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Abstract. Progressive methods offer efficient and reasonably good so-
lutions to the multiple sequence alignment problem. However, resulting
alignments are biased by guide-trees, especially for relatively distant se-
quences.

We propose MSARC, a new graph-clustering based algorithm that aligns
sequence sets without guide-trees. Experiments on the BAliBASE dataset
show that MSARC achieves alignment quality similar to best progres-
sive methods and substantially higher than the quality of other non-
progressive algorithms. Furthermore, MSARC outperforms all other
methods on sequence sets whose evolutionary distances are hardly rep-
resentable by a phylogenetic tree. These datasets are most exposed to
the guide-tree bias of alignments.

MSARC is available at http://bioputer.mimuw.edu.pl/msarc

Keywords: multiple sequence alignment, stochastic alignment, graph
partitioning

1 Introduction

Determining the alignment of a group of biological sequences is among the most
common problems in computational biology. The dynamic programming method
of pairwise sequence alignment can be readily extended to multiple sequences
but requires the computation of an n-dimensional matrix to align n sequences.
Consequently, this method has an exponential time and space complexity.

Progressive alignment [21] offers a substantial complexity reduction at the
cost of possible loss of the optimal solution. Within this approach, subset align-
ments are sequentially pairwise aligned to build the final multiple alignment.
The order of pairwise alignments is determined by a guide-tree representing the
phylogenetic relationships between sequences.

There are two drawbacks of the progressive alignment approach. First, the
accuracy of the guide-tree affects the quality of the final alignment. This prob-
lem is particularly important in the field of phylogeny reconstruction, because
multiple alignment acts as a preprocessing step in most prominent methods of
inferring a phylogenetic tree of sequences. It has been shown that, within this
approach, the inferred phylogeny is biased towards the initial guide-tree [23,11].

http://arxiv.org/abs/1307.7844v1
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Second, only sequences belonging to currently aligned subsets contribute to
their pairwise alignment. Even if a guide-tree reflects correct phylogenetic rela-
tionships, these alignments may be inconsistent with remaining sequences and
the inconsistencies are propagated to further steps. To address this problem,
in recent programs [15,2,8,1,17] progressive alignment is usually preceded by
consistency transformation (incorporating information from all pairwise align-
ments into the objective function) and/or followed by iterative refinement of the
multiple alignment of all sequences.

In the present paper we propose MSARC, a new multiple sequence alignment
algorithm that avoids guide-trees altogether. MSARC constructs a graph with all
residues from all sequences as nodes and edges weighted with alignment affinities
of its adjacent nodes. Columns of best multiple alignments tend to form clusters
in this graph, so in the next step residues are clustered (see Figure 1a). Finally,
MSARC refines the multiple alignment corresponding to the clustering.

Experiments on the BAliBASE dataset [22] show that our approach is com-
petitive with the best progressive methods and significantly outperforms current
non-progressive algorithms [20,19]. Moreover, MSARC is the best aligner for se-
quence sets with very low levels of conservation. This feature makes MSARC a
promising preprocessing tool for phylogeny reconstruction pipelines.

2 Methods

MSARC aligns sequence sets in several steps. In a preprocessing step, following
Probalign [17], stochastic alignments are calculated for all pairs of sequences
and consistency transformation is applied to resulting posterior probabilities
of residue correspondences. Transformed probabilities, called residue alignment
affinities, represent weights of an alignment graph1. MSARC clusters this graph
with a top-down hierarchical method (Figure 1c). Division steps are based on
the Fiduccia-Mattheyses graph partitioning algorithm [3], adapted to satisfy con-
straints imposed by the sequence order of residues. Finally, multiple alignment
corresponding to resulting clustering is refined with the iterative improvement
strategy proposed in Probcons [1], adapted to remove clustering artefacts.

2.1 Pairwise stochastic alignment

The concept of stochastic (or probability) alignment was proposed in [13]. Given
a pair of sequences, this framework defines statistical weights of their possi-
ble alignments. Based on these weights, for each pair of residues from both
sequences, the posterior probability of being aligned may be computed. A con-
sensus of highly weighted suboptimal alignments was shown to contain pairs
with significant probabilities that agree with structural alignments despite the
optimal alignment deviating significantly. Mückstein et al. [14] suggest the use

1 Our notion of alignment graph slightly differs from the one of Kececioglu [9]: remov-
ing edges between clusters transforms the former into the latter.
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Fig. 1: Overview of our residue clustering approach. (a) Alignment graph and its
desired clustering. Clusters form columns of a corresponding multiple sequence
alignment. (b) Clusterings inconsistent (left and middle) and consistent (right)
with the alignment structure. (c) An example of hierarchical divisive clustering
of residues. The graph is recursively partitioned by finding a balanced minimal
cut while maintaining the ordering of residues until all parts have at most one
residue from each sequence. Final alignment is constructed by concatenating
these parts (alignment columns) from left to right.

of the method as a starting point for improved multiple sequence alignment
procedures.

The statistical weight W (A) of an alignment A is the product of the in-
dividual weights of (mis-)matches and gaps [24]. It may be obtained from the
standard similarity scoring function S(A) with the following formula:

W (A) = eβS(A) (1)

where β corresponds to the inverse of Boltzmann’s constant and should be ad-
justed to the match/mismatch scoring function s(x, y) (in fact, β simply rescales
the scoring function).

The probability distribution over all alignmentsA∗ is achieved by normalizing
this value. The normalization factor Z is called the partition function of the
alignment problem [13], and is defined as

Z =
∑

A∈A∗

W (A) =
∑

A∈A∗

eβS(A) (2)

The probability P (A) of an alignment can be calculated by

P (A) =
W (A)

Z
=

eβS(A)

Z
(3)

Let P (ai ∼ bj) denote the posterior probability that residues ai and bj are
aligned. We can calculate it as the sum of probabilities of all alignments with ai



and bj in a common column (denoted by A∗
ai∼bj

):

P (ai ∼ bj) =
∑

A∈A∗

ai∼bj

P(A) =

∑

A∈A∗

ai∼bj

eβS(A)

Z
=

=

(∑

Ai−1,j−1

eβS(Ai−1,j−1)

)
eβs(ai,bj)

(∑

Âi+1,j+1

eβS(Âi+1,j+1)

)

Z
=

=
Zi−1,j−1 e

βs(ai,bj) Ẑi+1,j+1

Z
(4)

Here we use the notation Ai,j for an alignment of the sequence prefixes a1 · · ·ai
and b1 · · · bj, and Âi,j for an alignment of the sequence suffixes ai · · · am and
bj · · · bn. Analogously, Zi,j is the partition function over the prefix alignments

and Ẑi,j is the (reverse) partition function over the suffix alignments.

An efficient algorithm for calculating the partition function can be derived
from the Gotoh maximum score algorithm [5] by replacing the maximum opera-
tions with additions. From a few possible approaches [13,24,14] we chose a variant
proposed by Miyazawa [13] and applied in Probalign [17], where insertions and
deletions must be separated by at least one match/mismatch position:

ZM
i,j =

(
ZM
i−1,j−1 + ZE

i−1,j−1 + ZF
i−1,j−1

)
eβs(ai,bj) (5)

ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext (6)

ZF
i,j = ZM

i−1,je
βgo + ZF

i−1,je
βgext (7)

Zi,j = ZM
i,j + ZE

i,j + ZF
i,j (8)

The reverse partition function can be calculated using the same recursion in
reverse, starting from the ends of the aligned sequences.

2.2 Alignment graphs

Probabilities P (ai ∼ bj) may be viewed as a representation of a bipartite graph
with nodes corresponding to residues ai and bj and edges weighted with residue
alignment affinity.

Given a set S of k sequences to be aligned, we would like to analogously rep-
resent their residue alignment affinity by a k-partite weighted graph. It may be
obtained by joining pairwise alignment graphs for all pairs of S-sequences. How-
ever, separate computation of edge weights for each pair of sequences does not
exploit information included in the remaining alignments. In order to incorporate
correspondence with residues from other sequences, we perform a consistency

transformation [15,1]. It re-estimates the residue alignment affinity according to



the following formula:

P
′ (xi ∼ yj)←

∑

z∈S

|z|∑

l=0

P (xi ∼ zl)P (zl ∼ yj)

|S|
(9)

If Pxy is a matrix of current residue alignment affinities for sequences x and y,
the matrix form equivalent transformation is

P ′
xy ←

∑

z∈S

PxzPzy

|S|
(10)

The consistency transformation may be iterated any number of times, but
excessive iterations blur the structure of residue affinity. Following Probalign [17]
and ProbCons [1] MSARC performs it twice by default.

2.3 Residue clustering

Columns of any multiple alignment form a partition of the set of sequence
residues. The main idea of MSARC is to reconstruct the alignment by clus-
tering an alignment graph into columns. The clustering method must satisfy
constraints imposed by alignment structure. First, each cluster may contain at
most one residue from a single sequence. Second, the set of all clusters must
be orderable consistently with sequence orders of their residues. Violation of
the first constraint will be called ambiguity, while violation of the second one –
conflict (see Figure 1b).

Towards this objective, MSARC applies top-down hierarchical clustering (see
Figure 1c). Within this approach, the alignment graph is recursively split into
two parts until no ambiguous cluster is left. Each partition step results from a
single cut through all sequences, so clusterings are conflict-free at each step of
the procedure. Consequently, the final clustering represents a proper multiple
alignment.

Optimal clustering is expected to maximize residue alignment affinity within
clusters and minimize it between them. Therefore, the partition selection in
recursive steps of the clustering procedure should minimize the sum of weights
of edges cut by the partition. This is in fact the objective of the well-known
problem of graph partitioning, i.e. dividing graph nodes into roughly equal parts
such that the sum of weights of edges connecting nodes in different parts is
minimized.

The Fiduccia-Mattheyses algorithm [3] is an efficient heuristic for the graph
partitioning problem. After selecting an initial, possibly random partition, it cal-
culates for each node the change in cost caused by moving it between parts, called
gain. Subsequently, single nodes are greedily moved between partitions based on
the maximum gain and gains of remaining nodes are updated. The process is
repeated in passes, where each node can be moved only once per pass. The best



partition found in a pass is chosen as the initial partition for the next pass. The
algorithm terminates when a pass fails to improve the partition. Grouping single
moves into passes helps the algorithm to escape local optima, since intermediate
partitions in a pass may have negative gains. An additional balance condition
is enforced, disallowing movement from a partition that contains less than a
minimum desired number of nodes.

Fiduccia-Mattheyses algorithm needs to be modified in order to deal with
alignment graphs. Mainly, residues are not moved independently; since the graph
topology has to be maintained, moving a residue involves moving all the residues
positioned between it and a current cut point on its sequence. This modification
implies further changes in the design of data structures for gain processing.
Next, the sizes of parts in considered partitions cannot differ by more than the
maximum cluster size in a final clustering, i.e., the number of aligned sequences.
This choice implies minimal search space containing partitions consistent with
all possible multiple alignment. In the initial partition sequences are cut in their
midpoints.

The Fiduccia-Mattheyses heuristic may be optionally extended with a multi-

level scheme [7]. In this approach increasingly coarse approximations of the graph
are created by an iterative process called coarsening. At each iteration step se-
lected pairs of nodes are merged into single nodes. Adjacent edges are merged
accordingly and weighted with sums of original weights. The final coarsest graph
is partitioned using Fiduccia-Mattheyses algorithm. Then the partition is pro-
jected back to the original graph through the series of uncoarsening operations,
each of which is followed by a Fiduccia-Mattheyses based refinement. Because
the last refinement is applied to the original graph, the multilevel scheme in fact
reduces the problem of selecting an initial partition to the problem of selecting
pairs of nodes to be merged. In alignment graphs only neighboring nodes can be
merged, so MSARC just merges consecutive pairs of neighboring nodes.

2.4 Refinement

An example of alignment columns produced by residue clustering can be seen in
Figure 2(ab). Unfortunately, right parts of alignments contain many superfluous
spaces that could easily be removed manually.

Therefore we decided to add a refinement step, following the method used in
ProbCons [1]. Sequences are split into two groups and the groups are pairwise
re-aligned. Re-alignment is performed using the Needleman-Wunsch algorithm
with the score for each pair of positions defined as the sum of posterior probabil-
ities for all non-gap pairs and zero gap-penalty. Since gap-penalties are not used,
every such refinement iteration creates a new alignment of equal or greater ex-
pected accuracy. First each sequence is re-aligned with the remaining sequences,
since such division is very efficient in removing superfluous spaces. Next, several
randomly selected sequence subsets are re-aligned against the rest.

Figures 2(cd) show the results of refining the alignments from Figures 2(ab).
Refinement removed superfluous spaces from the clustering process and opti-
mized the alignment. Note that the final post-refinement alignments turned out



(a) Fiduccia-Mattheyses partitioning

(b) Multilevel partitioning

(c) Refined Fiduccia-Mattheyses partitioning

(d) Refined multilevel partitioning

Fig. 2: Example visualization of the alignment produced by the graph parti-
tioning methods alone (ab) and graph partitioning followed by refinement (cd).
Residue colors reflect how well the column is aligned based on residue match
probabilities (darker is better). Partition cuts are colored to show the order of
partitioning with darker cuts being performed earlier.

to be the same for both Fiduccia-Mattheyses and multilevel method of graph
partitioning.

3 Results

3.1 Benchmark data and methodology

MSARC was tested against the BAliBASE 3.0 benchmark database [21]. It con-
tains manually refined reference alignments based on 3D structural superposi-
tions. Each alignment contains core-regions that correspond to the most reliably
alignable sections of the alignment. Alignments are divided into five sets designed
to evaluate performance on varying types of problems:

rv1x Equidistant sequences with two different levels of conservation

rv11 very divergent sequences (<20% identity)
rv12 medium to divergent sequences (20-40% identity)

rv20 Families aligned with a highly divergent “orphan” sequence
rv30 Subgroups with <25% residue identity between groups
rv40 Sequences with N/C-terminal extensions
rv50 Internal insertions

BAliBASE 3.0 also provides a program comparing given alignments with a
reference one. Alignments are scored according to two metrics. A sum-of-pairs
score (SP) showing the ratio of residue pairs that are correctly aligned, and a



total column (TC) score showing the ratio of correctly aligned columns. Both
scores can be applied to full sequences or just the core-regions.

Two variants of MSARC: with multilevel Fiduccia-Mattheyses algorithm
(MSARC-ML) and with basic Fiduccia-Mattheyses algorithm (MSARC-FM)
were tested on the full length sequences and scored based on the correct align-
ment of core-regions. The results were compared to CLUSTAL Ω [21,18] ver.
1.1.0, DIALIGN-T [20] ver. 0.2.2, DIALIGN-TX [19] ver. 1.0.2, MAFFT [8] ver.
6.903, MUSCLE [2] ver. 3.8.31, MSAProbs [10] ver. 0.9.7, Probalign [17] ver. 1.4,
ProbCons [1] ver. 1.12 and T-Coffee [15] ver. 9.02.

All the programs were executed with their default parameters. In the case
of MSARC, default parameters of stochastic alignment, consistency transforma-

tion and iterative refinement steps follow the defaults of corresponding steps
of Probalign and ProbCons. Namely, MSARC was run with Gonnet 160 simi-
larity matrix [4], gap penalties of −22, −1 and 0 for gap open, extension and
terminal gaps respectively, β = 0.2, a cut-off value for posterior probabilities
of 0.01 (values smaller than the cutoff are set to 0 and operations designed for
sparse matrices are used in order to speed up computations), two iterations of
the consistency transformation and 100 iterations of iterative refinement.

3.2 Aligner comparison

Table 1 shows the SP and TC scores obtained by the alignment algorithms on
the BAliBASE 3.0 benchmark. MSARC-ML has slightly better accuracy than
MSARC-FM. Both variants of MSARC substantially outperform DIALIGN-T
(the only non-progressive method in the test) and DIALIGN-TX (a progressive
extension of DIALIGN-T). Moreover, MSARC achieves accuracy similar to the
leading alignment methods: MSAProbs, Probalign and ProbCons.

The differences are not significant in most cases (see Table 2) and correspond
with the structure of benchmark series – MSARC shows the best results for test
series rv11 and rv40, and the worst performance on rv20 and rv30. Distances
in rv20 and rv30 families are particularly well represented by phylogenetic trees
(low similarity between highly conserved subgroups). On the other hand, series
rv11 contains highly divergent sequences for which guide-tree is poorly infor-
mative, even if it represents the correct phylogeny, and rv40 contains sequences
with N/C-terminal extensions which may affect the accuracy of the estimated
phylogeny.

We illustrate this observation with an example of test case bb40037. As is
shown in column 9 of Table 1, MSARC outperforms other methods by a large
margin. The TC scores of zero means that each alignment method has shifted
at least one sequence from its correct position relative to the other sequences.
Figure 3 presents the structure of the reference alignment, as well as alignments
generated by MSARC, Probalign and MSAprobs. The large family of red, orange
and yellow colored sequences near the bottom has been misaligned by the pro-
gressive methods. The reason for this is more visible in Figure 4, where sequences
in alignments are reordered according to related guide-trees.



Table 1: Performance on BAliBASE 3.0

SP/TC scores Computation
Aligner all rv11 rv12 rv20 rv30 rv40 rv50 bb40037 Time

MSARC-ML
87.6

57.3

70.1

46.1

94.5

85.6

92.5

40.7

83.4

45.7

93.1

63.3

88.7

51.6

97.1

70.0
33 : 49 : 37

MSARC-FM
87.5

57.1

70.0

46.0

94.5

85.6

92.5

40.9

82.8

45.0

93.0

62.9

88.6

51.7

97.1

70.0
22 : 14 : 19

CLUSTAL Ω
84.0

55.4

59.0

35.8

90.6

78.9

90.2

45.0

86.2

57.5

90.2

57.9

86.2

53.3

61.2

0.0
12 : 15

DIALIGN-T
77.3

42.8

49.3

25.3

88.8

72.5

86.3

29.2

74.7

34.9

82.0

45.2

80.1

44.2

52.6

0.0
1 : 13 : 21

DIALIGN-TX
78.8

44.3

51.5

26.5

89.2

75.2

87.9

30.5

76.2

38.5

83.6

44.8

82.3

46.6

52.8

0.0
1 : 36 : 05

MAFFT
86.7

58.4

65.3

42.8

93.6

83.8

92.5

44.6

85.9

58.1

91.5

59.0

90.1

59.4

56.4

0.0
54 : 04

MUSCLE
81.9

47.5

57.2

31.8

91.5

80.4

88.9

35.0

81.4

40.9

86.5

45.0

83.5

45.9

48.4

0.0
23 : 32

MSAProbs
87.8

60.7

68.2

44.1

94.6

86.5

92.8

46.4

86.5

60.7

92.5

62.2

90.8

60.8

59.5

0.0
6 : 43 : 51

Probalign
87.6

58.9

69.5

45.3

94.6

86.2

92.6

43.9

85.3

56.6

92.2

60.3

88.7

54.9

54.2

0.0
4 : 31 : 41

ProbCons
86.4

55.8

67.0

41.7

94.1

85.5

91.7

40.6

84.5

54.4

90.3

53.2

89.4

57.3

59.3

0.0
6 : 56 : 32

T-Coffee
85.7

55.1

65.5

40.9

93.9

84.8

91.4

40.1

83.7

49.0

89.2

54.5

89.4

58.5

50.9

0.0
13 : 53 : 02

Columns 2-9 show the mean SP and TC scores for each alignment algorithm on the
whole BAliBASE dataset, each of its series and case bb40037. The last column presents
total CPU computation time (hh:mm:ss). All scores are multiplied by 100. Best results
in each column are shown in bold.

Probalign aligns separately the first half of the sequences (blue and green)
and the second half of the sequences (from yellow to red). Next, the prefixes of
the second group are aligned with the suffixes of the first group, propagating an
error within a yellow sub-alignment.



Table 2: Significance of differences in BAliBASE 3.0 SP/TC scores

SP scores rv11 rv12 rv20 rv30 rv40 rv50 Total

Clustal Ω +3.8e-7 +1.1e-5 +0.0031 -0.047 +4.2e-6 +0.012 +8.7e-15
DIALIGN-T +8.6e-8 +7.7e-9 +1.3e-7 +2.7e-6 +2.1e-9 +0.00098 +5.3e-36
DIALIGN-TX +1.0e-7 +6.2e-8 +2.3e-7 +8.7e-6 +2.8e-9 +0.0017 +3.1e-34
MAFFT +0.0031 +0.00085 -(0.64) -0.0009 +0.0005 -(0.072) +0.028
MUSCLE +4.5e-6 +1.3e-6 +0.0002 +(0.24) +2.5e-8 +0.006 +6.8e-22
MSAProbs +0.015 -(0.56) -0.016 -1.9e-5 +(0.39) -0.0041 -0.0025
Probalign +(0.16) -(0.77) -0.048 -0.0099 +(0.66) -(0.85) -(0.067)
ProbCons +0.0070 +0.037 +0.032 -(0.11) +0.0014 -(0.17) +0.0018
T-Coffee +0.001 +0.005 +0.021 -(0.40) +0.0001 -(0.077) +7.1e-6

TC scores rv11 rv12 rv20 rv30 rv40 rv50 Total

Clustal Ω +2.8e-5 +0.0004 -0.025 -0.0018 +(0.11) -(0.84) +(0.096)
DIALIGN-T +1.5e-6 +2.2e-8 +9.6e-5 +0.0024 +4.9e-8 +0.027 +3.6e-26
DIALIGN-TX +1.3e-6 +4.0e-7 +0.00040 +0.038 +1.3e-7 +(0.066) +9.5e-23
MAFFT +(0.11) +0.005 -(0.052) -0.0007 +(0.07) -(0.062) -(0.55)
MUSCLE +9.9e-5 +0.0002 +(0.06) +(0.76) +2.2e-6 +0.009 +5.8e-13
MSAProbs +(0.13) -(0.22) -0.0016 -8.5e-5 +(0.076) -0.0014 -5.4e-7
Probalign +(0.54) -(0.11) -0.00062 -0.0006 +(0.087) -(0.36) -1.9e-6
ProbCons +0.043 -(0.69) -(0.31) -0.011 +0.017 -(0.062) +(0.84)
T-Coffee +0.003 +(0.10) +(0.75) -(0.11) +(0.12) -0.0072 +(0.61)

Entries show p-values indicating the significance of the mean difference of SP/TC scores
between MSARC-ML and other aligners as measured using the Wilcoxon matched-
pair signed-rank test. A + means that MSARC had a higher mean score while a −

means MSARC had a lower mean score. Nonsignificant p-values (>0.05) are shown in
parentheses.

MSAprobs aligns separately the dark blue, light blue and red sequences.
Next the blue sub-alignments are aligned together. Resulting alignment has er-
roneously inserted gaps near the right ends of dark blue sequences. This error is
propagated in next step, where the suffix of the blue alignment is aligned with
the prefix of the red alignment. Finally the single violet sequence is added to the
alignment, splitting it in two.

For both programs, alignment errors introduced in the earlier steps are prop-
agated to the final alignment. On the other hand, the non-progressive strategy
used in MSARC yields a reasonable approximation of the reference alignment
(see Figure 3(ab)).

4 Discussion

The progressive principle dominates multiple alignment algorithms for nearly
20 years. Throughout this time, many groups have dedicated their effort to
refine its accuracy to the current state. Other approaches were omitted due
to high computational complexity and/or unsatisfactory quality. To our best



BAliBASE

(a)

MSARC

(b)

Probalign

(c)

MSAProbs

(d)

Fig. 3: Visualization of reference (a) and reconstructed (bcd) alignments for test
case bb40037. In all alignments sequences are ordered accordingly. Each se-
quence is colored based on the evolutionary distance to its neighbors in a phy-
logenetic tree, such that families of related sequences have similar colors. Trees
for (a) and (b) are computed with the PhyML 3.0 program [6], using the maxi-
mum parsimony method. Trees for (c) and (d) are the guide-trees used by those
aligners.

knowledge, MSARC is the only non-progressive aligner of quality comparable
to best progressive programs. Moreover, due to a guide-tree bias of alignments
computed with progressive methods, MSARC is a quality leader for sequence
sets with evolutionary distances hardly representable by a phylogenetic tree.

Despite of the algorithmic novelty, the non-progressive approach to multi-
ple alignment makes MSARC an interesting tool for phylogeny reconstruction
pipelines. The objective of these procedures is to infer the structure of a phy-
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Fig. 4: Guide trees (ac) and alignment visualizations (bd) for test case bb40037

and programs Probalign (ab) and MSAProbs (cd). Tree branches and aligned
sequences are colored based on the evolutionary distances to their neighbors, as
computed from the guide-trees used during alignment. Sequences in alignments
are ordered following their order in trees, so related sequences have similar color
and are positioned together.

logenetic tree from a given sequence set. Multiple alignment is usually the first
pipeline step. When alignment is guided by a tree, the reconstructed phylogeny
is biased towards this tree. In order to minimize this effect, some phylogenetic
pipelines alternately optimize a tree and an alignment [16,12,10]. Unbiased align-
ment process of MSARC may simplify this procedure and improve the recon-
struction accuracy, especially in most problematic cases.

The main disadvantage of MSARC is its computational complexity, espe-
cially in the case of the multilevel scheme variant (MSARC-FM is ∼ 3× slower
than MSAProbs and ∼ 5× slower than Probalign, MSARC-ML is 1.5× slower
than MSARC-FM). However, the running time can be greatly improved by us-
ing multiple cores to parallel computations, because every step of its algorithm
can be parallelized. Since multiple cores are becoming more and more common,
this should allow for the computation time comparable with other alignment
algorithms.

MSARC has also the potential for quality improvements. Alternative meth-
ods of computing residue alignment affinities could be used to improve the ac-
curacy of both MSARC and Probalign based methods. Other approaches to
alignment graph partitioning may also lead to improvements in the accuracy of
MSARC, for example a better method of pairing residues for multilevel coars-
ening than currently used naive consecutive neighbors merging.
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