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Abstract. Motivated by cascade effects arising in network technology
upgrade processes in the Internet, Goldberg and Liu [SODA, 2013] re-
cently introduced the following natural technology diffusion problem.
Given a graph G = (V,E), and thresholds θ(v), for all v ∈ V . A vertex
u activates if it is adjacent to a connected component of active nodes of
size at least θ(v). The goal is to find a seed set A whose initial activation
would trigger a cascade activating the entire graph.
Goldberg and Liu presented an algorithm for this problem that returns a
seed set of size O(rl log(n)) times that of an optimum seed set, where r
is the diameter of the given graph, and l is the number of distinct thresh-
olds used in the instance. We improve upon this result by presenting an
O(min{r, l} log(n))-approximation algorithm. Our algorithm is simple
and combinatorial, in contrast with the previous approach that is based
on randomized rounding applied to the solution of a linear program.

Keywords: Approximation Algorithms, Technology Diffusion, Combi-
natorial Optimization

1 Introduction

Networks connecting autonomous entities are pervasive in today’s world, and
it is not surprising that their various properties are the subject of a vast and
growing body of research (e.g., see the two books [2, 9]). In this paper, we focus
on the study of algorithmic aspects of diffusion processes and cascade effects in
such networks. How does a virus spread through a population of individuals, and
how quickly is a rumor propagated through the members of a group of friends?
Modeling dynamic network aspects like this has been an increasingly active sub-
area in its own right and we refer the reader to Kleinberg’s survey in [14] for an
introduction.

Our work here is specifically motivated by a question addressed by Domingos
and Richardson [1, 15] and their work on viral marketing. The authors studied
“word-of-mouth” strategies in advertising a new product. The authors posed the
following question: given a social network that connects potential customers, can
we identify a small seed set of influential individuals that, if initially convinced
to adopt a product, will eventually persuade all other customers to follow? The
authors propose a probabilistic model, and heuristics to address this question.
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Kempe et al. [10] later recast the questions of Domingos and Richardson
in the language of discrete optimization. The authors single out two diffusion
models: the linear threshold [7, 16], and independent cascade [6] models. In this
paper, we will focus on adaptations of the former, where an individual’s inclina-
tion to adopt the product is a function of the behaviour of her immediate network
neighbours. Each edge uv ∈ E has a weight buv such that the sum of weights
incident to a node v is at most 1. A vertex v adopts the product (activates) if
the total weight of active neighbours is at least her threshold θv. The goal in
the influence maximization problem is to find a minimum-size set of initially
active seed vertices A that cause all vertices to eventually adopt the product.
In [10], the authors proved that this problem is NP-hard, and presented several
approximation algorithms.

The threshold model described above is inherently local as a player’s be-
haviour is only impacted by immediate network neighbours. Goldberg and Liu [5]
recently pointed out that locality may not adequately model network external-
ities [12]; the authors argue that the standard threshold model used by Kempe
et al. is a particularly unsuitable model for cascade effects arising in technol-
ogy upgrade processes in the Internet [4, 8]. The authors propose a generalized
threshold model in which a vertex’ utility is influenced by the size of its con-
nected component in the graph of active nodes. We describe this model formally
next.

1.1 Non-local threshold model

Consider a network G = (V,E) connecting a population of individuals, each
of which has a threshold θ(v) ∈ {θ1, . . . , θl}. Choose a seed set A0 ⊆ V of
vertices that are initially active. Goldberg and Liu describe the following diffusion
process: in any step i ≥ 1, the set of active vertices Ai consists of all previously
active vertices Ai−1 and vertices v whose connected component in the graph
G[Ai−1 ∪ {v}] induced by Ai−1 and v has size at least θ(v). The smallest t such
that v ∈ At is called the activation time of v.

In the technology diffusion (TD) problem, we want to find a minimum-
cardinality seed set A0 such that the above process yields the activation of all
vertices in V .

1.2 Goldberg-Liu and our results

Following the notation of [5], we let r be the diameter of G; i.e., if P (u, v) is the
smallest number of edges on any u, v-path in G, than we let r be the maximum of
P (u, v) over all pairs u, v of vertices. We also use l for the number of thresholds
of the given TD instance, and assume that

θ1 < θ2 < . . . < θl.

We useA∗0 for the seed set of an optimum solution. Goldberg and Liu showed that
TD is as hard to approximate as set-cover, and hence, no o(log(n))-approximation
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may exist unless NP has nO(log log(n))-time deterministic algorithms [3]. In the
same paper the authors propose an O(rl log(n))-approximation. Our main result
is the following improvement over Goldberg and Liu’s work.

Theorem 1. There is an O(min{r, l} log(n))-approximation algorithm for TD.

The algorithm is obtained in two steps. We first describe an O(r log(n))-
approximation by reducing an instance of TD to one of submodular set-cover [17].
In order to obtain an O(l log(n))-approximation, we reduce the problem to an
instance of the quota version of the node-weighted Steiner tree problem [11, 13].
Both of our algorithms are substantially simpler than those presented in [5], and
are deterministic and combinatorial while Goldberg and Liu’s methods relied on
randomized rounding applied to the solution of a linear program. We complement
our algorithmic improvements with the following negative result.

Theorem 2. TD is as hard to approximate as the quota-version of the unit-
weight node-weighted Steiner tree problem.

The above theorem is as strong as that given in [5] as the quota-version of
the unit-weight node-weighted Steiner tree problem generalizes set cover, and at
the same time it is based on a simpler reduction. Although the above theorem
does not immediately imply any new hardness result for TD, it show that TD
with only two thresholds is already as hard to approximate as the quota-version
of the unit-weight node-weighted Steiner tree problem, and this may indicate
the need for new ideas to shave off the min{r, l} factor in our result in Theorem
1.

2 An O(r log(n)) approximation algorithm for TD

In this section we develop an O(r log n) approximation algorithm for TD. In the
following, we use A∗0 for an optimum seed set, and let A∗t be the set of vertices
that are activated at the end of round t of the dynamics described in Section
1.1.

We begin by obtaining a good lower-bound on the cardinality of A∗0. For a
threshold θi and a vertex v, let Gθiv be the subgraph induced by v and all vertices
of G with threshold at most θi:

Gθiv = G[{v} ∪ {u|θ(u) ≤ θi}].

Note that Gθiv may in general be disconnected. In the following, let Γ (θi, v)
be the vertex set of the connected component of Gθiv containing v. Note that,
by definition, v ∈ Γ (θi, v). Similarly, for a general set of vertices S ⊆ V , we
define Γ (θi, S) =

⋃
v∈S Γ (θi, v). For ease of notation, we let θ0 = 0, so that

Γ (θ0, S) = S for every S ⊆ V .

Lemma 21 For all θi ∈ {θ0, . . . , θl−1}, |Γ (θi,A∗0)| ≥ θi+1 − 1.
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Proof. Consider a threshold θi. If for all vertices v /∈ A∗0 we have θ(v) ≤ θi, then
by definition Γ (θi,A∗0) = V and therefore |Γ (θi,A∗0)| = |V | ≥ θi+1 − 1.

Now assume that there is a vertex v /∈ A∗0 with threshold at least θi+1. In
particular, among such vertices, let v be one with smallest activation time t;
i.e., v ∈ A∗t \ A∗t−1. Directly from the definition we now see that v’s connected
component in G[A∗t−1 ∪ {v}] has at least θ(v) = θi+1 vertices, and among these,
only v has threshold larger than θi. Thus A∗t−1 ⊆ Γ (θi,A∗0), and |A∗t−1| ≥
θi+1 − 1. The lemma follows.

By the previous lemma, we can conclude that the size of the minimum cardi-
nality subset of vertices S satisfying |Γ (θi, S)| ≥ θi+1 − 1 for all 1 ≤ i < l, gives
us a lower bound on |A∗0|.

Corollary 22 An optimal solution S∗ to the following minimum threshold prob-
lem

min
S⊆V
{|S| : |Γ (θi, S)| ≥ θi+1 − 1, ∀ 0 ≤ i < l}. (MT)

has size at most A∗0.

The above corollary suggests the strategy to follow in designing an approxi-
mation algorithm. First, we will search for a vertex set that is a good approximate
solution to the minimization problem (MT), and then we will slightly adjust it
to turn it into a feasible solution for the technology diffusion problem. As a first
step, we present an O(log(n))-approximation algorithm for (MT) by reducing it
to the submodular set-cover (SSC) problem. The input to an instance of SSC is
a universe U , and a submodular function f defined over the subsets of U . Recall
that f is submodular, whenever it satisfies

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

for all A ⊆ B ⊆ U and for all e ∈ U \B. Given a cost ce for all e ∈ U , the goal
is now to find a minimum-cost set T ⊆ U such that f(T ) = f(U). The problem
clearly generalizes the set-cover problem, and admits an O(log(maxe∈U f({e})))-
approximation [17].

Theorem 23 There is an O(log n)-approximation algorithm for (MT).

Proof. As promised, we achieve the result by reducing (MT) to SSC. Let

U = V = {v1, . . . , vn}

be the universe of the SSC instance. For each threshold θi, 0 ≤ i ≤ l, we define
function fi by letting

fi(D) = min{|Γ (θi, D)|, θi+1 − 1},

for all D ⊆ U . It is an easy exercise to show that fi is indeed submodular for all
i, and hence, so is their sum f , defined by

f(D) =

l−1∑
i=0

fi(D),
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ALGORITHM 1: SelectSeedSet1
Input: Graph G = (V,E), thresholds θ.
Output: A seed set Ar

0.
Ar

0 = ∅
Compute a solution D to the instance of (MT) according to Theorem 23
While D 6= ∅ Choose v ∈ D and add it to Ar

0

If (G[S] is not connected)
Compute a shortest v, S-path P in G
Add the vertices of the path P to Ar

0

Remove v from D

for allD ⊆ U . Consider the SSC instance with groundset U , submodular function
f , and unit cost for each e ∈ U . Suppose that S∗ is an optimal solution to (MT)
and note that

f(S∗) =

l−1∑
i=0

fi(S
∗) =

l−1∑
i=0

θi+1 − 1 = f(U).

Thus, an optimal solution D∗ of the SSC instance defined above has cardinality
at most |S∗|. Finally note that

f(U) =

l−1∑
i=0

(θi+1 − 1) ≤ n2,

and the algorithm of [17] therefore returns a setD ⊆ U of size at mostO(log(n))|S∗|.
By definition, f(D) = f(U) =

∑l−1
i=0 θi+1 − 1, and therefore fi(D) = θi+1 − 1,

for all i = 0, . . . , l − 1. But this implies that |Γ (θi, D)| ≥ θi+1 − 1 for all such
i, and thus, D is a feasible solution to the instance of our minimum threshold
problem.

We are now ready to give our O(r log n)-approximation algorithm for the
technology diffusion problem.

Theorem 24 Algorithm 1 is an O(r log n)-approximation algorithm for TD.

Proof. Given an instance of the technology diffusion problem, Algorithm 1 first
computes a solution D to the instance of the minimum threshold problem defined
by G and θ, according to Theorem 23. Note that Theorem 23 and Corollary 22
imply |D| = O(log n)|A∗0|. Then, the algorithm constructs the connected seed
set Ar0 from D as follows.

The algorithm adds to Ar0, one by one, each vertex v ∈ D: after each addition,
if the vertex v is not adjacent to any vertex in the current set Ar0, the algorithm
also adds to Ar0 the vertices of a shortest v, S-path P . Note that P has at most r
new vertices. Therefore, eventually the set Ar0 output by the algorithm has size
≤ r |D| ≤ O(r log n)|A∗0|.

Finally, we argue that Ar0 is a feasible solution to our instance of the tech-
nology diffusion problem.
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By induction, we prove that if we start the technology diffusion process with
the seed set Ar0, all of the vertices in Γ (θi,Ar0) will be activated at some time
t < ∞, for all 1 < i ≤ l. Since Γ (θl,Ar0) = V , this will prove feasibility for our
seed set Ar0.

By definition, Γ (θ0,Ar0) = Ar0 and G[Ar0] is connected and contains at least
θ1−1 vertices. Assume now that all vertices in Γ (θi,Ar0) are activated, for some
i ≥ 0. By the definition of our minimum threshold problem, the set D computed
by the algorithm in its first step is such that |Γ (θi, D)| ≥ θi+1 − 1 and since
D ⊆ S, |Γ (θi,Ar0)| ≥ θi+1 − 1. Therefore, Γ (θi,Ar0) is a set that induces a
connected subgraph of activated vertices of size at least θi+1 − 1. This implies
that all the vertices in Γ (θi+1,Ar0) will be activated after some finite time.

3 An O(l log(n)) approximation algorithm

In this section, we give an O(l log n)-approximation algorithm for the technology
diffusion problem. We recall from [5] that we may, w.l.o.g., limit our search to
seed sets that induce connected activation sequences.

Definition 1. A seed set A0 induces a connected activation sequence with an-
chor s if there is a permutation v1, . . . , vn of vertices so that (i) s = v1, (ii) for
all 1 ≤ t ≤ n, vertices v1, . . . , vt−1 induce a connected component in G and vt is
adjacent to it, and (iii) vt is in A0 whenever t < θ(vt).

[5] showed that there is a choice of anchor such that the size of a minimum
cardinality seed set inducing a connected activation sequence is at most twice
the size of an optimal seed set.

Lemma 31 ([5]) Given an instance of TD, let A∗0 be the optimal seed set. There
is a choice of anchor s ∈ A∗0 such that the minimum-cardinality seed set Ac that
induces a connected activation sequence anchored at s has cardinality at most
2|A∗0|.

Given the above lemma, we will from now on assume that we know anchor
vertex s, and will search for a seed set that induces a connected activation
sequence anchored at s.

The key insight in our algorithm is its connection with the quota-constrained
node-weighted Steiner Tree (qNST) problem. In an instance of qNST we are
given an undirected graph G = (V,E), a root vertex s ∈ V , vertex weights w(v)
for all v ∈ V , and a quota Q ∈ Z+. The goal is to find a tree T containing s ∈ T ,
that spans at least Q vertices, and has smallest weight w(T ) =

∑
v∈V (T ) w(v).

This problem is known to have an O(log n)-approximation algorithm.

Theorem 3 ([11, 13]). There is a polynomial time O(log n) approximation
algorithm for qNST.
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ALGORITHM 2: SelectSeedSet2
Input: Graph G = (V,E), thresholds θ and a vertex s.
Output: A seed set Al

0.
Al

0 = ∅
for i = 1 . . . l do

For each v ∈ V , set wi(v) = 0 if θ(v) < θi and wi(v) = 1, otherwise
Find an O(logn)-approximate tree Ti for the instance (G, s, wi, θi − 1) of
qNST problem
Add to Al

0 each vertex v ∈ Ti with wi(v) = 1
end

We now show how to use the above theorem to give anO(l log n)-approximation
for the technology diffusion problem. Algorithm 2 runs in l steps. In each step
i, we define a weight function wi(v) = 1 for all v : θ(v) ≥ θi, and wi(v) = 0
otherwise, and find an O(log n)-approximate minimum wi-weight tree containing
s and covering at least θi − 1 vertices. This can be done in polynomial time as
stated in Theorem 3.

We now argue that (i) the set Al0 output by the algorithm is a feasible seed
set and (ii) the cardinality of Al0 is O(l log n)|A∗0|.

Lemma 32 Algorithm 2 outputs a feasible seed set Al0.

Proof. By induction on i, we prove that Al0 activates all the vertices in Ti at
some time t < ∞. This implies that Al0 activates θi − 1 vertices which form a
connected component. For i = l, this would lead to the result since if there is a
connected component C of activated vertices of size at least θl − 1 at some time
t, clearly all non-activated vertices adjacent to C will become activated at time
t+ 1, and therefore eventually all vertices in V will be activated.

In the first step, the algorithm finds a set T1 of θ1−1 vertices and adds all of
them to the seed set Al0, since w1(v) = 1 for every vertex v. For i > 1, assume
that all vertices in Ti−1 are activated at time t. Clearly they form a connected
component of size at least θi−1−1. Consider the set Wt of non-activated vertices
in Ti \ Ti−1 at time t. If Wt = ∅, we are done. If not, clearly there is a subset
W ′ ⊆Wt of vertices that are adjacent to the connected component formed by the
vertices in Ti−1: this is because Ti ∩ Ti−1 6= ∅, since both contains the vertex s.
Note that a vertex u ∈W ′ cannot have wi(u) = 1, since otherwise the algorithm
would have added it to Al0, and therefore u would be activated, a contradiction.
It follows that wi(u) = 0, i.e. θ(v) ≤ θi−1 and therefore it becomes activated at
time t+ 1. If we now consider the set Wt+1 we have that Wt+1 ⊂Wt: so we can
repeat this process till eventually all vertices in Wt become activated.

Lemma 33 In each phase i, Algorithm 2 adds to Al0 a number of vertices equals
to wi(Ti) = O(log n)|A∗0|.

Proof. Consider the connected activation process starting with the seed set Ac.
Let t be the first time in which at least θi − 1 vertices forming a connected
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component are activated. If a vertex v with θ(v) ≥ θi is active at time t, then v
must be in the seed set Ac. Note that Act contains a tree T ∗i of at least θi − 1
vertices and wi(T

∗
i ) is exactly the number of vertices in T ∗i with threshold ≥ θi.

Since Ti is an O(log n)-approximate minimum wi-weight tree, it follows that
wi(Ti) ≤ O(log n)wi(T

∗
i ) ≤ O(log n)|Ac|. The lemma follows from Lemma 31.

Lemma 33, Lemma 32 and Lemma 31 imply:

Theorem 34 Algorithm 2 is an O(l log n) approximation algorithm for tech-
nology diffusion problem.

Theorems 24 and 34 together provide a proof of Theorem 1.

4 Complexity

We now provide a proof of Theorem 2, and show that TD with only two thresh-
olds is as hard to approximate as 0, 1-cost qNST. Our reduction is simpler and
at the same time as strong as that given in [5] as 0, 1-cost qNST generalizes set
cover.

Consider an unrooted instance of qNST on graph G = (V,E) with weights
w(v) ∈ {0, 1} for all v ∈ V , and quota Q. We define an instance of TD as follows.
For every vertex v ∈ V (G), let θ(v) = Q if w(v) = 1 and let θ(v) = 1 if w(v) = 0.

First assume that T is a solution for the given qNST instance of cost k. Then
let A0 be the set of k weight 1 vertices of T . Since all other vertices of T have
threshold 1, using seed set A0 will lead to the activation of all vertices of T .
Since T spans at least Q vertices, and all thresholds are at most Q, all other
vertices will eventually be activated. Hence, the constructed TD instance has a
solution of size at most k.

Now let A0 be a valid seed set of size k for the TD instance. If there is no
vertex in V \ A0 with threshold Q then all vertices not in A0 have weight 0.
Thus, any spanning tree T of G has weight at most |A0| = k.

Now assume that there is a vertex v ∈ V \A0 with threshold Q. Pick such a
vertex with smallest activation time t. By definition, the connected component
T containing v in G[At−1 ∪{v}] has at least Q vertices. Moreover, all but one of
the weight-1 vertices in T are also in A0. Thus, the weight of T is at most k+ 1.

As we discussed in previous section, we can solve the technology diffusion
problem using an algorithm for qNST which together with the discussion above
shows that the technology diffusion problem with two threshold is essentially
equivalent to 0, 1-weight qNST.

5 Further Work

Using the threshold model proposed by Goldberg and Liu, we studied the prob-
lem of finding a smallest seed set whose activation triggers a cascade that even-
tually activates the entire population. We presented improved approximation
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algorithms for this problem, and pointed out challenges standing in the way of
further improvements.

Many open problems remain. For example, given a target value Q, can we find
a small seed set whose activation triggers the activation of at least Q vertices?
Or, given a parameter k, we could be looking for a seed set of size at most k
such that the largest number of vertices are activated.

Another natural generalization is the weighted version of TD where each
vertex v ∈ V has an associated cost cv, and the goal is to find a minimum-cost
seed set activating all vertices. Unlike the unit-cost version in which the optimal
solution inducing connected activation sequence approximates the optimal solu-
tion within factor of two, there is an arbitrarily large gap between these two for
version of the problem with costs.

This can be easily seen by way of the following example. Consider a star
graph with n+1 vertices such that the threshold of every vertex is n+1. Let the
cost of each leaf vertex be 1

n while the cost of the vertex at center of the star be
an arbitrary large value C. Then, the optimal solution is the set of leaf vertices
with total cost of 1 while the cost of any optimal solution inducing a connected
activation sequence is at least C as it must contain the vertex at the center.
This suggests that one should seek other approaches for solving the version of
problem with vertex costs.
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