Skip to main content

Dynamic Version of the ACDT/ACDF Algorithm for H-Bond Data Set Analysis

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

This article is devoted to the new application of the ACDT/ACDF algorithms. In this work we distinguish ant colony optimization and join it with decision tree construction algorithms, the proposed approach builds more stable decision forests. Additionally, we would like to mention that it is possible to analyze the overloaded data sets. Several methods are proposed in this study, each considered different pseudo-samples from training data sets. We combine ideas from ACO, Boosting and Random Forests. We show that our algorithms perform comparable to common approaches. Moreover, we demonstrate the suitability of our method to H-bonds detections in protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boryczka, U., Kozak, J.: Ant colony decision trees – A new method for constructing decision trees based on ant colony optimization. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 373–382. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Boryczka, U., Kozak, J.: New Algorithms for Generation Decision Trees – Ant–Miner and Its Modifications. In: Abraham, A., Hassanien, A.-E., de Leon F. de Carvalho, A.P., Snášel, V. (eds.) Foundations of Computational Intelligence 6. SCI, vol. 206, pp. 229–264. Springer, Heidelberg (2009)

    Google Scholar 

  3. Boryczka, U., Kozak, J.: Ant colony decision forest meta-ensemble. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part II. LNCS, vol. 7654, pp. 473–482. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  7. Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization, prediction and model fitting. Statistical Science 22(4), 477–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chikalov, I., Yao, P., Moshkov, M., Latombe, J.C.: Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories. BMC Bioinformatics 12(S-1), S34 (2011)

    Google Scholar 

  9. Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.): ANTS 2008. LNCS, vol. 5217. Springer, Heidelberg (2008)

    Google Scholar 

  10. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP–complete. Inf. Process. Lett. 5(1), 15–17 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murphy, O., McCraw, R.: Designing Storage Efficient Decision Trees. IEEE Transactions on Computers 40, 315–320 (1991)

    Article  Google Scholar 

  12. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Handling continuous attributes in ant colony classification algorithms. In: CIDM, pp. 225–231 (2009)

    Google Scholar 

  13. Rokach, L., Maimon, O.: Data Mining With Decision Trees: Theory and Applications. World Scientific Publishing (2008)

    Google Scholar 

  14. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kozak, J., Boryczka, U. (2013). Dynamic Version of the ACDT/ACDF Algorithm for H-Bond Data Set Analysis. In: BÇŽdicÇŽ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics