Skip to main content

A Novel Approach to Automated Cell Counting Based on a Difference of Convex Functions Algorithm (DCA)

  • Conference paper
  • 1997 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Abstract

Cytological analysis, specially the cell counting, is an important element in the diagnosis of many diseases. Cell segmentation, the major phase of cell counting procedure, was basically performed by intensity thresholding, feature detection, morphological filtering, region accumulation and deformable model fitting. We present in this paper an automatic method for cell counting with segmentation based on Feature Weighted Fuzzy Clustering via a Difference of Convex functions with Optimization Algorithm called DCA. This new application of our method can give promising results compared to the traditional manual analysis despite the very high cell density.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anoraganingrum, D.: Cell Segmentation with Median Filter and Mathematical MorphologyOperation. In: Proc. Intl. Conf. on Image Anal. and Proc., pp. 1043–1046 (1999)

    Google Scholar 

  2. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithm. Plenum Press, New York (1981)

    Book  Google Scholar 

  3. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Color and Texture-Based Image Segmentation Using EM and Its Application to Content-Based Image Retrieval. In: Proceedings of the Sixth International Conference on Computer Vision, January 4-7, pp. 675–682 (1998)

    Google Scholar 

  4. Hichem, F., Olfa, N.: Unsupervised learning of prototypes and attribute weights. Pattern Recognition 37(3), 567–581 (2004)

    Article  Google Scholar 

  5. Joaquim, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numerical Algorithms 47(4), 391–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, K., Liao, Q., Dai, S.: A Novel White Blood Cell Segmentation Scheme Using Scale-Space Filtering and Watershed Clustering. In: Proc. 2nd Intl Conf on Machine Learning and Cybern, pp. 2820–2825 (2003)

    Google Scholar 

  7. Le Thi, H.A., Le Hoai, M., Pham Dinh, T.: Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms. Journal of Advances in Data Analysis and Classification 2, 1–20 (2007)

    Google Scholar 

  8. Le Thi, H.A., Le Hoai, M., Nguyen Trong, P., Pham Dinh, T.: Noisy image segmentation by a robust clustering algorithm based on DC programming and DCA. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 72–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Le Thi, H.A., Pham Dinh, T.: Minimum Sum-of-Squares Clustering by DC Programming and DCA. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 327–340. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Le Hoai, M., Nguyen, T.B.T., Ta, M.T., Le Thi, H.A.: Image Segmentation via Feature Weighted Fuzzy Clustering by a DCA based algorithm. In: Nguyen, N.T., van Do, T., Thi, H.A. (eds.) ICCSAMA 2013. SCI, vol. 479, pp. 53–63. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Liao, Q., Deng, Y.: An Accurate Segmentation Method for White Blood Cell Images. In: IEEE Intl Sym on Biomedical Imaging, pp. 245–248 (2002)

    Google Scholar 

  12. Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6) (June 1991)

    Google Scholar 

  13. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  14. Theera-Umpon, N.: White Blood Cell Segmentation and Classification in Microscopic Bone Marrow Images. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3614, pp. 787–796. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1983)

    Google Scholar 

  16. http://foodmedicaleponyms.blogspot.fr/2011/03/fried-egg-like-cells.html (accessed on March 2013)

  17. http://nanotechweb.org/cws/article/tech/33794 (accessed on March 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoai An, L.T., Minh Tam, L., Thi Bich Thuy, N. (2013). A Novel Approach to Automated Cell Counting Based on a Difference of Convex Functions Algorithm (DCA). In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics