Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 8100))

Abstract

Comparison of metabolic pathways is useful in phylogenetic analysis and for understanding metabolic functions when studying diseases and in drugs engineering. In the literature many techniques have been proposed to compare metabolic pathways. Most of them focus on structural aspects, while behavioural or functional aspects are generally not considered. In this paper we propose a new method for comparing metabolic pathways of different organisms based on a similarity measure which considers both homology of reactions and functional aspects of the pathways. The latter are captured by relying on a Petri net representation of the pathways and comparing the corresponding T-invariant bases, which represent minimal subsets of reactions that can operate at a steady state. A prototype tool, CoMeta, implements this approach and allows us to test and validate our proposal. Some experiments with CoMeta are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kegg Markup Language manual, http://www.genome.ad.jp/kegg/docs/xml

  2. KEGG pathway database - Kyoto University Bioinformatics Centre, http://www.genome.jp/kegg/pathway.html

  3. Petri Net Markup Language, http://www.pnml.org

  4. Petri net tools, http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools

  5. Taxonomy - site guide - NCBI, http://www.ncbi.nlm.nih.gov/guide/taxonomy/

  6. 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces, http://www.4ti2.de

  7. Ay, F., Dang, M., Kahveci, T.: Metabolic network alignment in large scale by network compression. BMC Bioinformatics 13(suppl. 3) (2012)

    Google Scholar 

  8. Ay, F., Kahveci, T., de Crecy-Lagard, V.: Consistent alignment of metabolic pathways without abstraction. In: Int. Conf. on Computational Systems Bioinformatics (CSB), pp. 237–248 (2008)

    Google Scholar 

  9. Ay, F., Kellis, M., Kahveci, T.: SubMAP: Aligning metabolic pathways with subnetwork mappings. Journal of Computational Biology 18(3), 219–235 (2011)

    Article  MathSciNet  Google Scholar 

  10. Baldan, P., Cocco, N., Marin, A.: M Simeoni. Petri nets for modelling metabolic pathways: a survey. Natural Computing 9(4), 955–989 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baldan, P., Cocco, N., De Nes, F., Llabrés Segura, M., Simeoni, M.: MPath2PN - Translating metabolic pathways into Petri nets. In: Heiner, M., Matsuno, H. (eds.) BioPPN2011 Int. Workshop on Biological Processes and Petri Nets. CEUR Workshop Proceedings, vol. 724, pp. 102–116 (2011), http://ceur-ws.org/Vol-724

  12. Baldan, P., Cocco, N., Simeoni, M.: Comparison of metabolic pathways by considering potential fluxes. In: Heiner, M., Hofestädt, R. (eds.) BioPPN2012 - 3rd International Workshop on Biological Processes and Petri Nets, Satellite Event of Petri Nets 2012, Hamburg, Germany, June 25. CEUR Workshop Proceedings, vol. 852, pp. 2–17. ceur-ws.org (2012), http://ceur-ws.org/Vol-852

  13. Casasnovas, J., Clemente, J.C., Miró-Julià, J., Rosselló, F., Satou, K., Valiente, G.: Fuzzy clustering improves phylogenetic relationships reconstruction from metabolic pathways. In: Proc. of the 11th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2006)

    Google Scholar 

  14. Chen, M., Hofestadt, R.: Web-based information retrieval system for the prediction of metabolic pathways. IEEE Trans. on NanoBioscience 3(3), 192–199 (2004)

    Article  Google Scholar 

  15. Cheng, Q., Harrison, R., Zelikovsky, A.: MetNetAligner: a web service tool for metabolic network alignments. Bioinformatics 25(15), 1989–1990 (2009)

    Article  Google Scholar 

  16. Clemente, J., Satou, K., Valiente, G.: Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome Informatics 16(2), 45–55 (2005)

    Google Scholar 

  17. Ebenhöh, O., Handorf, T., Heinrich, R.: A cross species comparison of metabolic network functions. Genome Informatics 16(1), 203–213 (2005)

    Google Scholar 

  18. Esparza, J., Nielsen, M.: Decidability issues for Petri Nets - a survey. Journal Inform. Process. Cybernet. EIK 30(3), 143–160 (1994)

    MATH  Google Scholar 

  19. Forst, C.V., Flamm, C., Hofacker, I.L., Stadler, P.F.: Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinformatics 7(1), 1–11 (2006)

    Article  Google Scholar 

  20. Forst, C.V., Schulten, K.: Evolution of metabolism: a new method for the comparison of metabolic pathways using genomics information. Journal of Computational Biology 6(3/4), 343–360 (1999)

    Article  Google Scholar 

  21. Forst, C.V., Schulten, K.: Phylogenetic analysis of metabolic pathways. Journal of Molecular Evolution 52(16), 471–489 (2001)

    Google Scholar 

  22. Grafahrend-Belau, E., Schreiber, F., Heiner, M., Sackmann, A., Junker, B.H., Grunwald, S., Speer, A., Winder, K., Koch, I.: Modularization of biochemical networks based on classification of Petri net t-invariants. BMC Bioinformatics 9(1), 1–17 (2008)

    Article  Google Scholar 

  23. Hardy, S., Robillard, P.N.: Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 24(2), 209–217 (2008)

    Article  Google Scholar 

  24. Heiner, M., Koch, I.: Petri net based model validation in systems biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Heymans, M., Singh, A.M.: Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 19(1), i138–i146 (2003)

    Article  Google Scholar 

  26. Hofestädt, R.: A Petri net application of metabolic processes. Journal of System Analysis, Modelling and Simulation 16, 113–122 (1994)

    MATH  Google Scholar 

  27. Hong, S.H., Kim, T.Y., Lee, S.Y.: Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Applied Microbiology and Biotechnology 65(2), 203–210 (2004)

    Article  Google Scholar 

  28. Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 241–272 (1901)

    Google Scholar 

  29. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Research, 480–484 (2008)

    Google Scholar 

  30. Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinformatics 10(suppl. 1), 1–9 (2009)

    Google Scholar 

  31. Koch, I., Heiner, M.: Petri nets. In: Junker, B.H., Schreiber, F. (eds.) Analysis of Biological Networks. Book Series in Bioinformatics, pp. 139–179. Wiley & Sons (2008)

    Google Scholar 

  32. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface 7(50), 1341–1354 (2010)

    Article  Google Scholar 

  33. Li, Y., de Ridder, D., de Groot, M.J.L., Reinders, M.J.T.: Metabolic pathway alignment between species using a comprehensive and flexible similarity measure. BMC Systems Biology 2(1), 1–15 (2008)

    Article  Google Scholar 

  34. Li, Z., Zhang, S., Wang, Y., Zhang, X.S., Chen, L.: Alignment of molecular networks by integer quadratic programming. Bioinformatics 23(13), 1631–1639 (2007)

    Article  Google Scholar 

  35. Liao, L., Kim, S., Tomb, J.F.: Genome comparisons based on profiles of metabolic pathways. In: Proc. of the 6th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems (KES 2002), pp. 469–476 (2002)

    Google Scholar 

  36. Lo, E., Yamada, T., Tanaka, M., Hattori, M., Goto, S., Chang, C., Kanehisa, M.: A method for customized cross-species metabolic pathway comparison. In: Proc. of Genome Informatics 2004. GIW 2004 Poster Abstract: P068 (2004)

    Google Scholar 

  37. Mithani, A., Preston, G.M., Hein, J.: Rahnuma: Hypergraph based tool for metabolic pathway prediction and network comparison. Bioinformatics 25(14), 1831–1832 (2009)

    Article  Google Scholar 

  38. Murata, T.: Petri Nets: Properties, Analysis, and Applications. Proceedings of IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  39. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  40. Oehm, S., Gilbert, D., Tauch, A., Stoye, J., Goessmann, A.: Comparative Pathway Analyzer - a web server for comparative analysis, clustering and visualization of metabolic networks in multiple organisms. Nucleic Acids Research 36, 433–437 (2008)

    Article  Google Scholar 

  41. Pedersen, M.: Compositional definitions of minimal flows in petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  43. Reddy, V.N.: Modeling Biological Pathways: A Discrete Event Systems Approach. Master’s thesis, The Universisty of Maryland, M.S. 94-4 (1994)

    Google Scholar 

  44. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of Biochemical Reaction Systems. Computers in Biology and Medicine 26(1), 9–24 (1996)

    Article  Google Scholar 

  45. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: ISMB93: First Int. Conf. on Intelligent Systems for Molecular Biology, pp. 328–336. AAAI press (1993)

    Google Scholar 

  46. Schilling, C.H., Letscherer, D., Palsson, B.O.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology 203, 229–248 (2000)

    Article  Google Scholar 

  47. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnology Progress 15(3), 296–303 (1999)

    Article  Google Scholar 

  48. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1999)

    Google Scholar 

  49. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnology, 53–60 (March 1999)

    Google Scholar 

  50. Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathway useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology 18, 326–332 (2000)

    Article  Google Scholar 

  51. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2, 165–182 (1994)

    Article  Google Scholar 

  52. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18(2), 351–361 (2002)

    Article  Google Scholar 

  53. Sestoft, P.: Programs for biosequence analysis, http://www.itu.dk/people/sestoft/bsa.html

  54. Shasha, D., Wang, J.T.L., Zhang, S.: Unordered tree mining with applications to phylogeny. In: 20th Int. Conf. on Data Engineering, pp. 708–719. IEEE Computer Society (2004)

    Google Scholar 

  55. Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438 (1958)

    Google Scholar 

  56. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons. Biologiske Skrifter / Kongelige Danske Videnskabernes Selskabg 5(4), 1–34 (1948)

    Google Scholar 

  57. Starke, P.H., Roch, S.: The Integrated Net Analyzer. Humbolt University Berlin (1999), http://www.informatik.hu-berlin.de/starke/ina.html

  58. Tanimoto, T.T.: Technical report, IBM Internal Report, (November 17, 1957)

    Google Scholar 

  59. Tohsato, Y.: A method for species comparison of metabolic networks using reaction profile. IPSJ Digital Courier 2(0), 685–690 (2006)

    Article  Google Scholar 

  60. Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 376–383 (2000)

    Google Scholar 

  61. Tohsato, Y., Nishimura, Y.: Metabolic pathway alignment based on similarity between chemical structures. IPSJ Digital Courier 3, 736–745 (2007)

    Article  Google Scholar 

  62. Webb, E.C.: Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. Published for the International Union of Biochemistry and Molecular Biology by Academic Press, San Diego (1992)

    Google Scholar 

  63. Wernicke, S., Rasche, F.: Simple and fast alignment of metabolic pathways by exploiting local diversity. Bioinformatics 23(15), 1978–1985 (2007)

    Article  Google Scholar 

  64. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected acyclic graphs. International Journal of Foundations of Computer Science 3(1), 43–57 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baldan, P., Cocco, N., Giummolè, F., Simeoni, M. (2013). Comparing Metabolic Pathways through Reactions and Potential Fluxes. In: Koutny, M., van der Aalst, W.M.P., Yakovlev, A. (eds) Transactions on Petri Nets and Other Models of Concurrency VIII. Lecture Notes in Computer Science, vol 8100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40465-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40465-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40464-1

  • Online ISBN: 978-3-642-40465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics