Skip to main content

The Differential Evolution with the Entropy Based Population Size Adjustment for the Nash Equilibria Problem

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

The Differential Evolution (DE) is a simple and powerful optimization method, which is mainly applied to numerical optimization. Many modifications are inclined to use adaptive or dynamic parameters values. One of the most important parameters in the algorithm is the population size. Many existing methods focus only on the decreasing of population size over the time. In this article we propose a new approach based on the entropy of the population. In successive iterations, entropy measure is based on the phenotype of every individual in the population. This new approach is adapted to the problem of finding the approximate Nash equilibrium in n–person games in the strategic form. Finding the Nash equilibrium may be classified as continuous problem, where two probability distributions over the set of pure strategies of both players should be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.: Mathematical Methods of Game and Economic Theory. North-Holland Publ. Co., New York (1979)

    MATH  Google Scholar 

  2. Boskowic, B., Brest, J., Greiner, S.: Selfadapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  3. Boskowic, B., Brest, J., Greiner, S., Maucec, M.S.: Performance Comparison of Self-adaptive and Adaptive Differential Evolution Algorithms. Soft Computation: A Fusion of Foundations, Methodologies and Applications 11(7), 617–629 (2007)

    Article  Google Scholar 

  4. Brest, J., Maucec, M.S.: Self-adaptive Differential Evolution Algorithm Using Population Size Reduction and Three Strategies. Special Issue on Scalability of Evolutionary Algorithms and Other Metaheuristics for Large-Scale Continuous Optimization Problems 15, 2157–2174 (2011)

    Google Scholar 

  5. Chang, C.S., Du, D.: Differential Evolution Based Tuning of Fuzzy Automatic Train Operation for Mass Rapid Transit System. IEE Proceedings of Electric Power Applications 147, 206–212 (2000)

    Article  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional (1989)

    Google Scholar 

  7. Griss, M., Letsinger, R.: Games at Work-Agent-Mediated E-Commerce Simulation. In: Proceedings of the Fourth International Conference on Autonomous Agents (2000)

    Google Scholar 

  8. Huang, Q.A.K., Suganthan, V.L.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13, 398–417 (2009)

    Article  Google Scholar 

  9. Kasemir, K.U.: Detecting ellipses of limited eccentricity in images with high noise levels. Image and Vision Computing 21(7), 221–227 (2003)

    Article  Google Scholar 

  10. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: International Conference on Soft Computing, pp. 76–83 (2000)

    Google Scholar 

  11. Lampinen, J., Zelinka, I.: Mixed variable non-linear optimization by differential evolution. In: Proceedings of Nostradamus (1999)

    Google Scholar 

  12. Magoulas, G.D., Vrahatis, M.N., Androulakis, G.S.: Effective backpropagation training with variable stepsize. Neural Netw. 10, 69–82 (1997)

    Article  Google Scholar 

  13. Ordeshook, P.: Game theory and political theory. Cambridge University Press (1986)

    Google Scholar 

  14. Price, K., Storn, R., Lampinen, J.: Differential evolution: A practical approach to global optimization. Springer (2005)

    Google Scholar 

  15. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (2005)

    Google Scholar 

  16. Rammohan, M.: Empirical study on the effect of population size on Differential evolution Algorithm, Evolutionary Computation. In: CEC 2008, pp. 3663–3670 (2008)

    Google Scholar 

  17. Sanderson, A.C., Zhang, J., Meng-Hiot Lim, Y.-S.O.: Adaptive Differential Evolution - A Robust Approach to Multimodal Problem Optimization. Springer (2009)

    Google Scholar 

  18. Storn, R.: Differential evolution design of an iir-Filter. In: IEEE International Conference on Evolutionary Computation, ICEC 1996, pp. 268–273 (1996)

    Google Scholar 

  19. Tang, K., Yang, Z., Yao, X.: Self-adaptive differential evolution with neighborhood search. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1110–1116 (2008)

    Google Scholar 

  20. Tennenholtz, M.: Game Theory and Artificial Intelligence. In: d’Inverno, M., Luck, M., Fisher, M., Preist, C. (eds.) UKMAS 1996-2000. LNCS (LNAI), vol. 2403, pp. 49–58. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Computation: A Fusion of Foundations, Methodologies and Applications 10, 673–686 (2006)

    Article  Google Scholar 

  22. Zaharie, D.: Critical Values for the Control Parameters of Differential Evolution Algorithms. In: International Mendel Conference on Soft Computing (2002)

    Google Scholar 

  23. Zaharie, D.: Critical Values for the Control Parameters of Differential Evolution Algorithms. In: International Mendel Conference on Soft Computing (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juszczuk, P., Boryczka, U. (2013). The Differential Evolution with the Entropy Based Population Size Adjustment for the Nash Equilibria Problem. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics