquer.

1 Introduction

Modern multicore architectures have complex memory systems involving multiple levels of private
and /or shared caches, set associativity, TLBs, and prefetching effects. It is considered challenging to
design and even engineer algorithms to directly optimize the running time on such architectures [16].
Furthermore, algorithms optimized for one architecture may not be optimal for another. To address
these issues, various computational models [4, [8, O, [13], [14] have been proposed in recent years.
These computational models are simple (usually assuming only two levels of memory hierarchy,
out of which one is shared) as they abstract away the messy architectural details. Also, the
performance metric of these models involve a single objective function such as minimizing shared
memory accesses. The simplicity of these models allows the design of practical algorithms that are
expected to work well on various multicore architectures. It also allows us to compare the relative
performance of algorithms theoretically.

The success of a computational model crucially depends on how well the theoretical prediction
of an algorithm in that model matches the actual running time on real systems. Unfortunately so
far, there has been little empirical work (such as [21]) to evaluate the predictions of algorithmic
performance using these models on real multicore architectures. It is not even clear if these models
can lead to the design of algorithms that are faster on current multicore systems (with 2 - 48 cores)
than those designed in the traditional RAM model, external memory model and the PRAM model.
In fact, many of the algorithms designed in these models for multicores seem quite sophisticated
and are likely to have high constant factors that can pay off only for architectures with hundreds

http://arxiv.org/abs/1306.4521v1

of cores. This state of affairs is in sharp contrast with the sequential cache-efficient models, where
a considerable empirical work (e.g., [5, [10]) evaluating the algorithms on real systems exists.

At the core of the debate for the computational model is the choice of the performance metric
that an algorithm designer should optimize for the current multicore systems. In the traditional
RAM (and PRAM) model of computation, the algorithms are designed to minimize the number
of instructions (and parallel instructions) executed by the algorithm. The external memory (EM)
model [I] when applied to cached memories (e.g., see [I7]) aims at minimizing the cache misses,
ignoring the number of instructions. The parallel external memory (PEM) model [4] aims at
minimizing the number of parallel cache misses.

In this work, we demonstrate that algorithms designed in simple models, that focus on min-
imizing the parallel I/O transfers between shared memory and a single level cache, can lead to
a software performing great in practice on real multicore systems. For this purpose, we consider
the algorithms to solve the problem of answering batched planar orthogonal stabbing-max queries.
This problem is a fundamental geometric primitive and together with its variants is used as sub-
routines in solutions of many popular geometric problems such as point location in an orthogonal
subdivision of the plane, orthogonal ray shooting, batched (offline) dynamic predecessor queries in
1-dimensional array and batched union-find. Also, this problem has been well-studied in various
computational models and many different optimal solutions for it are known in these models. Thus,
it provides a test-bed for evaluating the efficacy of theoretical analysis in various models on real
multicore architectures. Another reason for selecting this non-HPC application is that the ratio
of memory accesses to computation in the solutions of this problem is similar to that of many
data-intensive geometric applications. For instance, our engineered PEM solution for this problem
is based on the parallel distribution sweeping framework and this framework has been used for
designing a wide range of other geometric algorithms in the PEM model [2, 3] and a basis for PEM
data structures [20].

We empirically compare the different solutions and show that a carefully engineered solution
based on an algorithm in the PEM model gives the best performance on various multicore systems,
outperforming traditional approaches based on plane sweep, sequential distribution sweeping and
two-way divide-and-conquer. Using hardware profilers, we show that this solution exhibits signif-
icantly fewer number of accesses to slow DRAM which is correlated with the improved running
time.

Since the cache line on modern systems is typically 64 bytes, I/O-efficient solutions also need
to be work-efficient to compete with RAM algorithms. In other words, the total number of instruc-
tions of a cache-efficient algorithm should asymptotically match that of the best RAM solution.
Therefore, we design an algorithm that is both I/O-optimal and work-efficient. To the best of our
knowledge, this is the first work-efficient I/O-optimal algorithm for this problem.

2 Computational Models

External Memory Model. The widely used external memory model or the I/O model by
Aggarwal and Vitter [I] assumes a two level memory hierarchy. The internal memory has a lim-
ited size and can hold at most M objects (points/line-segments) and the external memory has
a conceptually unlimited size. The computation can only use the data in the internal memory,
while the input and the output are stored in the external memory. The data transfer between
the two memories happens in blocks of B objects. The measure of performance of an algorithm

is the number of I/Os (cache misses) it performs. The number of I/Os needed to read n con-
tiguous items from the external memory is scan(n) = ©(n/B). The number of I/Os required
to sort n items is sort(n) = O((n/B)logy, p(n/B)). For all realistic values of n, B, and M,
scan(n) < sort(n) < nlogyn.

Parallel External Memory (PEM) Model. The parallel external memory (PEM) model [4]
is a simple parallelization of the EM model. It consists of P processors, each with a private cache of
size M (see Figure[Il). Processors communicate with each other through access to a shared memory
of conceptually unlimited size. Each processor can use only data in its private cache for computa-
tion.

The caches and the shared memory are divided into blocks of
[cpu 1] i[cPU 2] i[CPU P| size B. Data is transferred between the caches and shared mem-
‘ ory using parallel input-output (I/O) operations. During each

T A e such operation, each processor can transfer one block between
BI’ siache, ‘ ’ ﬁﬁ‘fﬂﬁ‘ ’ ﬁﬁ‘fﬂﬁ‘ shared memory and its private cache. The cost of an algorithm
is the number of I/Os it performs. Concurrent reading of the

BI’HHHHHHHSharedmemorY HH‘ HHHH‘ same block by multiple processors is allowed but concurrent

block writes are disallowed (similar to a CREW PRAM). The
Figure 1: The PEM model cost of sorting in this model is sortp(n) = O(pglogyy/p)
parallel 1/Os, provided P < n/B? and M = BOW [].
The PEM model provides the simplest possible abstraction of current multicore chips, focusing
on the fundamental I/O issues that need to be addressed when designing algorithms for these
architectures, similar to the I/O model [I] in the sequential setting.

3 1-D Stabbing Max Algorithms

In this section, we describe various algorithms that we implemented and used for our experimental
study. We begin with formally describing the problem.

Definition 1 (Batched 1-D Stabbing-Max Problem) Given a set of n horizontal line seg-
ments and points on the plane, report for each point the closest segment that lies directly below
it.

RAM algorithm. In the classical RAM model, this problem is solved using the sweep line
paradigm [I8|, [6]. We sweep a hypothetical vertical line across the plane in increasing z-coordinate
and perform some computation at each segment endpoint or query point. We maintain an ordered
set A of active segments — all segments which intersect the sweep line, ordered by the y-coordinates.
A segment is inserted into A when the sweep line encounters its left endpoint and removed when it
encounters the right endpoint. An answer to a query point ¢ is the segment in A with the largest
y-coordinate that is smaller than the y-coordinate of g, i.e., the predecessor of ¢ in A according to
the y-ordering.

For n line segments and query points, there are O(n) insertions, deletions and predecessor
searches in A. Since each of these operations can be performed in O(logn) time by maintaining A
as a balanced binary search tree, the total complexity of this algorithm is O(nlogn) instructions.

Sequential I/0-optimal solution. The sequential I/O-efficient solution for this problem
proceeds using the distribution sweeping framework of Goodrich et al. [15] as follows.

Let 7, be a variable associated with each query point ¢ which we will use to store the answer.
Initially 7, is initialized to a virtual horizontal line y = —oo.

We partition the space into K = min{M/B,n/M} vertical slabs o1, ...,0k, so that each slab
contains equal number of points (endpoints of horizontal segments or query points) and perform
a sweep of the input by increasing y-coordinate. During the sweep we maintain for each slab o; a
segment s, which is the highest segment that spans o; encountered by the sweep. When the sweep
line encounters the query point ¢ € o;, we update rq with s, iff y(s,,) > y(r). During the sweep
we also generate slab lists Y;,. A copy of a query ¢ (resp., segment s) is added to Y, if ¢ (resp.,
at least one of the endpoints of s) lies in slab ;. The sweep is followed by a recursive processing
of each slab, using Y, as input for the recursive call. The recursion terminates when each slab
contains O(M) points and the problem can be solved in internal memory, for example, by using
the plane sweep algorithm.

Note, that if the initial objects are sorted by y-coordinates, we can generate the inputs Yy,
for the recursive calls sorted by y-coordinate during the sweep. Thus, the sweep at each of
O(1+logg(n/M)) recursive levels takes O(n/B) I/Os and the total I/O complexity of distribution
sweeping is O (%(1 + logg n/M)) = sort(n) I/Os.

Work-optimal solution. Note that a naive implementation of the sweep in internal memory
might potentially result in updating K different variables s,, whenever a segment is encountered
during the sweep. This could lead to O(Kn) instructions at each recursive level, resulting in
total O(Knlogg n) instructions, which is larger than O(nlogyn) instructions of the plane sweep
algorithm. At the same time, the plane sweep algorithm could result in up to O(nlogyn) 1/Os,
which is larger than sort(n) I/Os of the above algorithm.

To achieve optimal internal computation time while maintaining the optimal sort(n) I/O com-
plexity we store segments s,, in a segment tree 7" over K intervals defined by the slabs o;. Since,
we are interested only in segments that fully span the slabs, each segment is stored only in one
node. Also, at each node we store only the highest segment encountered up to that point in the
sweep. Thus, |T| = O(K), i.e. T fits in internal memory. Consider the nodes on the root to leaf
path which correspond to the intervals containing q. We update r, to the highest segment stored at
these nodes. Thus, maintaining 7" and updating r, takes O(log, K) instructions per update/query,
and over O(1 +logy N/M) recursive levels of distribution sweeping adds up to at most O(nlogyn)
instructions, which is optimal.

Parallel External Memory Solution. The PEM solution is based on the parallel distribu-
tion sweeping framework introduced by Ajwani et al. [2]. It differs from the sequential distribution
sweeping by recursively dividing the plane into K := max{2, min{\/n/P, M /B, P}} vertical slab]
and performing the sweep in parallel using all P processors. During recursion, the slabs are pro-
cessed concurrently using sets of ©(P/K) distinct processors per slab. The parallel recursion
proceeds for O(logy P) rounds, until there are ©(P) slabs remaining, at which point, each slab is
processed concurrently using a single processor running the sequential I/O-efficient solution.

To perform the sweep of a single recursive level in parallel using multiple processors, each
processor performs distribution sweeping on an equal fraction of the input. Note, that such a
sweep sets the values of 7, correctly only if both the query ¢ and the spanning segment s, below it
are processed by the same processor. To correct the values r, across the boundaries of the parallel
sweeps we perform a round of parallel reduction on segments and queries using MAX associative
operator [7]. Finally, we compact the portions of slab lists Y,, generated by different processors

!The explanation for this choice of K can be found in [4].

into contiguous slab lists to be used as input for recursive calls. The details of the algorithm follow
directly from [2] but are also presented in Appendix [Al for completeness.

The parallel I/O complexity of the above algorithm is O(sortp(n)) I/Os.

Work-optimal solution. Similar to the sequential I/O model, we can achieve work optimality
in the PEM model algorithm by maintaining a segment tree T on the K child slabs. In this
case, all processors keep their own copy of T and the parallel reduction (using MAX operator)
is performed over not only the K leaves, but also the K — 1 internal nodes of T". This does not
affect the asymptotic number of parallel I/Os, but makes the scheme work-optimal, i.e. O(3% logn)
instructions per processor.

2-way Distribution Sweeping. As a PRAM solution, we consider a recursive 2-way distribu-
tion sweeping algorithm. This framework is akin to divide-and-conquer paradigm, that is archetype
for many PRAM algorithms. The 2-way distribution is continued recursively till the slab size is
smaller than a fixed constant and at that stage, plane sweep algorithm is used as a base case. The
distribution step is a simplified version of the corresponding step in the PEM algorithm, as the
considerations of work-optimality no longer apply.

4 Implementation Details

We implemented our algorithms in C++, using OpenMP for parallelization. The engineered imple-
mentation uses some simple techniques to improve the running time of the theoretical algorithm,
while trying to preserve its worst-case asymptotic guarantee on the number of shared cache accesses.

The parallel distribution sweeping calls for setting the branching parameter at K = max{2,
min{M/B,\/n/P,P}}. The parameter M also defines the size of the recursive base case. We
experimentally determine the best choice of M. In particular we found that setting M to be a large
fraction (e.g., 1/3 or 1/4) of the L3 cache results in best running times.

Having determined M, we observe that for computing K, in our compute systems the number
of processors (up to 12) is far below the other two terms. Thus, the first recursive level is always
a single P-way parallel distribution sweeping round, which results in P vertical slabs each of
which can be processed independently of others in the consequent phases. Thus, after the parallel
distribution, each of P resulting vertical slabs is assigned to a separate thread which processes it
using a sequential distribution sweeping algorithm.

To perform the parallel sweep, we divide the input based on the y-coordinate among the P
threads, conceptually, assigning a horizontal slab of objects to each thread. The thread with the
smaller ID gets the lower y values. This can be viewed as a P x P matrix where the columns
correspond to the different slabs and the rows correspond to the different threads.

We perform the prefix sum on the P x P array sequentially as the overheads associated with
the synchronization barrier of OpenMP are too high to justify this operation in parallelH

We combine the second scan of the data (due to reduction) with the step of compacting child
slab lists into contiguous vectors. During the compaction, each processor p; copies all partial chunks
of child slab o; into the contiguous space. Note, the propagation of the results of the prefix sums
simply needs to update the result of each query point that had been assigned the sentinel line
y = —oo with the result of the prefix sums value. Thus, the propagation of the prefix sums values
can be performed during this copying process.

2In our experiments, performing this step sequentially takes less than a millisecond, while the overall running time
is in dozens or hundreds of seconds.

Next, we process the P child slabs in parallel using sequential distribution sweeping. This
recursively subdivides the slabs till the pre-specified threshold M is reached. When generating the
input lists for the child slabs, we also store the total number of segments and query points for the
child slabs. If for any slab, either the number of segments or query points is zero, we do not process
it or its child invocations any further.

Space efficiency. We carefully engineered our algorithms to reduce the space requirement of
our implementations considerably. This is done while ensuring that the running time of our imple-
mentations is not affected by the space reduction. We provide more details of this in Appendix [Bl

Randomized vs. deterministic computation of slab boundaries. Deterministic iden-
tification of slab boundaries such that all the child slabs at each level of recursion contain the
same number of objects, requires sorting the input based on the z-coordinate and storing O(n/M)
equally spaced entries of the sorted input in a separate array. We avoid the extra sort by instead
determining the slab boundaries by partitioning the space into uniform vertical slabs. This opti-
mization works well for random input, but in the worst case can result in the recursion depth as
large as O(logy 0), where 0 is the spread of the point set — the ratio between the largest and the
smallest (horizontal) distance between a pair of points. In case of a large base case of the recursion
and randomized input, this is not an issue. But in the case of double precision coordinates, the
worse case analysis dictates that the depth of the recursion can be very large.

Constant factors vs. EM implementation. The I/O complexity of the sequential distri-
bution sweeping framework is O(n/B(1 + logx n/M)), where K = min{M/B,n/M}. Since in our
experimental settings K = n/M, there are only 2 recursive levels: one for distribution sweeping
and one for the sweep line at the base case. Thus, the implementation performs two sequential
scans of the input.

In the parallel version, we have to perform two additional scans. Specifically, we perform one
extra recursive step — the parallel distribution. During this step, each processor scans n/P items
and writes them out into its private child slabs. After the prefix sums, which takes negligible
amount of time, we must (a) propagate the result of the prefix sums to the queries that contain
only sentinel values as the result and (b) construct each child slab in contiguous space. As described
earlier, we combine these two tasks into a single scan.

Thus, combined with the two scans of the parallel recursive invocation of the sequential dis-
tribution sweeping, the parallel implementation performs a total of four scans of the input, i.e.,
twice as many as the sequential version. Since all scans are performed in parallel and in expecta-
tion each child slab contains equal number of items, the total I/Os performed by each processor is
2/ P times the number of sequential I/Os, and (ignoring the speedup due to faster parallel internal
computation) we should expect the speed up of P/2 on P processors.

Sorting. To perform the initial sorting of the input by the y-coordinate, we used the sorting
implementation from the C++ Multicore Standard Template Library (MCSTL) [19] that is now
part of the GNU libstdc++ library. For the base case of plane sweep algorithm, we use the C++
Standard Template Library (STL) sorting implementation.

Choice of P. While in theory, P denotes the number of cores, there are many considerations
involved in picking the correct value of the parameter P in practise. These considerations are
discussed in Appendix [Cl

5 Experiments

We performed extensive experimentation studying the performance of these algorithms on various
input types and on many different multicore architectures. In addition to measuring the running
time of these algorithms, we used papi library and the Linux perfctr kernel module to read the
hardware performance counters and measure cache misses, DRAM accesses, TLB misses, branch
mispredictions, number of instructions etc. This section summarizes the key findings of our exper-
iments.

Our query points were generated uniformly at random inside the grid of size Grid Size x
Grid Size. To elicit the asymptotic worst case performance of point location algorithms, we focus on
long segments, whose length is chosen uniformly at random between Grid Size/4 and 3-Grid Size/4
and are at a random y-coordinate.

Configuration. We ran our implementation on the following multicore systems:

1. A system with a single 4-core 2.66 GHz Intel Core i7-920 processor and a total of 12.3GB
RAM. Each core can run 2 threads due to hyperthreading. The processor has an L3 cache of
size 8192 KB that is shared among all 4 cores. The L2 cache of 256 KB is only shared among
pairs of cores.

2. A system with 4 x 12-core 1.9 GHz AMD Opteron 6168 processors and total of 264 GB of
RAM. Each core contains a private L2 cache of 512 KB and groups of 6 cores share an L3
cache of 5118KB. Thus, each processor contains two L3 caches of combined size of just over
10MB.

3. A system with 2 x 16-core 2.6 GHz AMD Opteron 6282 SE processors and total of 96 GB
RAM. Each core has its private L2 cache while the L3 cache is shared between 16 cores. The
L2 cache size is 2 MB and L3 cache size is 16 MB.

All configurations run Linux kernels and the codebase was compiled using g++4-2.4 compiler
and -O3 flag.

Spatio-temporal locality in our setting. The cache line size for all cache levels on all 3
systems is 64 bytes. Since our objects take 32 bytes of space, it appears that each cache line can
hold only two objects. Therefore, at a first glance it is not clear if I/O efficient algorithm can
utilize the spatial locality for any improvement in runtime. However, we observed that given an
array that is too large to fit in cache and which contains our 32-byte objects, it takes 4-5 times
faster to access the objects sequentially rather than performing access in random locations. This
observation can be explained by the fact that the memory system prefetches 2-3 cache lines when
performing a sequential scan. Thus, during sequential scan the prefetcher amplifies the size of the
cache line by the number of lines being prefetchedﬁ

Another benefit of performing K-way distribution sweeping is that it allows us to utilize tem-
poral locality by reducing the number of recursive calls. In particular, K is chosen as K =
min{n/M, M/B} and the number of recursive levels is (1 + logg(n/M)). Given limit of RAM
size on our systems and the large size of L3 cache, it appears from our experiments that K is
set to n/M on configuration 1 and 2, resulting in a single recursive level dedicated to (sequential)
distribution (with the recursive base case performing plane sweep on chunks that fit in L3 cache).

3For this experiment, the array must contain the actual objects and not just pointers to the objects, which could
be allocated anywhere in memory.

Running time per element Running time per element
16 T T T T T T 5 T T T
Plane sweep —+— Plane sweep —+—
1} Sequential I/0] Sequential I/0
Dist Sweep (P =2) -* Dist Sweep (P =2) -*
° Dist Sweep (P =3) @ o 4F Dist Sweep (P =3) @
S 12 Dist Sweep (P = 6) 3 Dist Sweep (P = 6)
£ Dist Sweep (P = 12) £ Dist Sweep (P = 8)
c c
< 10 S 3l
5 5
£ 8 £
o2 o2
[T oL 4
g © o]
o o
[} [}
E 4 £
= E 1 peene
2k S a o
FE K x =
0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4 0.4 12.8 25.6 38.4 51.2
n (in millions) n (in millions)

Figure 2: Runtimes on the configuration 21 (left) and configuration [(right) per element. The plots exclude the
times to perform initial sorting of inputs by the y-coordinate for distribution sweeping and x-coordinate for the plane
sweep.

On configuration 3, it requires two recursive calls. The various trade-offs involved in selecting the
correct values of parameters K and M and the effect of these parameters on the actual run-time
of our PEM implementation are described in Appendix [Dl

Random access vs. I/O-efficient algorithms. Figure [2 shows the absolute running times
for the plane sweep and (parallel) distribution sweeping algorithms. One can see improvements in
runtimes with the increase in the number of processors used. Also note the difference in the slopes
in the graphs of the plane sweep algorithm compared to distribution sweeping algorithms. This is
due to larger asymptotic number of cache misses of the plane sweep algorithm.

Figure Bl demonstrates this difference better. It shows the speedup of the sequential and parallel
distribution sweeping algorithms relative to the plane sweep algorithm for long segments. In this
figure one can see the effects of cache-efficiency on runtimes. It clearly shows that the I/O-efficient
algorithms outperform the plane sweep algorithm as the input sizes increase. Recall our discussion
that for the parameters of our systems K = n/M and the I/O complexity of the distribution
sweeping algorithm is O((n/B)(1+logx n/M)) = O(n/B). This explains the non-linear asymptotic
speedup over plane sweep algorithm (with I/O complexity of O((n/B)logn/M)) as a function of
the input size.

Speed-up relative to plane sweep Speed-up relative to plane sweep

20 T T T
Plane sweep —+—

i Plane'sweep'%—'
L Seq I/O

Seq I/0
P=2 %
pP=3 o

15 f P=6

pP=12

TUUVUT
OO RWN

10 f

Speed-up
Speed-up

N W A O N ® ©

0.4 0.8 1.6 3.2 6.4 128 25,6 51.2 1024 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2
n (in millions) n (in millions)

Figure 3: Speedup of the distribution sweeping algorithms relative to the plane sweep algorithm on the configu-
ration [Z] (left) and configuration [(right). The plots exclude the times to perform initial sorting of inputs by the
y-coordinate for distribution sweeping and z-coordinate for the plane sweep.

Speed-up relative to sequential I/0 algorithm Speed-up relative to sequential I/0 algorithm
7 rr T T T T T T T T 5T T T T T T T T
Seq /0 —— Seq /0 ——
p=2 p=2
6 P=3 -x P=3 o
pP=6 =& 4t P=4 -8
5| P12 P=6
P=8
s Ll R g 3fe - & & @ @ o a
] 8 a ©
8 . ; . - . o 8 oo Mo e -x
o 3} o
0 n 2}
. T x
2F
1F
1
0.4 0.8 1.6 3.2 6.4 128 256 51.2 1024 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2
n (in millions) n (in millions)

Figure 4: Speedup of the parallel distribution sweeping algorithms relative to the sequential distribution sweeping
algorithm on configuration 2] (left) and configuration [(right) systems. The plots exclude the times to perform initial
sorting of inputs by the y-coordinate.

Figure M shows the speedup that parallel distribution sweeping algorithm achieves relative to
the sequential distribution sweeping algorithm.

Running time per element

25 T
PRAM ——

PEM

T

Time and DRAM accesses per element for long segments

80 T T T T T

1le-05
9e-06
8e-06

1 7e-06
1 6e-06
1 5e-06

N
T

4e-06
3e-06
2e-06
im 1e-06

=
5

Time per element (in sec)

DRAM accesses per element

-ba ::‘a‘:.‘....'.'lu— NP .‘Z' e . - A 5
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08
n

[,

Time per element (in msec)

o
w
T

DRAM Accesses (planesweep)

DRAM Accesses (PRAM, P=12)
DRAM Accesses (dist sweep, P=1, 12) -
Runtime (planesweep) -+

)

)

)

Runtime (dist sweep, P=1
Runtime (PRAM, P =12
Runtime (dist sweep, P = 12) --

0.4 12.8 25.6 38.4 51.2
n (in millions)

-

Figure 5: Comparison of PEM and PRAM algorithms on 16 cores of configuration [3] is shown in the left figure.
Running time and DRAM traffic for long segments on 12 cores of configuration [2in the right.

PRAM vs. PEM performance. Figure [(left) shows the comparative performance of the
various algorithms on configuration [8l We observe that the PRAM implementation is significantly
slower than the PEM algorithm. For instance, with 51.2 million segments and the same number
of queries, PRAM implementation takes 96 seconds with 16 cores, while the PEM implementation
only requires 30 seconds with the same number of cores (excluding the time for loading the input
and sorting it, which is 18 seconds for both implementations). This is largely accounted for by
the fact that the PRAM implementation makes poor use of temporal locality and thus, has larger
number of recursive levels. In each recursive level, it scans all the segments and query points,
increasing the DRAM accesses significantly.

DRAM Accesses and Cache Misses. We could not find a reliable way to measure only L3
cache misses: the papi library does not support measurement of shared cache events, while the
hardware counters for LLC (Last Level Cache) counters returned suspiciously similar results to L2
cache misses. Instead we measured the total traffic to DRAM using perf tool. Figure [(right)
shows a clear correlation between the total DRAM traffic and running times. It is interesting to
note that although our algorithms are designed in simple 2-level cache model, they minimize the

total traffic to DRAM, in spite of complex nature of modern memory systems.
Random, short, medium and long segments. We refer the reader to Appendix [El for the
relative behavior of the different point location algorithms on different segment types.

6 Conclusions And Future Work

In this work, we explored the effects of caches on actual run-times observed on various multicore
architectures in the context of the geometric stabbing-max query problem. This is used to under-
stand how accurately the PEM model predicts the running time of combinatorial algorithms on
current multicore architectures. On single-socket multicore architectures, our results show a direct
correlation between traffic on DRAM memory controller and running times of implementations.
Thus, the algorithms designed I/O-efficiently via the (parallel) distribution sweeping framework
outperform the plane sweep algorithms which do not address the I/O-efficiency.

We chose to perfom our experiments on single-socket architectures, because the PEM model
assumes uniform access latencies to shared memory. We conjecture that NUMA effects of DRAM
access on multi-socket architectures might be better modeled by distributed computational models,
where each processor copies/moves data into “local” memory — address space associated with its
socket — before processing it. Once the data is in its “local” memory, one can use the PEM model
to design algorithms to process the data. The experimental evaluation and modeling NUMA effects
of multi-socket architectures is left for future investigations.

While we chose to implement an algorithm which was designed in the PEM model, it would
be interesting to see how the implementations in other cache-conscious parallel models (for exam-
ple, [8]) will fare in practice in similar setting.

Acknowledgments. We would like to thank Peter Sanders for encouraging to look at the work-
optimality of PEM algorithms. We would also like to thank Dennis Luxen and Dennis Schieferdecker
for their extensive help with our implementations and getting perf and papi to run on our systems.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988.

[2] D. Ajwani, N. Sitchinava, and N. Zeh. Geometric algorithms for private-cache chip multipro-
cessors. In ESA, 2010.

[3] D. Ajwani, N. Sitchinava, and N. Zeh. I/O-optimal distribution sweeping on private-cache
chip multiprocessors. In IPDPS, pages 1114-1123, 2011.

[4] L. Arge, M. T. Goodrich, M. J. Nelson, and N. Sitchinava. Fundamental parallel algorithms
for private-cache chip multiprocessors. In SPAA, pages 197-206, 2008.

[5] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J. Nelson.
Cache-oblivious streaming B-trees. In SPAA, pages 81-92, 2007.

[6] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-
tions. IEEFE Transactions on Computers, 28(9):643-647, Sept. 1979.

10

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. E. Blelloch. Prefix sums and their applications. In J. H. Reif, editor, Synthesis of Parallel
Algorithms, pages 35-60. Morgan Kaufmann Publishers, 1993.

G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In SODA,
pages 501-510, 2008.

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling irregular parallel
computations on hierarchical caches. In SPAA, pages 355-366. ACM, 2011.

G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting algorithm.
ACM Journal of Experimental Algorithmics, 12, 2007.

Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: Distribution
sweep vs. plane sweep. Technical report, Providence, RI, USA, 1995.

Y .-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: distribution
sweep versus plane sweep. Comput. Geom. Theory Appl., 9(4):211-236, Mar. 1998.

R. A. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elimination paradigm:
Theoretical framework, parallelization and experimental evaluation. In SPAA, pages 71-80,
2007.

R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming for multicores.
In SPAA, pages 207-216, 2008.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational
geometry. In FOCS, pages 714-723, 1993.

S. Kang, D. Ediger, and D. A. Bader. Algorithm engineering challenges in multicore and
manycore systems. IT - Information Technology, 53(6):266-273, 2011.

K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory. Algorithmica,
35:75-93, 2003. 10.1007/s00453-002-0993-2.

M. I. Shamos and D. Hoey. Geometric intersection problems. In FOCS, pages 208-215. IEEE
Computer Society, 1976.

J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library. In
FEuro-Par, volume 4641 of Lecture Notes in Computer Science, pages 682—694. Springer, 2007.

N. Sitchinava and N. Zeh. A parallel buffer tree. In SPAA, pages 214-223, 2012.

Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The Pochoir
stencil compiler. In SPAA, pages 117-128, 2011.

11

A Details of the PEM solution

In this section we present the details of the PEM solution.

As mentioned earlier, our algorithm is based on the parallel distribution sweeping framework
introduced by Ajwani et al. [2]. Parallel distribution sweeping recursively divides the plane into
vertical slabs, starting with the entire plane as one slab and in each recursive step dividing a given
slab into K := max{2, min{\/n/P, M /B, P}} child slabs. This division is chosen so that each slab
at a given level of recursion contains roughly the same number of objects (segment endpoints and
query points). The first level of recursion divides the plane into P slabs, each containing ©(n/P)
input elements. Viewing the recursion as a rooted tree defines leaf invocations and children of a
non-leaf invocation. An invocation on slab o at the k" recursive level is denoted as I%.

Each invocation I fj receives as input a y-sorted list Yak containing segments and query points.
The root invocation I]%Q contains all segments and query points of the input and the input Yﬂ% is
generated by sorting the horizontal segments and query points by the y-coordinate. For a non-leaf
invocation I¥, let JE+1 TFFL T denote its child invocations. The input ij“ for a child

)02)TOK
invocation [, 5J+1 consists of the y-sorted list of segments in Y* with an endpoint in o; and the query
points in o;. In processing I, fj, we consider all the children slabs of o: 01,09,...,0x and compute
a segment lg—j € Yf for all query points ¢ € o}, that is the highest segment lower than ¢ and spans
oj. If lgj is higher than r,, we let r, := lgj. Thus, r, always stores the highest segment lower than
q that spans o; (and all its parent slabs).

At every leaf invocation [fj, the highest segment below the query points are found using sequen-
tial I/O-efficient distribution sweeping technique as described in the previous section. This is then
compared to the current stored value r, and the maximum of the two values is stored in 7.

To compute the values of I¢, for all child slabs, we process them using the P processors as
follows: We partition the input sets ¥ = UZ-YCfZ. into P equal chunks Y7,Y5,...,Yp based on the
y-coordinate, each one of size ©(n/P). Then, processor p; processes Y; using the sequential I/O-
efficient algorithm independently of others. Note, that this process sets the initial values of s, to
|_oo — a virtual horizontal line y = —oco. Thus, if at the end of the process g, = [_., for some
query ¢ € Y; and there is a segment s € Yy, k < j such that s lies below g, then g, is still not set
correctly. To fix this, at the end of sequential sweep by each processor p;, p; saves the values of s,
for each of its slabs. These values are then processed by all processors in a way similar to segmented
prefix sums to propagate the values of s,, to the appropriate processors as follows. Assume, the
segment identifiers of segments increase with the increase in segments’ y-coordinates. Now consider
K independent prefix sums with max as the associative operator applied on the K - P values of
Sy, (one prefix sums on the values within a single slab). Finally, we initialize the value of s,, at
each processor p; to the final value (after the prefix sums) of s,, at processor p;_1 (in case of py,
S¢; = l_oo for all 0;) and repeat the sequential sweep by each processor. Note, the purpose of the
prefix sums is to propagate the values of last seen segment across multiple processors and after the
second sweep, all IZ, are set correctly.

The parallel 1/O complexity of the above algorithm is O(sortp(n)) 1/Os.

12

B Data representation and space efficiency of our implementa-
tions

We implement the segments and queries as a single vector of objects. To achieve this, we represent
each line segment and query point with a single 32-byte structure as follows. Using double precision
for the coordinates, we need 16 bytes to represent a point on a plane. Additional 8 bytes are used
for each segment to represent the x-coordinate of the second endpoint or for each query to record
the y-coordinate of the segment below it as an answer. Additional 4 bytes are used for the identifier
of each segment (we do not assume that segments have unique y coordinates, and therefore, they
cannot be identified with this ID field). The same field entry is used for recording the segment 1D
of the output for a query. Finally, we need at least one boolean value for distinguishing a segment
from a query. However, since memory allocation in C++ is aligned at 4 byte memory intervals, the
last field of the structure takes up at least 4 bytes. While keeping segments and points as a single
object type might cost extra 4 bytes of memory for each item, this approach has the advantage of
simplifying computations and internal data structures for the slabs as we no longer need to keep
separate lists for query points and line-segments, but can keep a single sorted list.

Let s be the number of segments in the input and ¢ be the number of query points in the
input, i.e., n = s+ ¢. The sequential distribution sweeping can be implemented to use space taken
up by up to 3s + 2¢q objects. This number arises from the fact that during distribution we might
create up to two copies of each segment (one for each end point) to be placed into child slabs. In
addition the distribution at each recursive level cannot be performed in place and, hence, we need
to allocate additional 2s + ¢ memory during the process. In practice to achieve this bound, one
needs to know exactly how many objects will be distributed to each child slab. This would require
an additional pass over the data to count the the sizes of each child slabs, increasing the running
time by a factor of 2. Instead, we use dynamic arrays (e.g., vectors in C++ STL) which grow
automatically when the data exceeds the preallocated capacity. During the resizing, the contents
of vectors are copied over into the newly allocated vector, seemingly resulting in the same double
the running time. However, copying a vector is performed using low level memory copying routines
which are more efficient than traversing the input twice. In addition, we utilize the fact that we
run our experiments on uniformly distributed data. By allocating 10% more space than 1/K-th
fraction of the total data to be distributed to K children, with high probability no child exceeds
the preallocated space.

C On the right choice of P

The PEM model prescribes algorithms for an architecture which contains a private cache per
processor connected with an independent channel to the shared memory. The PEM algorithms
measure the number of parallel 1/Os performed. If the bandwidth of channels is fully utilized,
increasing the number of processors without increasing the number of memory channels would not
result in reduced parallel 1/Os. In reality, modern multicores have much fewer memory channels
than there are cores so an interesting question is whether it is beneficial to increase the number of
processors beyond the number of memory channels.

The Intel i7 system contains 3 memory channels and implements hardware counters which
record overall DRAM accesses per each channel. Interestingly, throughout the computation, one of
the channels recorded no DRAM accesses, while the other two channels shared the traffic to DRAM

13

Running time of components as a fraction of total runtime Running time of components as a fraction of total runtime

d i
\\ §§\§
"o \\\\ \\\ "o sg\\\\i\\\\ss\\\\\\\\\ .

02\

0 0 NNNNNN
8K 16K 32K 64K 128K 8K 16K 32K 64K 128K 256K

M M

Figure 6: Task break-down as a percentage of the total running time for a sequential distribution sweeping on the
AMD Opteron 6168 with n = 102.4 - 10° objects (left) and Intel i7 with n = 51.2 - 10° objects (right). The different
tasks are (a) loading the input from file, (b) initial sorting of the input by y-coordinate, (c) total time taken by
distribution of of objects into child slabs, (d) total time take by plane sweep algorithm at the base of the recursive
calls and (e) misc. bookkeeping not included in all of the above.

unevenly. The discrepancy in traffic load between the two channels decreased with higher number
of cores used. We cannot explain the reason why the system did not use all memory channels and
this is worth further investigations.

We could not measure the bandwidth utilization of the memory channels. However, we did
measure the IPC — an average number of instructions executed per clock cycle. The results showed
IPC on the Intel i7 system being close to 1 regardless of number of cores used for the distribution
sweeping implementation. However, for the planesweep implementation the IPC dropped down to .7
for large inputs. This leads us to believe that the random access of planesweep results in inefficient
use of the memory bandwidth. At the same time full cache line transfers of the distribution sweeping
implementation barely saturates the memory channels even with all 4 cores running 2 threads each.

D Effect of parameters K and M on runtime.

Figure [6] shows how much each task takes as a fraction of total runtime as we vary the threshold
parameter M. One can see that by reducing M down to the L.2 cache size results in faster combined
execution time of all invocations of the plane sweep algorithm at the base case of the recursion.
This is due to the fact that the binary search tree T" used for the plane sweep algorithm fits in the
faster L2 cache.

However, this decrease in runtime of the base case is offset by the increase in the runtime of
the distribution sweeping phase due to the following reason. Recall that K = min{n/M,M/B}.
If K = n/M, larger value of M results in increase of K — the number of slabs to distribute the
objects at each recursive level. While the number of slabs is still small enough to fit in cache,
and, therefore, there is no increase in cache misses, the time it takes to identify the slab where
to distribute each item takes O(log K) internal computation time, i.e. it grows with K. If, on
the other hand, M decreases so much that K = M /B, the number of recursive levels grows as a
function of logg (n/M). Thus, decrease in K results in more recursive levels which in turn results
in more scans of the input and, therefore, more (capacity) cache misses.

We also observed that setting M equal to exactly the size of a cache does not result in the best

14

runtimes. This can be explained by the more complex nature of caches, such as set associativity and
the replacement policy: the external memory model assumes fully associative cache with optimal
replacement policy, while modern architectures implement set-associative caches with (most likely)@
the Least Recently Used (LRU) replacement policy. To achieve the best results we set M to a
quarter of the L3 cache size for the Intel i7 architecture and a third of the L3 cache size for the
AMD Opteron architectures.

Since the caches are shared among subsets of processors, in case of the parallel execution, our
initial intuition was to reduce M by the number of processors sharing the cache. However, our
experiments showed that this is unnecessary and the same M as for the sequential implementation
works just as well in the parallel implementation.

This can be explained by the fact that in our experiments, K = n/M which constitutes a
much smaller portion than the L3 cache. Therefore, during the parallel distribution sweeping,
maintaining one block for each child slab in cache and maintaining for each processor the tree T”
of size 2 - K for work-optimal distribution sweeping does not interfere with other processors’ cache
data.

E Effect of segment type on the performance of point location
algorithms

To analyze the behavior of our algorithms on segments of varying lengths, we first generate the
line-segments in different ways:

Random segments: Our first input set is a set of random line-segments in the grid. The
random lines are generated by selecting a random y-coordinate and two random x-coordinates in
the grid. Thus, the expected length of the line segments is O((Grid Size)).

Short segments: Here, n line segments are generated with length chosen uniformly at random
between Grid Size/n and 4 - Grid Size/n.

Medium segments: Here, n line segments are generated with length chosen uniformly at
random between Grid Size/y/n and 4 - Grid Size//n.

Long segments: Here, we generate line segments with lengths chosen uniformly at random
between Grid Size/4 and 3 - Grid Size/4.

In Figures[7through @one can see how different sizes of segments affect the running times of our
different implementations. We observe that the plane sweep (Figure [7) performs much worse on the
long segments than on the short segments. This is because the expected number of short segments
intersecting any vertical line is expected to be constant and the set of active segments A fits in cache
at all times. Thus, the updates and predecessor queries on A do not incur any additional cache
misses. On the other hand, the number of long segments intersecting any vertical line is expected to
be linear with the input size and the traversal of T" will incur a lot of cache misses. Contrast this with
the runtimes for sequential (Figure B) and parallel (Figure []) distribution sweeping algorithms for
the different segment sizes, which show much smaller variance of runtimes as a function of different
segment lengths. This confirms that the results that Chiang [I1], 12] observed 17 years ago still
hold on modern architectures.

4Tt is hard to determine the true replacement policy because processor manufacturers keep this information con-
fidential.

15

Figure 7:

Running time per element Running time per element
14 T T T T T T T 12 T T T
Random —— Random ——
Long Long

12 F Medium % 1 10 } Medium ---x]
o Short e o Short e
% 10 &
£ I 1 £
£ c 8r 1
s el - 5
5 5 °f]
© 6 1 °
g % g 4
o 4 1)
£ £
= =

2t 4 2

= — = e x x
0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4 0.4 12.8 25.6 38.4 51.2
n (in millions) n (in millions)

6168 (left) and Intel i7 (right) systems as a function of input size.

Figure 8: Runtimes for small, medium, long and randomly sized segments for the sequential distribution sweeping

Runtimes for small, medium, long and randomly sized segments for the plane sweep on AMD Opteron

Running time per element Running time per element
Random —— i i i i i Random —— i i
Long Long

Medium % 2.5 } Medium --x 4
o Short @ o Short @
Q Q
n n
£ £
= o e
g s
g 25 1 £ 15F N 1
[} [7} e
e 2 1 © I
@ @ x
S 15 1 S R a
£ £ o
- 1 1 = o5l]

05 4
0.4 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4 0.4 12.8 25.6 38.4 51.2
n (in millions) n (in millions)

on AMD Opteron 6168 (left) and Intel i7 (right) systems as a function of input size.

Running time per element Running time per element

1.1 T T T 0.8 T T T

| Random —— Random ——

1.0 Long L 07k Long]

Medium - -* | Medium -x

S 09 Short e o Short s
o ® 06} 1
b7}] 17}
£ £
£ 4 £
€ €
[} 1 [}
£ £
o . o
[} a o [}
9] 1 9]
o Q
o)] o)
£ £
o022}] =

01f 1 oLr 1

0.4 12.8 25.6 38.4 51.2 0.4 12.8 25.6 384 51.2
n (in millions) n (in millions)

Figure 9: Runtimes for small, medium, long and randomly sized segments for the parallel distribution sweeping on
AMD Opteron 6168 (left) and Intel i7 (right) systems as a function of input size. The results are for the maximum
number of threads for each system.

16

	1 Introduction
	2 Computational Models
	3 1-D Stabbing Max Algorithms
	4 Implementation Details
	5 Experiments
	6 Conclusions And Future Work
	A Details of the PEM solution
	B Data representation and space efficiency of our implementations
	C On the right choice of P
	D Effect of parameters K and M on runtime.
	E Effect of segment type on the performance of point location algorithms

