
Accurate Decoding of Pooled Sequenced Data

Using Compressed Sensing

Denisa Duma1, Mary Wootters2, Anna C. Gilbert2,
Hung Q. Ngo3, Atri Rudra3, Matthew Alpert1,

Timothy J. Close4, Gianfranco Ciardo1, and Stefano Lonardi1

1 Dept. of Computer Science and Eng., University of California, Riverside, CA 92521
2 Dept. of Mathematics, The University of Michigan, Ann Arbor, MI 48109

3 Dept. of Computer Science and Eng., Univ. at Buffalo, SUNY, Buffalo, NY 14260
4 Dept. of Botany & Plant Sciences, University of California, Riverside, CA 92521

Abstract. In order to overcome the limitations imposed by DNA
barcoding when multiplexing a large number of samples in the cur-
rent generation of high-throughput sequencing instruments, we have re-
cently proposed a new protocol that leverages advances in combinatorial
pooling design (group testing) [9]. We have also demonstrated how this
new protocol would enable de novo selective sequencing and assembly of
large, highly-repetitive genomes. Here we address the problem of decod-
ing pooled sequenced data obtained from such a protocol. Our algorithm
employs a synergistic combination of ideas from compressed sensing and
the decoding of error-correcting codes. Experimental results on synthetic
data for the rice genome and real data for the barley genome show
that our novel decoding algorithm enables significantly higher quality
assemblies than the previous approach.

Keywords: second/next-generation sequencing, pooled sequencing,
compressed sensing, error-correcting codes.

1 Introduction

The second generation of DNA sequencing instruments offer unprecedented
throughput and extremely low cost per base, but read lengths are much shorter
compared to Sanger sequencing. An additional limitation is the small number
of distinct samples that these instruments can accommodate (e.g., two sets of
eight lanes on the Illumina HiSeq). When the sequencing task involves a large
number of individual samples, a common solution is to employ DNA barcod-
ing to “multiplex” samples within a single lane. DNA barcoding, however, does
not scale readily to thousands of samples. As the number of samples reaches
the hundreds, exhaustive DNA barcoding becomes time consuming, error-prone,
and expensive. Additionally, the resulting distribution of reads for each barcoded
sample can be severely skewed (see, e.g., [1]).

Combinatorial pooling design or group testing allows one to achieve multi-
plexing without exhaustive barcoding. In group testing, a design or scheme is

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 70–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 71

a set of tests (or pools) each of which is a subset of a large collection of items
that needs to be tested for the presence of (a few) ‘defective’ items. The result
of testing a pool is a boolean value indicating whether the pool contains at least
one defective. The goal of group testing is to decode the information obtained by
testing all the pools in order to determine the precise identity of the defectives,
despite the fact that the defectives and non-defectives are mixed together. The
challenge is to achieve this goal while, at the same time, minimizing the number
of pools needed. Recently, compressed sensing (CS) has emerged as a powerful
technique for solving the decoding problem when the results of testing the pools
are more than boolean outcomes, for instance, real or complex values.

Combinatorial pooling has been used previously in the context of genome
analysis (see, e.g., [5–7, 2, 12]), but not for de novo genome sequencing. Our
proposed pooling method for genome sequencing and assembly was first de-
scribed in [9] and has generated considerable attention. It was used to produce
one of the critical datasets for the first draft sequence of the barley genome [14].
In our sequencing protocol, thousands of BAC clones are pooled according to
a combinatorial design so that, at the outset of sequencing, one can ‘decode’
each read to its source BACs. The underlying idea is to encode the identity of
a BAC within the pooling pattern rather than by its association with a specific
DNA barcode. We should stress that combinatorial pooling is not necessarily an
alternative to DNA barcoding, and both methods have advantages and disad-
vantages. They can be used together to increase the number of samples that can
be handled and benefit from the advantages of both.

In this paper we address the problem of decoding pooled sequenced data ob-
tained from a protocol such as the one in [9]. While the main objective is to
achieve the highest possible accuracy in assigning a read to the correct BAC,
given that one sequencing run can generate hundreds of millions of reads, the de-
coding procedure has also to be time- and space-efficient. Since in [9] we pooled
BAC clones according to the Shifted Transversal Design [15] which is a Reed-
Solomon based pooling design, our proposed decoding approach combines ideas
from the fields of compressive sensing and decoding of error-correcting codes.
Specifically, given the result of ‘testing’ (in this case, sequencing) pools of ge-
nomic BAC clones, we aggregate read frequency information across the pools
and cast the problem as a compressed sensing problem where the unknowns are
the BAC assignments of the reads. We solve (decode) for the unknown assign-
ments using a list recovery strategy as used in the decoding of error-correcting
codes. Reed-Solomon codes are known to be good list-recoverable codes which
can also tolerate a large fraction of errors. We also show that using readily avail-
able information about the reads like overlap and mate pair information can
improve the accuracy of the decoding. Experimental results on synthetic reads
from the rice genome as well as real sequencing reads from the barley genome
show that the decoding accuracy of our new method is almost identical to that of
HashFilter [9]. However, when the assembly quality of individual BAC clones
is the metric of choice, the decoding accuracy of the method proposed here is
significantly better than HashFilter.

72 D. Duma et al.

2 Related Work

The resemblance between our work and the closest related research efforts us-
ing combinatorial pooling and compressed sensing ideas stops at the pooling
of sequencing data. Our application domain, pooling scheme employed and al-
gorithmic approach to decoding, are completely different. To the best of our
knowledge, all compressed sensing work in the domain of genomics deals with
the problem of genotyping large population samples, whereas our work deals
with de novo genome sequencing. For instance in [5], the authors employ a pool-
ing scheme based on the Chinese Remainder Theorem (CRT) to identify carriers
of rare alleles in large cohorts of individuals. The pooling scheme allows the
detection of mutants within a pool, and by combining information across pools
one is able to determine the identity of carriers. In true group testing style, the
unknown carrier identities are encoded by a boolean vector of length equal to
the number of individuals, where a value of one indicates a carrier and zero a
normal individual. To decode their pooling scheme and find the unknown vec-
tor, the authors devise a greedy decoding method called Minimum Discrepancy
Decoder. In [6], loopy belief propagation decoding is used for the same pooling
scheme. A similar application domain is described in [12], where the authors
identify carriers of rare SNPs in a group of individuals pooled with a random
pooling scheme (Bernoulli matrix) and use the Gradient Projection for Sparse
Reconstruction (GPSR) algorithm to decode the pooling scheme and recover the
unknown carrier identities. The same problem is tackled in [11] with a pooling
design inspired from the theory of error correcting codes. However, this design is
only able to identify a single rare-allele carrier within a group. In [2], the authors
organize domain-specific (linear) constraints into a compressed sensing matrix
which they use together with GPSR decoding to determine the frequency of each
bacterial species present in a metagenomic mixture.

3 Preliminaries

As mentioned in the introduction, in [9] we pool DNA samples (BAC clones)
according to a combinatorial pooling scheme, then sequence the pools using
high-throughput sequencing instruments. In this paper we show how to efficiently
recover the sequence content of each BAC by combining ideas from the theory
of sparse signal recovery or compressed sensing (CS) as well as from the large
body of work developed for the decoding of error-correcting codes.

Formally, a combinatorial pooling design (or pooling scheme) can be repre-
sented by a binary matrixΦ withm rows (corresponding to pools) and n columns
(corresponding to items to be pooled), where entry (i, j) is 1 if item j is present
in pool i, 0 otherwise. The matrix Φ is called the design matrix, sensing matrix
or measurement matrix by various authors in the literature. In this paper we
only use the first two names to designate Φ. An important property of a com-
binatorial pooling design is its decodability d (also called disjunctness), which is
the maximum number of ‘defectives’ it guarantees to reliably identify. Let w be

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 73

a subset of the columns (pooled variables) of the design matrix Φ and p(w) be
the set of rows (pools) that contain at least one variable in w: the matrix Φ is
said to be d-decodable (d-disjunct) if for any choice of w1 and w2 with |w1| = 1,
|w2| = d and w1 �⊂ w2, we have that p(w1) �⊆ p(w2).

In this paper, we pool BACs using the combinatorial pooling scheme called
Shifted Transversal Design (STD) [15]. STD is a layered design, i.e., the rows of
the design matrix are organized into multiple redundant layers such that each
pooled variable appears only once in each layer, that is, a layer is a partition
of the set of variables. STD is defined by parameters (q, L, Γ) where L is the
number of layers, q is a prime number equal to the number of pools (rows) in
each layer and Γ is the compression level of the design. Thus, in order to pool
n variables, STD uses a total of m = q × L pools. The set of L pools defines a
unique pooling pattern for each variable which can be used to retrieve its identity.
This set of L integers is called the signature of the variable. The compression
level Γ is defined to be the smallest integer such that qΓ+1 ≥ n. STD has the
desirable property that any two variables co-occur in at most Γ pools, therefore
by choosing a small value for Γ one can make STD pooling extremely robust to
errors. The parameter Γ is also related to the decodability of the design through
the equation d = �(L− 1)/Γ�. Therefore, Γ can be seen as a trade-off parameter:
the larger it is, the more items can be tested (up to qΓ+1), but fewer defectives
can be reliably identified (up to �(L − 1)/Γ �). For more details on the pooling
scheme and its properties please refer to [15].

In order to decode measurements obtained through STD (i.e., reconstruct
the sequence content of pooled BACs) we borrow ideas from compressed sensing
(CS), an area of signal processing that describes conditions and efficient methods
for capturing sparse signals from a small number of aggregated measurements
[6]. Unlike combinatorial group testing, in compressed sensing measurements can
be more general than boolean values, allowing recovery of hidden variables which
are real or complex-valued. Specifically, in CS we look for an unknown vector
or signal x = (x1, x2, . . . , xn) which is s-sparse, i.e., has at most s non-zero
entries. We are given a vector y = (y1, y2, . . . , ym) of measurements (m � n),
which is the product between the (known) design matrix Φ and the unknown
vector x, that is y = Φx. Under certain conditions on Φ, by using the measure-
ments y, the assumption on the sparsity of x and information encoded by Φ,
it is possible to recover the original sparse vector x. The latter equation corre-
sponds to the ideal case when the data is noise-free. In practice, if the signal
x is not as sparse as needed and if measurements are corrupted by noise, the
equation becomes y = Φx + ε. In CS theory there are two main approaches
for solving the latter equation, namely linear programming (LP) decoding and
greedy pursuit decoding. Greedy pursuit algorithms have faster decoding time
than LP-based approaches, frequently sub-linear in the length of x (although
for specially designed matrices). Their main disadvantages is that they usually
require a slightly larger number of measurements and do not offer the same uni-
formity and stability guarantees as LP decoding. Greedy pursuits are iterative
algorithms which proceed in a series of steps: (1) identify the locations of the

74 D. Duma et al.

largest coefficients of x by greedy selection, (2) estimate their values, (3) update
y by subtracting the contribution of estimated values from it, and iterate (1-3)
until some convergence criterion is met. Usually O(s) iterations, where s is the
sparsity of x, suffice [17]. Updating y amounts to solving a least squares problem
in each iteration.

The most well known greedy decoding algorithm is Orthogonal Matching Pur-
suit (OMP) [16], which has spawned many variations. In OMP, the greedy rule
selects in each iteration the largest coordinate of ΦTy, i.e., the column of Φ
which is the most correlated with y. In this paper, we are interested in a variant of
OMP called Simultaneous Orthogonal Matching Pursuit (S-OMP). S-OMP is dif-
ferent from OMP in that it approximates multiple sparse signals x1,x2, . . . ,xK

simultaneously by using multiple linear combinations, y1,y2, . . . ,yK , of the sens-
ing matrix Φ [17]. The unknown signals {xk}k∈{1,··· ,K} as well as measure-
ment vectors {yk}k∈{1,··· ,K} can be represented by matrices X ∈ Rn×K and
Y ∈ Rm×K . Intuitively, by jointly exploiting information provided by Y, S-
OMP is able to achieve better approximation error especially when the signals
to be approximated are corrupted by noise which is not statistically independent
[17].

The mapping from the CS setting into our problem follows naturally and
we give here a simplified and intuitive version of it. The detailed model will
be introduced in the next section. The variables to be pooled are BAC clones.
Each column of the design matrix corresponds to a BAC to be pooled and
each row corresponds to a pool. For each read r (to be decoded) there is an
unknown s-sparse vector x which represents at most s BACs which could have
generated r. The vector of measurements y (frequency vector) of length m gives
for each read r, the number of times r appears in each of the m pools. The use
of numerical measurements (read counts) rather than boolean values indicating
the presence or the absence of r from a pool is in accordance with CS theory
and offers additional valuable information for decoding. To carry out the latter,
we use a S-OMP style algorithm but replace the greedy selection rule by a
list recovery criterion. Briefly, we obtain a list of candidate BACs for read r
as those columns of Φ whose non-zero coordinates consistently correspond to
the heaviest-magnitude measurements in each layer of y [10]. This allows for a
finer-grained usage of the values of y on a layer-by-layer basis rather than as a
whole. Additionally, by requiring that the condition holds for at least l layers
with l ≤ L, one can make the algorithm more robust to the noise in vector y.

4 Decoding Algorithms

In this section we present our decoding algorithms that assign reads back to the
BACs from which they were derived. Recall that we have n BACs pooled into m
pools according to STD and each BAC is pooled in exactly L pools. The input
data to the decoding algorithm consists of (1) m datasets containing the reads
obtained from sequencing the m pools, and (2) the parameters of the pooling
design, including the signatures of all n BACs. We will assume that each read

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 75

r may originate from up to s BACs with s � n; ideally, we can make the same
assumption for each k-mer (a k-mer is a substring of r of length k) of r, provided
that k is ‘large enough’. In practice, this will not be true for all k-mers (e.g.,
some k-mers are highly repetitive), and we will address this issue later in this
document.

We start by preprocessing the reads to correct sequencing errors in order to
improve the accuracy of read decoding. For this task, we employ SGA [13],
which internally employs a k-mer based error correction strategy. An additional
benefit of error correction is that it reduces the total number of distinct k-mers
present in the set of reads. After the application of SGA, there still remains a
small proportion of erroneous k-mers, which we discard because they will likely
introduce noise in the decoding process. An advantage of pooled sequencing is
that erroneous k-mers are easy to identify because they appear in fewer than
L pools. To be conservative, we only discard k-mers appearing in fewer than γ
pools where γ ≤ L is a user-defined parameter (see Section 5.1 for details on the
choice of this parameter). The closer γ is to L the more likely it is that a k-mer
that appears in γ pools is correct, but missing from the remaining L − γ pools
due to sequencing errors. Henceforth, we will call a k-mer valid if it appears in
a number of pools in the range [γ, sL] where s is the sparsity parameter. Any
k-mer occurring in more than sL pools is considered highly repetitive, and will
likely not be useful in the decoding process. The decoding algorithm we employ
can safely ignore these repetitive k-mers.

To carry out the decoding, we first compute the frequencies of all the k-mers
in all the m pools. Specifically, we decompose all SGA-corrected reads into k-
mers by sliding a window of length k (there are |r| − k + 1 such windows for
each read r). For each distinct k-mer, we count the number of times it appears
in each of the m pools, and store the sequence of the k-mer along with its vector
of m counts into a hash table. We refer to the vector of counts of a k-mer as its
frequency vector.

We are now ready to apply our CS-style decoding algorithm. We are given a
large number of reads divided into m sets (pools). For each read r, we want to
determine which of the n BACs is the source. Since we decomposed r into its
constitutive k-mers, we can represent the pool counts of all its k-mers by a fre-
quency matrix Yr. MatrixYr is a non-negative integer matrix where the number
of columns is equal to the number Kr of k-mers in r, the number of rows is equal
to the numbers m of pools, and entry (i, j) reports the number of times the jth

k-mer of r appears in pool i. The input to the decoding algorithm for read r is
given by (1) the frequency matrix Yr, (2) the design matrix Φ ∈ {0, 1}m×n, and
(3) the maximum number s of BACs which could have generated r. To decode r
means to find a matrix Xr ∈ Zn×Kr such that Xr = argminX||ΦX−Yr||2 with
the constrain that Xr is row-sparse, i.e., it has at most s non-zero rows (one for
each source BAC).

Since finding the source BACs for a read is sufficient for our purposes, we can
reduce the problem of finding matrix X to the problem of finding its row support
S(X), which is the union of the supports of its columns. The support Supp(X:,j)

76 D. Duma et al.

of a column j of X is the set of indices i such that Xi,j �= 0. In our case, the
non-zero indices represent the set of BACs which generated the read (and by
transitivity its constitutive k-mers). Since this set has cardinality at most s, in
the ideal case, X is row-sparse with support size at most s. In practice, the same
k-mer can be shared by multiple reads and therefore the number of non-zero
indices can differ from s. By taking a conservative approach, we search for a
good s-sparse approximation of S(X), whose quality we evaluate according to
the following definition.

Definition: A non-empty set S is good for X if for any column j of X, we have
S ⊂ Supp(X:,j).

Our decoding Algorithm 1 finds S in two steps, namely Filter and Esti-
mate, which are explained next.

Filter (Algorithm 2) is a one-iteration S-OMP style algorithm in which mul-
tiple candidate BACs are selected (we tried performing multiple iterations with-
out significant improvement in the results). Whereas S-OMP selects one BAC
per iteration as the column of Φ most correlated (inner product) with all the
columns of Y, our algorithm employs a list recovery criterion to obtain an ap-
proximation X̃r of Xr. Specifically, for each column y of Yr and for each layer
l ∈ [1, . . . , L], we select a set Sl of candidate pools for that layer as follows. We
choose set Sl by considering the h highest-magnitude coordinates of y in layer
l and selecting the corresponding pools. BACs whose signature pools belong to
all L sets Sl are kept while the rest of them are removed, i.e., their X̃-entries are
set to zero. Finally, for the BACs that are not filtered out, the X̃-entry estimate
follows the min-count estimate. The value of h should be chosen to be Θ(s):
h = 3s is sufficient even for noisy data [10].

Next, the Estimate (Algorithm 3) algorithm determines Sr by computing
a score for each BAC. Based on the computed scores, we select and return the
top s BACs as the final support Sr of Xr. Read r is then assigned to all the
BACs in Sr. The scoring function we employ for each BAC b is the number of
k-mers “voting” for b, i.e., having a frequency of at least τ in each pool in the
signature of b. The value we used for τ is given in Section 5. If we consider the
rows of X̃r as vectors of length Kr, our scoring function is simply the l0 norm
of these vectors, after zeroing out all the entries smaller than τ . We also tried

Algorithm 1. FindSupport (Φ,Yr, h, s)

Input : Φ ∈ {0, 1}m×n, Yr ∈ Nm×Kr and sparsity s such that
Xr = argminX||ΦX −Yr||2 for a s-row-sparse matrix Xr ∈ Nn×Kr ;
h ≤ q the number of entries per layer considered by list recovery

Output: A non-empty set Sr with |Sr| ≤ s which is good for Xr

1 X̃r ← Filter(Φ,Yr, h)

2 Sr ← Estimate(X̃r, s)
3 return Sr

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 77

Algorithm 2. Filter(Φ,Yr, h)

Input : Φ ∈ {0, 1}m×n,Yr ∈ Nm×Kr , parameter h
Output: An approximation X̃r for Xr

1 // Recall that Φ has L layers with q pools each

2 // For a column y of Yr, denote by y[l]i the ith entry in layer l

3 X̃r ← 0
4 for k = 1, . . . ,Kr do

5 Let y = Yr:,k be the kth column of Yr

6 for l = 1, . . . , L do
7 Sl ← set of h indices i ∈ {1, . . . , q} such that the corresponding counts

y[l]i are the h heaviest-magnitude counts in layer l of column y

8 for b = 1, . . . , n do
9 layersMatched← 0

10 Let φ = Φ:,b be the bth column of Φ
11 for l = 1, . . . , L do
12 if the unique i such that φ[l]i = 1 belongs to Sl then
13 layersMatched← layersMatched+ 1

14 if layersMatched = L then

15 X̃b,k ← minφp=1{yp}

l1 and l2 norms without observing significant improvements in the accuracy of
read assignments.

Observe that algorithms FindSupport, Filter and Estimate process one
read at a time. Since there is no dependency between the reads, processing
multiple reads in parallel is trivial. However, better total running time, improved
decoding accuracy as well as a smaller number of non-decodable reads can be
achieved by jointly decoding multiple reads at once. The idea is to use additional
sources of information about the reads, namely (1) read overlaps and (2) mate-
pair information. For the former, if we can determine clusters of reads that are
mutually overlapping, we can then decode all the reads within a cluster as a
single unit. Not only this strategy increases the decoding speed, but it also has

Algorithm 3. Estimate(X̃r, s)

Input : X̃r, sparsity parameter s
Output: Support set Sr, with |Sr| ≤ s

1 for b = 1, . . . , n do

2 score(b)← |{k : X̃b,k ≥ τ}|
3 Sr ← set of indices b with the highest s scores
4 return Sr

78 D. Duma et al.

the potential to improve the accuracy of read assignments because while some of
the reads in the cluster might have sequencing errors, the others might be able
to ‘compensate’. Thus, we can have more confidence in the vote of high-quality
shared k-mers. There is, however, the possibility that overlaps are misleading.
For instance, overlaps between repetitive reads might lead one to assign them to
the same cluster while in reality these reads belong to different BACs. To reduce
the impact of this issue we allow any read that belongs to multiple clusters to be
decoded multiple times and take the intersection of the multiple assignments as
the final assignment for the read. If a read does not overlap any other read (which
could be explained due to the presence of several sequencing errors) we revert
to the single read decoding strategy. In order to build the clusters we compute
all pairwise read overlaps using SGA [13], whose parameters are discussed in
Section 5.

In order to apply FindSupport on a cluster c of reads, we need to gather
the frequency matrix Yc for c. Since the total number of k-mers within a cluster
can be quite large as the clusters themselves can be quite large, and each k-
mer can be shared by a subset of the reads in the cluster, we build Yc on the
most frequently shared valid k-mers in the cluster. Our experiments indicate
that retaining a number of k-mers equal to the numbers of k-mers used in the
decoding of individual reads is sufficient. When reads within a cluster do not
share a sufficient number of valid k-mers, we break the cluster into singletons
and decode its reads individually. We denote by μ the minimum number of valid
k-mers required to attempt decoding of both clusters and individual reads. The
choice of this parameter is also discussed in Section 5.

We can also use mate pair information to improve the decoding, if reads are
sequenced as paired-ends (PE). The mate resolution strategy (MRS) we employ
is straightforward. Given a PE read r, (1) if the assignment of one of the mates
of r is empty, we assign r to the BACs of the non-empty mate; (2) if both
mates of r have BAC assignments and the intersection of these assignments is
non-empty, we assign r to the BACs in the intersection; (3) if both mates of r
have BAC assignments and their intersection is empty, we discard both mates.
In what follows, we will use RBD to refer to the read based-decoding and CBD
to refer to the cluster-based decoding versions of our algorithm. CBD with MRS
is summarized in Algorithm 4.

5 Experimental Results

While our algorithms can be used to decode any set of DNA samples pooled
according to STD, in this paper, we evaluate their performance on sets of BAC
clones selected in such a way that they cover the genome (or a portion thereof)
with minimum redundancy. In other words, the BACs we use form a minimum
tiling path (MTP) of the genome. The construction of a MTP for a given genome
requires a physical map, but both are well-known procedures and we will not
discuss them here (see, e.g., [4] and references therein). Once the set of MTP
BAC clones has been identified, we (1) pool them according to STD, (2) sequence

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 79

Algorithm 4. ClusterFindSupport(Φ, C, {Yc}c∈C, h, s)
Input : Φ ∈ {0, 1}m×n, parameter h, sparsity parameter s, set C of all

clusters, frequency matrix Yc for each cluster c ∈ C
Output: A support set Sr with |Sr| ≤ s for each read r

1 for each cluster c ∈ C do
2 Sc ←FindSupport(Φ,Yc, h, s)
3 for each read r ∈ c do
4 if Sr = ∅ then Sr ← Sc

5 else Sr ← Sr ∩ Sc // Take intersection of all assignments to r

6 // MRS

7 for each PE read (r1, r2) do
8 if Sr1 = ∅ then Sr1 ← Sr2

9 if Sr2 = ∅ then Sr2 ← Sr1

10 if Sr1 �= ∅ and Sr2 �= ∅ then
11 Sr1,r2 ← Sr1 ∩ Sr2

12 if Sr1,r2 �= ∅ then
13 Sr1 ← Sr1,r2

14 Sr2 ← Sr1,r2

the resulting pools, (3) apply our decoding algorithm to assign reads back to their
source BACs. Step (3) makes it possible to assemble reads BAC-by-BAC, thus
simplifying the genome assembly problem and increasing the accuracy of the
resulting BAC assemblies [9].

Recall that CS decoding requires the unknown assignment vector x to be s-
sparse. Since we use MTP BAC clones, if the MTP was truly a set of minimally
overlapping clones, setting s equal to 2 would be sufficient; we set it equal to
3 instead to account for imperfections in the construction of the MTP and to
obtain additional protection against errors. Figure 1 illustrates the three cases
(read belongs to one BAC, two BACs or three BACs) we will be dealing with
during decoding, and how it affects our STD parameter choice.

Next, we present experimental evaluations where we pool BAC clones us-
ing the following STD parameters. Taking into consideration the need for a
3-decodable pooling design for MTP BACs, we choose parameters q = 13, L = 7
and Γ = 2, so that m = qL = 91, n = qΓ+1 = 2197 and d = �(L − 1)/Γ� = 3.

Fig. 1. The three cases we are dealing with during read decoding

80 D. Duma et al.

In words, we pool 2197 BACs in 91 pools distributed in 7 layers of 13 pools
each. Each BAC is pooled in exactly 7 pools and each pool contains qΓ = 169
BACs. Recall that we call the set of L pools to which a BAC is assigned the
BAC signature. In the case of STD, any two-BAC signatures can share at most
Γ = 2 pools and any three-BAC signatures can share at most 3Γ = 6 pools.

5.1 Simulation Results on the Rice Genome

To simulate our combinatorial pooling protocol and subsequent decoding, we
used the genome of rice (Oryza sativa) which is about 390 Mb and fully se-
quenced. We started from an MTP of 3,827 BAC clones selected from a real
physical map library for rice of 22,474 clones. The average BAC length in the
MTP was ≈ 150kB. Overall the clones in the MTP spanned 91% of the rice
genome. We pooled a subset of 2,197 of these BACs into 91 pools according to
the pooling parameters defined above. The resulting pools were ‘sequenced’ in
silico using SimSeq, which is a high-quality short read simulator used to gener-
ate the synthetic data for Assemblathon [3]. SimSeq uses error profiles derived
from real Illumina data to inject “realistic” substitution errors. For each pool,
we generated 106 PE reads of 100 bases each with an average insert size of 300
bases. A total of 200M usable bases gave an expected ≈ 8× sequencing depth for
a BAC in a pool. As each BAC is present in 7 pools, this is an expected ≈ 56×
combined coverage before decoding. After decoding however, since a read can
be assigned to more than one BAC, the actual average BAC sequencing depth
became 91.68× for RBD, 93× for CBD and 97.91× for CBD with MRS.

To simulate our current workflow, we first performed error-correction on the
synthetic reads using SGA [13] with k-mer size parameter k = 26. Then, the
hash table for k = 26 was built on the corrected reads, but we only stored k-mers
appearing in at least γ = 3 pools. Due to the error-correction preprocessing step
and the fact that we are discarding k-mers with low pool count, the hash table
was relatively small (about 30GB).

In order to objectively evaluate and compare the performance of our decoding
algorithms, we first had to precisely define the ‘ground truth’ for simulated
reads. An easy choice would have been to consider ‘true’ only the single BAC
from which each read was generated. However, this notion of ground truth is
not satisfactory: for instance, since we can have two or three BACs overlapping
each other in the MTP, reads originating from an overlap region are expected
to be assigned to all the BACs involved. In order to find all the BACs that
contain a read, we mapped all synthetic reads (error-free version) against the
BAC primary sequences using Bowtie [8] in stringent mode (paired-end end-to-
end alignment with zero mismatches). The top three paired-end hits returned by
Bowtie constituted the ground truth against which we validated the accuracy
of the decoding.

In our experiments we observed that although the majority of the reads are
assigned to 1–3 BACs, due to the repetitive nature of the genome, a small fraction
(≈ 1%) can be correctly assigned to more than 3 BACs. To account for this,
rather than sorting BAC scores and retaining the top 3, we decided to assign

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 81

Table 1. Accuracy of the decoding algorithms on synthetic reads for the rice genome
(see text for details). All values are an average of 91 pools. Boldface values highlight
the best result in each column (excluding perfect decoding).

Mapped to source BAC Precision Recall F-score Not decoded

Perfect decoding 100.00% 98.11% 49.62% 65.90% 0.00%

Hashfilter [9] 99.48% 97.45% 99.28% 98.36% 16.25%

RBD 98.05% 97.81% 97.46% 97.64% 14.58%

CBD 97.23% 97.74% 96.35% 97.04% 12.58%

CBD + MRS 96.60% 97.89% 95.58% 96.72% 7.09%

a read to all BACs whose score was above a certain threshold. We found that
retaining all BACs whose score was at least 0.5Kr gave the best results. Recall
that the score function we are using is the l0 norm, so we are effectively asking
that at least half of the k-mers ‘vote’ for a BAC.

Table 1 summarizes and compares the decoding performance of our algo-
rithms. The first row of the table reports the performance of an ‘ideal’ method
that always assigns each read to its original source BAC. The next four rows
summarize (1) the performance of HashFilter [9] with default parameters; (2)
our read-based decoding (RBD); (3) our cluster-based decoding (CBD); (4) our
cluster-based decoding with mate resolution strategy (CBD + MRS). For all
three versions of the decoding algorithm we used parameters h = �q/2� = 6 and
τ = 1.

To build clusters, we require a minimum overlap of 75 bases between two reads
and a maximum error rate of 0.01 (SGA parameters). The resulting clusters
contained on average about 5 reads. Our methods make a decoding decision if a
read (or cluster) contains at least μ = 15 valid k-mers. The columns in Table 1
report the percentage of reads assigned to the original source BAC, precision
(defined as TP/(TP + FP) where TP is the number of true positive BACs
across all decoded reads; FP and FN are computed similarly), recall (defined
as TP/(TP + FN)), F-score (harmonic mean of precision and recall) and the
percentage of reads that were not decoded. Observe that the highest precision
is achieved by the cluster-based decoding with MRS, and the highest recall is
obtained by Hashfilter. In general, all methods are comparable from the point
of view of decoding precision and recall. In terms of decoding time, once the hash
table is built (≈ 10h on one core), RBD takes on average 14.03s per 1M reads
and CBD takes on average 33.46s per 1M clusters. By comparison, Hashfilter
[9] takes about 30s per 1M reads. These measurements were done on 10 cores of
an Intel Xeon X5660 2.8 GHz server with 12 cores and 192 GB of RAM.

As a more meaningful measure of decoding performance, we assembled the set
of reads assigned by each method to each BAC. We carried out this step using
Velvet [18] for each of the 2,197 BACs, using a range of l-mer from 25 to 79
with an increment of 6, and chose the assembly that achieved the highest N501.

1 The N50 is the contig length such that at least half of the total bases of a genome
assembly are contained within contigs of this length or longer.

82 D. Duma et al.

Table 2. Assembly results for rice BACs for different decoding algorithms (see text
for details). All values are an average of 2197 BACs. Boldface values highlight the best
result in each column (excluding perfect decoding).

Reads used # of contigs N50 Sum/size BAC coverage

Perfect decoding (ideal) 97.1% 4 136,570 107.4 87.1%

Hashfilter [9] 95.0% 24 52,938 93.8 76.2%

RBD 96.5% 20 46,477 90.0 81.1%

CBD 97.3% 22 53,097 93.8 84.7%

CBD + MRS 97.0% 11 103,049 97.0 82.9%

Table 2 reports the main statistics for the assemblies: percentage of reads used
by Velvet in the assembly, number of contigs (at least 200 bases long) of the
assembly, value of N50, ratio of the sum of all contigs sizes over BAC length, and
the coverage of the BAC primary sequence by the assembly. All reported values
are averages over 2,197 BACs. We observe that our decoding algorithms lead to
superior assemblies than Hashfilter’s. In particular, the N50 and the average
coverage of the original BACs are both very high, and compare favorably with
the statistics for the assembly of perfectly decoded reads.

The discrepancy between similar precision/recall figures but quite different
assembly statistics deserves a comment. First, we acknowledge that the way we
compute precision and recall by averaging TP , FP and FN across all decoded
reads might not be the best way of measuring the accuracy of the decoding.
Taking averages might not accurately reflect mis-assignments at the level of
individual reads. Second, our decoding algorithms makes a better use of the
k-mer frequency information than HashFilter, and, at the same time, takes
advantage of overlap and mate pair information, which is expected to result in
more reads decoded and more accurate assemblies.

5.2 Results on the Barley Genome

We have also collected experimental results on real sequencing data for the
genome of barley (Hordeum vulgare), which is about 5,300 Mb and at least
95% repetitive. We started from an MTP of about 15,000 BAC clones selected
from a subset of nearly 84,000 gene-enriched BACs for barley (see [9] for more
details). We divided the set of MTP BACs into seven sets of n = 2197 BACs and
pooled each set using the STD parameters defined above. In this manuscript,
we report on one of these seven sets, called HV3 (the average BAC length in
this set is about 116K bases). The 91 pools in HV3 were sequenced on one flow
cell of the Illumina HiSeq2000 by multiplexing 13 pools on each lane. After each
sample was demultiplexed, we quality-trimmed and cleaned the reads of spurious
sequencing adapters and vectors. We ended up with high quality reads of about
87–89 bases on average. The number of reads in a pool ranged from 4.2M to
10M, for a grand total of 826M reads. We error-corrected and overlap-clustered
the reads using SGA (same parameters as for rice). The average cluster size was

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 83

Table 3. Assembly results for barley BACs for different decoding algorithms. All values
are an average of 2197 BACs. Boldface values highlight the best result in each column.
Column “% coverage” refers to the coverage of known unigenes by assembled contigs.

Reads used # contigs N50 Sum/size # obs unigenes % coverage

Hashfilter [9] 83.6% 101 8,190 96.7% 1,433 92.9%

RBD 85.7% 54 14,419 101.0% 1,434 92.4%

CBD 92.9% 54 13,482 94.5% 1,436 92.6%

CBD + MRS 94.3% 50 26,842 126.8% 1,434 92.5%

about 26 reads. Computing pairwise overlaps took an average of 217.60s per 1M
reads on 10 cores. The hash table for k = 26 (after discarding k-mers appearing
in fewer than γ = 3 pools) used about 26GB of RAM. After decoding the reads
to their BAC, we obtained an average sequencing depth for one BAC of 409.2×,
382.2× and 412.8× for RBD, CBD and CBD + MRS, respectively. The average
running time was 10.25s per 1M reads for RBD and 82.12s per 1M clusters for
CBD using 10 cores.

The only objective criterion to asses the decoding performance on barley
genome is to assemble the reads BAC-by-BAC and analyze the assembly statis-
tics. We used Velvet with the same l-mer choices as used for rice. Table 3
summarizes the statistics for the highest N50 among those l-mer choices. As
before, rows corresponds to the various decoding methods. Columns show (1)
percentage of reads used by Velvet in the assembly, (2) number of contigs (at
least 200 bases long), (3) value of N50, (4) ratio of the sum of all contigs sizes
over estimated BAC length, (5) the number of barley known unigenes observed
in the assemblies, and (6) the coverage of observed unigenes. Observe that, out
of a total of 1,471 known unigenes expected to be contained in these BACs, a
large fraction are reported by all assemblies. However, cluster-based decoding
appears to generate significantly longer contigs than the other methods.

6 Conclusions

We have presented a novel modeling and decoding approach for pooled sequenced
reads obtained from protocols for de novo genome sequencing, like the one pro-
posed in [9]. Our algorithm is based on the theory of compressed sensing and
uses ideas from the decoding of error-correcting codes. It also effectively exploits
overlap and mate pair information between the sequencing reads. Experimen-
tal results on synthetic data from the rice genome as well as real data from
the genome of barley show that our method enables significantly higher quality
assemblies than the previous approach, without incurring higher decoding times.

Acknowledgments. SL and TJC were supported by NSF [DBI-1062301 and
DBI-0321756] and by USDA [2009-65300-05645 and 2006-55606-16722].MW and
ACG were supported by NSF [CCF-1161233]. HQN and AR were supported by
NSF [CCF-1161196].

84 D. Duma et al.

References

1. Alon, S., Vigneault, F., Eminaga, S., et al.: Barcoding bias in high-throughput
multiplex sequencing of mirna. Genome Research 21(9), 1506–1511 (2011)

2. Amir, A., Zuk, O.: Bacterial community reconstruction using compressed sensing.
In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 1–15.
Springer, Heidelberg (2011)

3. Earl, D., et al.: Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research 21(12), 2224–2241 (2011)

4. Engler, F.W., Hatfield, J., Nelson, W., Soderlund, C.A.: Locating sequence on FPC
maps and selecting a minimal tiling path. Genome Research 13(9), 2152–2163 (2003)

5. Erlich, Y., Chang, K., Gordon, A., et al.: DNA sudoku - harnessing high-
throughput sequencing for multiplexed specimen analysis. Genome Research 19(7),
1243–1253 (2009)

6. Erlich, Y., Gordon, A., Brand, M., et al.: Compressed genotyping. IEEE Transac-
tions on Information Theory 56(2), 706–723 (2010)

7. Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C., Birol, I.: Optimal pooling for
genome re-sequencing with ultra-high-throughput short-read technologies. Bioin-
formatics 24(13), i32–i40 (2008)

8. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3),
R25 (2009)

9. Lonardi, S., Duma, D., Alpert, M., et al.: Combinatorial pooling enables selective
sequencing of the barley gene space. PLoS Comput. Biol. 9(4), e1003010 (2013)

10. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: STACS, pp. 230–241 (2012)

11. Prabhu, S., Pe’er, I.: Overlapping pools for high-throughput targeted resequencing.
Genome Research 19(7), 1254–1261 (2009)

12. Shental, N., Amir, A., Zuk, O.: Identification of rare alleles and their carriers using
compressed se(que)nsing. Nucleic Acids Research 38(19), e179–e179 (2010)

13. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22(3), 549–556 (2012)

14. The International Barley Genome Sequencing Consortium. A physical, genetic and
functional sequence assembly of the barley genome. Nature (advance online publi-
cation October 2012) (in press)

15. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the
shifted transversal design. BMC Bioinformatics 7(28) (2006)

16. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007)

17. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse ap-
proximation: part i: Greedy pursuit. Signal Process. 86(3), 572–588 (2006)

18. Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research 8(5), 821–829 (2008)

	Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing
	Introduction
	Related Work
	Preliminaries
	Decoding Algorithms
	Experimental Results
	Simulation Results on the Rice Genome
	Results on the Barley Genome

	Conclusions

