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Abstract. Consider a set of d-dimensional points where the existence
or the location of each point is determined by a probability distribution.
The convex hull of this set is a random variable distributed over exponen-
tially many choices. We are interested in finding the most likely convex
hull, namely, the one with the maximum probability of occurrence. We
investigate this problem under two natural models of uncertainty: the
point (also called the tuple) model where each point (site) has a fixed
position si but only exists with some probability πi, for 0 < πi ≤ 1, and
the multipoint model where each point has multiple possible locations
or it may not appear at all. We show that the most likely hull under
the point model can be computed in O(n3) time for n points in d = 2
dimensions, but it is NP–hard for d ≥ 3 dimensions. On the other hand,
we show that the problem is NP–hard under the multipoint model even
for d = 2 dimensions. We also present hardness results for approximating
the probability of the most likely hull. While we focus on the most likely
hull for concreteness, our results hold for other natural definitions of a
probabilistic hull.

1 Introduction

We study the problem of computing the most likely convex hull of n uncertain
points. The problem is fundamental in its own right, extending the notion of min-
imal convex enclosure to probabilistic input, but is also motivated by a number
of applications dealing with noisy data. Before formalizing the problem, let us
mention some motivating scenarios for our problem. In movement ecology [12,
13], scientists track the movements of a group of animals using sensors with the
goal of inferring their natural “home range”. The ecologists have long known
that the smallest convex polygon containing all possible locations visited by the
animals is a gross overestimation of the home range, due to the outlier problem,
and instead have begun to consider probability-based isopleths. The most likely
hull is one possible tool in this analysis: use a discrete set of landmarks (points),
assign probability to each based on the frequency of the animals’ visits to the
landmarks, and compute the most likely convex hull of this probabilistic set of
points as the most probable home range. As another example, consider moni-
toring of a large geographic area for physical activity (e.g., earthquake tremors).
After collecting data over a period of time, we want to estimate the most likely
region of activity. Since the value of a prediction decreases sharply with the
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rate of false positives, we want to find the tightest region for expected activity,
and the most likely hull is a natural candidate. Finally, as a growing number of
applications rely on machine learning and data mining for classification, we are
inevitably forced to work with data whose attributes are inherently probabilis-
tic. Computing meaningful geometric structures over these data is an interesting,
and challenging, algorithmic problem. The most likely hull is a convenient vehi-
cle to investigate these types of problems, although our methods and results are
applicable more broadly, as discussed later.

In the point model of uncertain data,1 the input is a pair (S,Π), where
S = {s1, s2, . . . , sn} is a set of n points (sites) in the d-dimensional space, and
Π = {π1, π2, . . . , πn} is a probability vector with the interpretation that site si
is active (namely, present) with probability πi. The probabilities πi are mutually
independent. Thus, a random instance of (S,Π) includes each point si with
an independent probability πi. The convex hull of (S,Π) is a random variable,
which assumes values over the convex hulls of the (at most) 2n possible subsets.
We are interested in computing the most likely convex hull for (S,Π).

The multipoint model generalizes the point model to incorporate locational

uncertainty. The ith point of the input is described as
(
{s1i , π1

i }, . . . , {skii , πkii }
)

,

with the interpretation that the point appears at the position sji with probability

πji , for j = 1, 2, . . . , ki. Different points can have a different number of possible
locations ki, but for simplicity we assume that the total number of locations is
linear. Finally, we allow

∑ki
j=1 π

j
i < 1 to include the possibility that the ith

point does not exist at all, thus achieving a strict generalization of the point
model.

Our first result shows that the most likely hull of 2-dimensional points in
the point model can be found in O(n3) time. We then show that the problem
becomes NP-hard for dimensions d ≥ 3. We also show that approximating the
probability of the most likely hull is provably hard. In particular, computing a
hull whose likelihood is within factor 2−O(n1−ε) of the optimal is NP–hard. This
is nearly tight because a factor-(2−n) approximate hull is easily computed by a
simple greedy algorithm. Under the multipoint model, we show that the most
likely hull problem is NP-hard even in two dimensions, and also inapproximable
to a factor better than 2−O(n1−ε) unless P=NP. While we focus on the most
likely hull as a natural and concrete example, our algorithms and techniques
apply more broadly to other possible ways of defining a probabilistic convex
hull.

Related Work. Uncertainty in geometric computing has been studied in a few
different ways. In [16, 17], Löffler and van Kreveld have considered problems on
“imprecise” objects: each object, such as a point, can be anywhere inside a simple
geometric region. For instance, given a set of imprecise points, one can ask for the
maximum possible area of the convex hull of these points. However, this line of

1 The point model is also called the tuple model in database research,and has been used
for studying clustering, ranking etc. of uncertain multi-attribute objects, modeled
as points in d-space.
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research looks at the worst-case behavior, and not the stochastic behavior, which
is the main focus of our work. In a more closely related and interesting work [14],
Jørgensen, Löffler and Phillips, develop a general framework for geometric shape-
fitting problems and describe how the solutions to these problems vary with
respect to the uncertainty in the points. Another line of research has focused on
uncertainty caused by the finite machine precision [15, 18, 19]. The goal there is
to achieve robustness under bounded precision, and not to compute structures
that are most representative under a probability distribution. There also has
been extensive research in the database community on clustering and ranking of
uncertain data [4, 5, 10] and on range searching and indexing [1–3].

2 Two-Dimensional Most Likely Hull in the Point Model

In this section, we describe a dynamic programming algorithm for computing the
most likely hull of n points in the plane under the point model of uncertainty. For
simplicity, we assume that no three points are collinear, but the algorithm is eas-
ily modified to handle such degeneracies. We begin with some general technical
facts related to convex hulls of uncertain points in the point model.

Let (S,Π) denote the input to the uncertain convex hull problem in d-space.
A subset A ⊆ S occurs as an outcome of a probabilistic experiment with prob-
ability π(A) given by

π(A) =
∏
si∈A

πi ×
∏
si /∈A

πi

where we use the notation πi = (1 − πi). Given an outcome A, its convex hull
is denoted as CH(A). For a convex polytope C, we define its likelihood, denoted
L(C), as the probability that C is the convex hull of the random outcome of a
probabilistic experiment on (S,Π). In other words,

L(C) = Pr
[
CH(A) ≡ C

]
=

∑
A⊆S

CH(A)≡C

π(A)

The most likely hull of (S,Π) is the polytope C with the maximum value of
L(C). Our first lemma shows that L(C) can be written as a product of two
factors where the first factor involves only the vertices of C, and not all the sites
that fall inside C. Please see Appendix A for a proof.

Lemma 1. Let C be a convex polytope, V ⊆ S be its vertex set, and Sout ⊆ S
the set of sites lying outside C. Then, we have the following:

L(C) =
∏
si∈V

πi ×
∏

si∈Sout

πi,

Likelihood Contributions of Edges. We now describe how to find the most
likely hull for a 2-dimensional input under the point model. Our algorithm com-
putes, for each site si, the most likely hull with si as its lowest (minimum y-
coordinate) vertex, and then outputs the best hull over all choices of si. For ease
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of reference, let us call a convex polygon with si as its lowest vertex, a hull rooted
at si. We decompose the likelihood of a convex hull into several components, each
associated with an edge of the hull. The key to the computational efficiency is
to ensure that the component associated with an edge does not depend on the
hull in which the edge participates. Geometrically, we associate a wedge shaped
region with each edge, depending only on the choice of the lowest vertex, and
define the contribution based only on the sites contained in this wedge. We now
discuss this in more details.

Suppose we want to compute the most likely hull rooted at s1. Without loss
of generality, let s2, . . . , sm−1 be the sequence of sites (all lying above s1) in the
counter-clockwise order around s1, for (m− 1) ≤ n. Any hull rooted at s1 has a
subsequence of s1, . . . , sm−1 as its vertex set. Finally, for notational convenience,
we add an artificial site sm = s1 (a copy of the root point) with probability zero.

Given two sites si and sj , with 1 ≤ i < j ≤ m, we use sisj to denote the
directed edge drawn from si to sj . To each directed edge sisj , we associate a

region of space Rji . For an edge not involving s1 or its copy sm, namely sisj ,

for 1 < i < j < m, Rji is the region bounded by the segment sisj and the rays−−→s1si and −−→s1sj . See Figure 1a for illustration. For edges with the first endpoint
at s1, namely s1si, for 1 < i < m, Ri1 is the region bounded (on its left) by the
downward ray extending from s1 and the ray −−→s1si. The complementary region
of Ri1 is also important, and we call it Rmi , associated with the edge sism, which
is the reverse edge of s1si. See Figure 1b.

We now define the contribution of the directed edge sisj , denoted C(sisj), as

πi times the probability that none of the sites in the region Rji (except si and
sj) are present, including the sites that may lie below s1. That is,

C(sisj) = πi ×
∏
sk∈Rji

πk

The following lemma shows how these edge contributions help us compute the
likelihood of a convex hull C.

Lemma 2. Let C be a hull rooted at s1, with vertices s1, sα(1), . . . , sα(`) in the
counter-clockwise order. Then,

L(C) = C(s1sα(1))× C(sα(1)sα(2))× · · · × C(sα(`−1)sα(`))× C(sα(`)sm)
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Proof. Partition the space outside C into the regions Rα(1)1 , R
α(2)

α(1), . . . , R
α(`)

α(`−1), R
m
α(`)

by drawing a downward ray from s1 and drawing rays −−−−→s1sα(j) for each 1 ≤ j ≤ `.
(See Figure 1c for an example.) Then, by Lemma 1, it is easy to see that the
L(C) is the product of the contributions of the edges of C.

The contribution of each edge can be computed in constant time after an
O(n2)-time preprocessing, using a modified version of a triangle query data
structure of [11]. We give the details of this structure in Appendix B.

The Dynamic Programming Algorithm. Our dynamic programming al-
gorithm computes, for each edge sisj , the convex chain whose edges yield the
maximum product of contributions under the following constraints:

1. The sequence of vertices in the chain is a subsequence of s1, . . . , sm.
2. The first vertex of the chain is s1.
3. The last edge of the chain is sisj . (See Figure 1d for an example.)

We denote this maximum chain by T (sisj). With a slight abuse of notation, we
also use T (sisj) to denote the product of the edge contributions of this chain.
Clearly, all chains of the form T (sism) correspond to polygons rooted at s1,
and the one with the maximum contribution is the most likely hull we want.
Our dynamic programming formulation is fairly standard, and similar style of
algorithms have been used in the past for computing largest convex subsets [9,
6] and monochromatic islands [7].

We now describe an optimal substructure property crucial for our dynamic
programming algorithm. Consider a chain T (sisj). This, by definition, has the
maximum likelihood of all chains terminating with the edge sisj . If we remove
the last vertex sj of T (sisj), and the corresponding edge sisj , then the remaining
chain should be the optimal chain terminating at si that can be extended to sj
without violating convexity. In other words, the remaining chain is the maximum
among all chains T (sksi) (where 1 ≤ k < i) such that the path sk → si → sj is
a left turn. This implies the following recurrence:

T (sisj) =


C(s1sj) if i = 1

C(sisj) × max
1≤k<i

sk→si→sj is a left turn

(
T (sksi)

)
otherwise

We use this recurrence to compute all the chains T (sisj) as follows. We begin
by setting T (s1si) to C(s1si) for all 1 < i ≤ m. Then, we process all sites si in
increasing order of i. When we process a site si, we compute all chains T (sisj) by
using the previously computed chains. This can be done in O(n) time as follows.
Let Sprec be the set of sites {s1, . . . , si−1} and Ssucc be the set {si+1, . . . , sm}.
Let sβ(1), . . . , sβ(`) be the sites in Sprec in counter-clockwise order around si.

2

For each site sβ(u) in Sprec, we define s∗u to be the site sk among the sequence

2 This counter-clockwise order for all sites si can be precomputed in O(n2 logn) time.
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sβ(1), . . . , sβ(u) that maximizes T (sksi). The site s∗u can be computed for all sites
sβ(u) with a linear sweep of the sites in Sprec in order.

For each site sβ(u) in Sprec, we set the value T (sisj) to C(sisj)×T (s∗usj) for
all sites sj in Ssucc inside the wedge bounded by the lines ←−−−→sβ(u)si and ←−−−−→sβ(u+1)si.
(See Figure 2a.) Notice that the sites in this wedge are the sites that form a
left turn when connected to sβ(1), . . . , sβ(u) through si (the condition in the
recurrence relation). Note that, by considering the sites sβ(u) in radial order
around si, we can locate each site in the wedge of interest in constant time.

The processing of a single point si takes O(n) time, and thus we can find the
most likely hull rooted at s1 in O(n2) time, and the global most likely hull of P
in O(n3) time. The algorithm needs O(n2) space, dominated by the storage of
the T (·) values.

Theorem 1. The most likely convex hull of an uncertain point set defined by n
sites in the point model can be computed in O(n3) time and in O(n2) space.

3 Hardness of the 3-Dimensional Most Likely Hull

We now show that computing the most likely hull in 3 or more dimensions is
NP-hard in the point model. In particular, we give a reduction from the vertex
cover problem in penny graphs to the 3-dimensional most likely hull problem.

A penny graph is a graph G = (V,E) along with an embedding ρ : V →
R2 such that ‖ρ(u) − ρ(v)‖2 = 2 if (u, v) ∈ E, and ‖ρ(u) − ρ(v)‖2 > 2 if
(u, v) /∈ E, where ‖.‖2 denotes L2 norm. In other words, a penny graph admits
a planar drawing where vertices are represented as unit disks with pairwise
disjoint interiors, and two disks make contact if and only if there is an edge
between the two corresponding vertices. We denote the centers of the unit disks
by the points p1, . . . , pn, and the point of contact between two adjacent disks
with centers pi and pj by pij . The following simple observation about the penny
graph embedding (whose proof is given in Appendix C) will be critical in our
reduction. See Figure 2b for an illustration.

Lemma 3. ‖pk − pij‖2 ≥
√

3, for all k 6= i, j.

The vertex cover problem for penny graphs is to find the smallest subset
U ⊆ V of vertices such that every edge of the graph has an endpoint in U . This
problem was shown to be NP-hard in [8]. Our reduction relies on the following
simple but important property of the most likely hull in the point model, whose
proof is included in Appendix D.

Lemma 4. Any point (si, πi) with πi ≥ 1/2 is in the most likely hull.

The Reduction. Consider an instance of the vertex cover problem for a penny
graph G, with p1, . . . , pn being the disk centers of the embedding of G. We create
an instance of the most likely hull problem in three dimensions, as follows. All the
sites lie on one of the two paraboloids, P1 : z = x2+y2 or P2 : z = x2+y2−2. In
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particular, for each disk center pi, we create a site ui by vertically lifting pi onto
the paraboloid P2. All these points are assigned a fixed probability πi = α < 1

2 .

The sites on P1 are associated with the contact points pij but are not a
direct lifting of the contact points themselves. Instead, for each contact point
pij = (xij , yij), we define four new points pNij = (xij , yij + δ), pEij = (xij + δ, yij),

pSij = (xij , yij − δ), and pWij = (xij − δ, yij), for some δ > 0. (We set the value
of δ later.) Next, we add a set Xij of m arbitrary points inside the quadrilateral
formed by peij (e ∈ {N,E, S,W}). We lift each of the peij onto P1 to obtain a
site ueij , for e ∈ {N,E, S,W}, and each of these points is assigned a probability
of 1. Finally, the subsets Xij are lifted onto P1 to get subsets Yij , and each of
these points are assigned a fixed probability β > 1

2 . All these points, lying on
the paraboloids P1 and P2, along with their associated probabilities form the
input for our most likely hull problem.

The main idea of the reduction is that we want to “cover” each set Yij
by putting either ui or uj on the most likely hull. In the penny graph, this
corresponds to covering the edge associated with the contact point pij by the
vertex associated with pi or pj . We now describe this relation in more depth,
starting with a well-known lemma about the lifting transform. A proof of this
lemma is included in Appendix E for reference.

Lemma 5. Consider a point p ∈ R2, and let u(p) be its vertical projection
(lifting) onto the paraboloid P1, and H(p) the hyperplane tangent to P1 at u(p).
Then, the vertical projection u(p′) of all points p′ ∈ R2 at distance r from p lies
on a hyperplane parallel to H(p) whose vertical distance from H(P ) is r2.

The points ui’s (liftings of pi’s) lie on P2, which is a vertical downward shift
of P1. Now, if uij is the point obtained by lifting pij to P1, then by Lemma 5 the
points ui and uj are vertically 1 unit below the tangent plane of P1 at uij , while
the points uk (k 6= i, j) are at least vertically 1 unit above this plane by Lemma 3
(see Figure 2c). If we treat P1 as an “obstacle”, then ui and uj can “see” uij from
below, while the points uk (k 6= i, j) cannot. Thus there exists a small enough
δ > 0 such that Yij is contained in the convex hull of ueij (e ∈ {N,E, S,W})
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with either ui or uj , but not with uk (k 6= i, j). The following lemma, whose
proof is in Appendix F, describes a sufficient upper-bound on δ.

Lemma 6. If δ <
√

3−
√

2, then the points ui and uj can see the entire quadri-
lateral on P1 formed by ueij (e ∈ {N,E, S,W}) from below, but no uk (k 6= i, j)
can see any part of the quadrilateral from below.

Theorem 2. Computing the most likely hull in three dimensions is NP-hard.

Proof. We show that computing the likelihood of the most likely hull is NP-hard.
Given an instance of the vertex cover problem for penny graphs, we construct
an instance of the most likely hull problem in three dimensions as described
above (e.g., with δ = 0.25). We choose m, α, and β such that βm < α, and
α < 0.5 < β; e.g., m = 3, α = 0.25, and β = 0.6. By Lemma 4 all points on P1

must be on or inside the most likely hull, and so we only need to choose which
points ui (1 ≤ i ≤ n) are on the most likely hull. No point from a set Yij can
be on the most likely hull because then we could add either ui or uj to the hull
and increase the likelihood of the hull, since βm < α. Thus, the likelihood of the
most likely hull is determined by the number κ of points ui (1 ≤ i ≤ n) that are
on the most likely hull, and its likelihood is ακ(1−α)n−κ. Every point ui on the
most likely hull corresponds to a vertex of the penny graph, and by construction
and Lemma 6, these vertices form a vertex cover of the penny graph. Thus the
penny graph has a vertex cover of size κ if and only if the likelihood of the most
likely hull is at least ακ(1−α)n−κ. Finally, it is easy to see that the construction
can be performed in polynomial time.

The proof above directly implies that there exists no polynomial-time ( α
1−α )-

approximation algorithm to compute the likelihood of the most likely hull unless
P = NP . Although we can change the value of α to obtain a stronger bound,
we give a more general argument below.

Inapproximability. The likelihood of a hull is a product of terms. We show
that, under mild conditions, NP-hard optimization problems of this form cannot
be approximated well by a multiplicative factor, unless P = NP .

Let O = (I,F , f) be an optimization problem where I is the set of instances,
F is a function over I such that F(I) describes the set of feasible solutions for
instance I, and f is an optimization function over all feasible solutions. For an
instance I ∈ I, let |I| denote the size of I. We say that O is product composable
if, given any collection of problem instances I1, . . . , Ik ∈ I, we can construct a
new instance I∗ ∈ I in polynomial time (w.r.t. |I∗|) satisfying the following:

1. |I∗| = ∑k
i=1 |Ii|.

2. There is a bijection between F(I∗) and F(I1) × . . . × F(Ik) such that for
each solution S ∈ F(I∗) with the matching tuple (S1, . . . , Sk), f(S) =∏

1≤i≤k f(Si).
3. Given a solution S ∈ F(I∗), one can construct the solutions in its matching

tuple in polynomial time.
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In other words, we can form a new instance I∗ by combining the instances
I1, . . . , Ik in an independent way. We now state the following lemma, whose
proof is given in Appendix G.

Lemma 7. If a maximization problem O is product composable and cannot be
approximated within a constant c < 1 in polynomial time, then there exists no
polynomial-time 2−O(n1−ε)-approximation algorithm for O, where n is the size
of the instance and ε > 0.

Although the most likely hull problem is not product composable itself, this
property only needs to hold for a subproblem. The subproblem formed by the
instances used in our NP-hardness reduction is product composable, which easily
follows from the construction. We defer a detailed explanation of this property
to the full version of the paper.

Corollary 1. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-
mation algorithm for the most likely hull problem in three dimensions, unless
P=NP.

Finally we observe that one can trivially achieve 2−n-approximation of the
most likely hull problem as follows: simply take the convex hull of all sites with
probability at least 1

2 .

4 Most Likely Hull in the Multipoint Model

In this section, we show that computing the most likely hull in the multipoint
model is NP–hard even for two dimensions. (The technical definition of the
most likely hull under the multipoint model differs slightly from that of the point
model, but the following abridged description should be accessible without a need
for those details. A more complete formal description is included in Appendix
H.) Our proof uses a reduction from 3-SAT.

Consider a 3-SAT instance (V,U) where V is the set of the variables and U
is the set of clauses. We first construct 6|U | points on the unit circle. We call
these points the anchors and use them as permanent points (i.e., points with
probability 1) in our hull problem instance. Between each pair of consecutive
anchors, we place a single point on the unit circle that we call a spike. (See
Figure 3a.) We assign an independent existence probability of 1

2 to each spike.
As we will explain shortly, the main idea of our construction is that the most
likely hull includes all spikes in its interior if and only if the 3-SAT instance is
satisfiable.

For each variable v, we construct two additional sets of points, one corre-
sponding to the case that v is true and one corresponding to the case that v is
false. In particular, for each clause u that v appears in positive form, we con-
struct a point puv covering a single spike, at the intersection of the lines tangent
to the unit circle at the two anchors next to the spike. We assign each puv a
probability of 1

2 but this probability is dependent, as we will put pvu in the same
tuple with another point in the rest of the construction. We construct all points
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Fig. 3: (a) Anchors (black squares) and spikes (gray circles) on the unit circle.
(b) Construction of tv. (c) The three points constructed for clause u.

pvu for a single variable v over a consecutive sequence of spikes, and then put a
single point tv covering the constructed points. (See Figure 3b.)

We apply the same construction for all clauses that v appears in negated
form. This creates an additional set of points pvu, all of which we cover with a
single point fv as we did for tv. We put tv and fv to the same probabilistic
tuple and assign each a probability of 1

2 . That is, in a probabilistic experiment,
either tv or fv is present (with equal probability), but not both. Existence of tv
is meant to imply that v is assigned true, whereas the existence of fv is meant
to imply that v is assigned false.

Finally, for each clause u, we construct three additional points covering a
single spike. These points are constructed in such a way that: (1) they do not
cover any other spike, and (2) they are in convex position with respect to each
other and the two anchors next to the covered spike. Each of these points corre-
sponds to a distinct variable v that appears in the clause. We denote the point
associated with variable v by quv . (See Figure 3c.) We put each quv to the same
probability tuple as the previously constructed point puv and assign it probability
1
2 . That is, in an experiment, either quv or puv exists (with equal probability), but
not both. The following lemma, whose proof is in Appendix I implies that the
most likely hull covers spikes if possible.

Lemma 8. The most likely hull has likelihood (1/2)3|U |+|V | if and only if it con-
tains all spikes in its interior. Otherwise, its likelihood is at most (1/2)3|U |+|V |+1.

We now describe how the satisfiability of the 3-SAT instance relates to our
construction. Consider a variable v. Notice that, if the most likely hull covers all
spikes below tv, then either tv or all points puv below tv appears in the hull as
a vertex. If tv appears in the hull, then the hull is can pass through the points
quv (which are in the same probabilistic tuples with points puv ), and cover spikes
representing the clauses that v appears in positive form. This corresponds to the
case that v is assigned true and all corresponding clauses are satisfied. Similar
notion also applies to fv and the clauses that v appears in negated form. If all
spikes are covered, then all clauses are satisfied and so is the 3-SAT instance.
Combining this idea with Lemma 8, we deduce the following lemma. A formal
proof of this lemma is included in Appendix J.
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Lemma 9. The 3-SAT instance is satisfiable if and only if the most likely hull
has likelihood (1/2)3|U |+|V |.

Theorem 3. Computing the most likely hull in the multipoint model is NP-hard.

Lemma 8 in fact implies a stronger result: It is NP-hard to compute the
likelihood of the most likely hull within any factor c > 1

2 . By construction, the
problem instances that we create are product composable. Then, by Lemma 7,
we can state the following theorem.

Theorem 4. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-
mation algorithm for the most likely hull problem in the multipoint model unless
P=NP.

5 Extensions and Concluding Remarks

Making sense of probabilistic (uncertain) data is a complex and challenging task.
Even for simple numerical data, elementary statistics such as mean, median, or
mode serve a useful first order approximation. For multi-dimensional spatial
data, however, there are no universally agreed upon summaries of similar gener-
ality. Our work is an attempt to explore some natural geometric structures, and
their complexity, over probabilistic data. For “convexity” of uncertain data, one
possibility is to compute the distribution over the entire space: for each point of
the space, compute the probability that it is inside the convex hull. In a different
work, we are also exploring that direction but (i) a full distribution is inevitably

quite expensive to compute (requiring a worst-case space complexity Ω(nd
2

)),
and (ii) the distribution still does not lend itself to a simple and “intuitive”
description of a convex hull.

Therefore, algorithms for computing or estimating succinct summary hulls
are a useful tool in the analysis of uncertain geometric data. While we focused
exclusively on the Most Likely Hull as a natural analog of the expected value for
numerical data, our techniques are applicable to several other ways of defining
the “best” hull. Any useful definition of the likely hull must include a penalty
function for misclassifying points, both false positives and false negatives. If only
false negatives (points outside the hull) are penalized, then the convex hull of all
the points has the best score. Our dynamic programming algorithm for the point
model in 2 dimensions can be extended for several natural scoring functions.

For instance, one simple scoring function measures the agreement on the
“in” and ”out” classification. A convex hull C splits the point set into two
parts: inside and outside. We can measure the “quality” Q(C) of a hull C by
its expected agreement with a random hull’s classification: the number of points
of S whose classification (in or out) is the same for both C and the hull of a
random outcome. Both our dynamic programming algorithm for computing the
hull in 2 dimensions, and the hardness in 3 dimensions, under the point model
carry over to this “Symmetric Difference Hull” definition. Similarly, another
scoring function for measuring the fraction of points correctly classified counts
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the number of points in the random outcome that lie in C plus the number of
non-sample points that lie outside C. All our results hold for this model as well.

In summary, we believe that the study of geometric structures over prob-
abilistic data is a fundamental problem, and our results are only a first, but
promising, step. One can ask similar questions about many basic geometric
structures, including Voronoi diagrams, Delaunay triangulations, shortest paths,
range queries, and maxima.
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A Proof of Lemma 1

Let Sin denote the sites contained by C (possibly on the boundary). Then,

L(C) =
∑

A⊆S ∧ CH(A)=C

π(A)

=
∑

V⊆A⊆Sin

π(A)

=
∑

V⊆A⊆Sin

∏
si∈A

πi ×
∏
si 6∈A

πi


=

∑
A=V ]A′

A′⊆(Sin\V )

∏
si∈V

πi ×
∏

si∈Sout

πi ×
∏
si∈A′

πi ×
∏

si∈(Sin\V )\A′
πi



=
∏
si∈V

πi ×
∏

si∈Sout

πi ×
∑

A′⊆Sin\V

 ∏
si∈A′

πi ×
∏

si∈(Sin\V )\A′
πi


=
∏
si∈V

πi ×
∏

si∈Sout

πi ×
∏

si⊆Sin\V

(πi + πi)

=
∏
si∈V

πi ×
∏

si∈Sout

πi

B Computing Edge Contributions

In this section, we describe how to compute the contribution of each edge in
constant time after an O(n2)-time preprocessing. The main idea is to utilize a
modified version of a triangle query structure by [11]. In particular, we have the
following lemma from [11].

Lemma 10. Given a set P of n points in the plane, one can preprocess P in
O(n2) time and space, so that the number of points in P contained by a given
query triangle (with corners among P ) can be reported in constant time.

It is trivial to modify this data structure so that, under an assignment of
weights to the set of points, one can report the product of the weights of the
points in the query triangle. In particular, we have the following lemma.

Lemma 11. Let P be a set of n points in the plane such that each point is
assigned a weight. One can preprocess P in O(n2) time and space, so that the
product of the weights of all points in P contained by a given query triangle (with
corners among P ) can be reported in constant time.

We now show how to query edge contributions using this data structure.
Recall that S is the set of all sites, and we want to compute edge contributions
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s1

sisj

si

Rjisj

Fig. 4: Triangulating Rji inside the bounding box of S. The black circles are the
sites in S. The black squares the points in U and V .

with respect to lowest vertex s1. Let U be the set of the four corners of the
bounding box of S. Moreover, let V be the set of points produced by intersecting
the bounding box of S with the downward ray extending from s1 and the rays
s1si for all si. Clearly, |V | ≤ n. We construct an instance of the weighted triangle
query structure on S ∪ U ∪ V . In this structure, we define the weight of each
point si in S as its corresponding complementary probability, i.e., πi. For all
points in U and V , we define the weight as 1.

Given an edge sisj , we can compute its contribution as follows. The region

Rji restricted to the bounding box of S is a polygon of constant complexity. We
triangulate this polygon, and for each triangle, query the product of the weights
of the points in the triangle. (See Figure 4.) The results of these queries, when
multiplied, gives the product of complementary probabilities of all sites in Rji ,
which is what we need to compute C(sisj).

C Proof of Lemma 3

Consider the triangle formed by pi, pj , and pk. By Heron’s formula, the area A
of this triangle is at least

√
3 (the sides have length at least 2). Alternatively,

the area can be computed as A = bh/2, where b = ‖pi − pj‖ = 2 and h is the
height of triangle. Thus we get that ‖pk − pij‖ ≥ h = A ≥

√
3.

D Proof of Lemma 4

For the sake of contradiction assume that a site sk has probability πk >
1
2 and

is outside the most likely hull C. Let V ⊆ S be the set of sites that appear on C
as a vertex, and let Sout be the set of sites outside C. Now consider adding sk
to C. For the resulting hull C ′, let V ′ be the set of vertices of C ′, and let S′out
be the set of sites outside C ′. Note that V ′ ⊆ V ∪ {sk} and S′out ⊆ Sout \ {sk}.
From Lemma 1 we can obtain:

L(C ′) =
∏
si∈V ′

πi ×
∏

si∈S′out

πi ≥
πk
πk

∏
si∈V

πi ×
∏

si∈Sout

πi =
πk
πk
L(C) > L(C)
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This implies that C is not the most likely hull, contradicting the initial assump-
tion.

E Proof of Lemma 5

Every plane parallel to H(p) can be represented by the equation Ax + By +
C(z − h) = 0, where (A,B,C) (with C 6= 0) is the normal of the plane with
length 1, and h is the vertical shift from origin. By intersecting such a plane
with P1 we obtain the equation Ax + By + C(x2 + y2 − h) = 0, which we can

rewrite as (x+ A
2C )2 + (y + B

2C )2 = h+ A2+B2

4C2 . This equation describes a circle

with center (− A
2C ,− B

2C ) (independent of h) and radius r2 = h + A2+B2

4C2 . Since
the plane is tangent to P1 when r = 0, the result follows.

F Proof of Lemma 6

Let p ∈ R2 be a point inside the quadrilateral formed by peij (e ∈ {N,E, S,W})
and let q ∈ P1 be the point obtained by lifting p. By definition, ‖pi− p‖ ≤ 1 + δ
(same for pj), and by Lemma 3 ‖pk − p‖ ≥

√
3− δ for k 6= i, j. We need that ui

and uj are below the tangent plane of P1 at q, and uk (k 6= i, j) is above this
plane. Since P2 is 2 units below P1 and by Lemma 5, ui is below the tangent
plane if and only if ‖pi−p‖ <

√
2. The analogue holds for uj . Similarly, we need

‖pk − p‖ >
√

2 for all uk. Consequently, we obtain two bounds on δ, namely
δ <
√

2− 1 and δ <
√

3−
√

2, of which the latter is the strongest.

G Proof of Lemma 7

By changing the constant in the big O notation, we can rewrite the approxima-
tion factor as 2−O(n1−ε) = cO(n1−ε). For the sake of contradiction, assume that
there is a polynomial-time cO(n1−ε)-approximation algorithm of O, and that its
output for instance I is given by the function A(I) ∈ F(I). For any instance I,
let Opt(I) denote its optimal solution. Now, consider any instance I of O and
let n = |I|. Since O is product composable, we can construct an instance I∗

containing m = nk copies of I. We get |I∗| = N = nk+1 and by the bijection
property of product composability f(Opt(I∗)) = f(Opt(I))m. Let (S1, . . . , Sm)
(where each Si ∈ F(I)) be the matching tuple of A(I∗) in the bijection. At least
one solution in this tuple, say S1, satisfies f(S1) ≥ f(A(I∗))1/m. By assumption,

f(A(I∗)) ≥ cO(n1−ε) · f(Opt(I∗)). It follows that

f(S1) ≥ f(A(I∗))1/m ≥ cO(n1−ε)
m · f(Opt(I∗))1/m = c

O(N1−ε)
m · f(Opt(I))

Since m = N
k
k+1 we can choose, for any ε > 0, a large enough k such that

m = ω(N1−ε). For such an assignment, S1 is computable in polynomial time (in
n) and f(S1) ≥ c · f(Opt(I)). This contradicts with the premise that there is no
polynomial-time c-approximation algorithm for O.
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H Most Likely Hull Definition in the Multipoint Model

In the multipoint model, the ith point of the input is described by a tuple
((s1i , π

1
i ), . . . , (skii , π

ki
i )), and the interpretation is that the ith point appears at

the position sji with probability πji , for j = 1, 2, . . . , ki. If the sum of probabilities

for the ith point (i.e.,
∑

1≤i≤ki π
j
i ) is not 1 (in which case it is strictly less than

1), then it is possible that the ith point does not appear at all in a probabilistic
experiment.

We use S to denote the set of all sites as usual, i.e., S = {sji}. For a subset
A ⊆ S, we denote the probability that A is the outcome of a probabilistic
experiment by π(A). Similarly to the point model, the definition of π(A) involves
a product of existence probabilities for all sites in A. The sites that are not in
A, however, contribute to π(A) in a different way. Specifically, let sji be a site

that is not in A. If A contains another sj
′

i site from the probabilistic tuple of the

ith point, then the non-existence probability of sji is irrelevant to π(A), because

existence of sj
′

i already implies non-existence of sji . If there is no such site sj
′

i ,
then no site from the tuple of the ith point is in A. In that case, we just consider
the probability that ith point does not exist at all, which is 1 −∑1≤j≤ki π

j
i .

Finally, notice that if A contains two sites from the same probabilistic tuple,
then it cannot be the outcome of an experiment. This implies the following
definition for π(A):

π(A) =


0 if there are two distinct sites

sji and sj
′

i in A∏
sji∈A

πji ×
∏

i | 6∃j.sji∈A

(
1−

∑
1≤j≤ki

πji

)
otherwise

The definition for the most likely hull follows from π(A) as in the point model
case. That is, the most likely convex hull is the polytope C which maximizes the
likelihood function L(C), which is defined as

L(C) = Pr
[
CH(A) ≡ C

]
=

∑
A⊆S

CH(A)≡C

π(A)

I Proof of Lemma 8

Let C be the most likely hull. For ease of reference, let us say that the outcome
A of a probabilistic experiment is compatible with C if CH(A) = C. Notice
that all experiment outcomes A compatible with C contain a particular con-
figuration of the dependent point pairs. In particular, if C contains a point tv
as a vertex, then all compatible outcomes contain tv and not fv. Otherwise, all
compatible outcomes contain fv and not tv. Similarly, if C contains quv as a ver-
tex, then all compatible outcomes contain quv or puv otherwise. The probability
that these configurations exists in the outcome of an experiment is (1/2)3|U |+|V |
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because there are 3|U | + |V | dependent point pairs. If C contains all spikes
in its interior, then the existence of spikes are irrelevant to the likelihood of
C, thus L(C) = (1/2)3|U |+|V |. Otherwise, compatibility with C is also condi-
tioned on either existence or non-existence of at least one spike. This implies
L(C) ≤ (1/2)3|U |+|V |+1.

J Proof of Lemma 9

We first show that if the most likely hull has likelihood (1/2)3|U |+|V | then the
3-SAT instance is satisfiable. Let C be the most likely hull with likelihood
(1/2)3|U |+|V |. By construction, C contains exactly one of the sites tv and fv
as a vertex for each variable v. Consider the boolean assignment where we as-
sign the variable v to true if tv is a vertex, and to false if fv is a vertex. We
now argue that this assignment satisfies all clauses in the 3-SAT instance. Take
any clause u. By Lemma 8, C contains all spikes in its interior. Consequently
at least one point quv is a vertex of C. Then, the dependent point puv is not a
vertex of C. By construction, C covers the underlying spike with tv if v appears
in positive form in u or with fv if v appears in negated form. This implies that
u is satisfied by the assignment of v.

We now prove the converse. Suppose that there is a satisfying variable as-
signment for the 3-SAT instance. We construct a subset Q of points as follows.
We insert to Q tv if v is assigned true and fv if v is assigned false. Additionally,
for each variable-clause pair (v, u) we insert quv if v is a satisfying variable for u
or puv otherwise. Finally, we insert all anchor points. Observe that Q is a valid
outcome of a probabilistic experiment. We now argue that the convex hull of Q
covers all spikes and thus has likelihood (1/2)3|U |+|V | by Lemma 8. The spikes
under all points puv ∈ Q are trivially covered. For each point puv 6∈ Q, v is a
satisfying variable for u, and thus the spike under puv is covered by either tv or
fv (whichever is the one above puv ). Finally, since all clauses are satisfied, each
spike under a triplet of points quv , quv′ and quv′′ are also covered (at least by one
of them). This completes the proof.


