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Abstract. During the process of citation matching links from bibliog-
raphy entries to referenced publications are created. Such links are in-
dicators of topical similarity between linked texts, are used in assessing
the impact of the referenced document and improve navigation in the
user interfaces of digital libraries. In this paper we present a citation
matching method and show how to scale it up to handle great amounts
of data using appropriate indexing and a MapReduce paradigm in the
Hadoop environment.
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1 Introduction

Since Hitchcock et al. [I] demonstrated a proof-of-concept system that performed
autonomous linking within Cognitive Science Open Journal, the problem of cita-
tion matching (i.e. linking citation strings referencing the same paper) has been
tackled in countless papers by means of various methods [2].

Huge interest in a citation resolution is not a surprise as it is a fundamental
step in creating a digital library of scholarly publications. Having relationships
between documents conveying the fact that document A references document
B allows to provide more user-friendly interfaces [I], perform scientometrical
analysis [3, 4] and link-based classification [Bl [6].

Considering the rapid growth of the number of scientific publications, we need
to seek new ways of dealing with large amounts of data. Recently, a MapReduce
paradigm [7] and Apache Hadoop, its open-source implementation, have been
gaining popularity. It has already been used for entity matching by Paradies et
al. [§].

In this paper we present our own approach to citation matching in Hadoop
environment. We start by demonstrating a small scale matching method in Sec-
tion @ An interesting author similarity measure is presented in Section
A very important part in the scalability of our solution is played by an approx-
imate index for heuristic matching, which is described in Section [Bl Finally, in
Section [, some details of index building and actual citation matching imple-
mentation utilising MapReduce paradigm are revealed.
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2 Small scale disambiguation

First of all, let us look on how reference disambiguation is performed when
working on a small scale. As we do not need to deal with great amounts of data
here, we can afford to count the similarity between every citation string pair.
Having pairwise similarities, we can apply any clustering algorithm. In our tests,
we have used a basic single-link algorithm.

Let us describe first things first, though. To begin with, we need to extract
metadata from a given reference string. We will describe that in section 211
However, metadata extracted from references may be inaccurate or malformed.
We have therefore developed measures of fussy match. They are described in
section From match factor of particular metadata fields, we need to draw
conclusions about the whole citation. SVM [9] is employed for that task. Finally,
the accuracy evaluation is presented in section 2.3

2.1 Citation parsing

One of citation matcher requirements is the access to the metadata of input cita-
tions. Unfortunately, in some cases the matcher has to deal with citations in the
form of raw strings. In such situations citations need to be preprocessed in order
to extract the required metadata. This is done by a citation parser, whose role
is to identify fragments of the input citation string containing meaningful pieces
of metadata information. The information we extract at this stage includes: an
author, a title, a journal name, pages and a year of publication.

The parsing is performed in several steps. First, a reference string is tokenised
into a list of tokens, each of which is in one of the following forms: a string con-
taining only letters, a string containing only digits, a string containing letters
and digits, a single other character. After that the parser computes a set of fea-
ture values describing each token. The tokens represented by vectors of features
are then classified into several categories that correspond to metadata fields.
The token classifier is the heart of the citation parser. The classifier is based
on Conditional Random Fields and is built on top of GRMM and MALLET
packages [10].

We use 42 features to describe a token:

— features based on the presence of a particular character class, eg. digits,
lowercase/uppercase letters, Roman digits,

— features checking if the token is a particular character (eg. a dot, square
bracket, a comma or a dash),

— features checking if the token is a particular word,

— features checking whether the token is contained by the dictionary built from
the dataset, eg. a dictionary of cities or words commonly appearing in the
journal title.

It is worth noticing that the class of a citation token depends in fact not
only on its feature vector, but also on surrounding tokens. To make the classifier



aware of this dependency, each feature vector is extended by adding the features
of two preceding and two following tokens.

Citation parser is a part of CERMINE — a metadata and content extraction
tool [I1].
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Fig. 1. A citation string, its tokens and token classes.

2.2 Metadata fields matching

Not only do citations contain spelling errors, but also they differ in style which
leads e.g. to differences in journal names abbreviating conventions. That is why
even matching of parsed citations is not a trivial task. To address that we intro-
duce the measures of similarity fitted to the specifics of various metadata fields.
The overall similarity of two citation strings is obtained by applying a linear
SVM using field similarities as features.

Definitions Let trigrams(s) be a multiset of trigrams [12] from a string s. We
define a trigram similarity between strings s and ¢ as

[trigrams(s) Ntrigrams(t)|

$iMyri (s, ) [trigrams(s) U trigrams(t)|

Token similarity is defined in a similar manner. Let tokens(s) be a multiset
of tokens from a string s. Then

[tokens(s) Ntokens(t)|
[tokens(s) U tokens(t)|

StMtoken (Sa t) =

Author matching Author names in citation string can take various forms.
In some cases given names are abbreviated, sometimes they are placed before,
sometimes after the surname. Additional titles may also be added. We have
developed two ways of measuring author field similarity. The first, most basic
one, computes token and trigram similarity.

The second way of defining similarity is much more sophisticated. It is based
on finding the heaviest matching of tokens, what can be seen as an instance of
assignment problem [13]. Each token can match at most one token in the other
citation. Each pair of matched tokens has a weight assigned. The weight of a



whole matching is the sum of weights of matched tokens. The weight of token
pair is determined by a token similarity and their relative distance in the whole
string. The distance component allows us to take into account the ordering of
authors. It also lets us distinguish between papers authored by John Smith and
Jane Doe and those written by Jane Smith and John Doe. The weights are
assigned in a way that guaranties that the weight of the matching lays in [0,1]
so it can be treated as similarity. The token similarity is measured in terms of
edit distance, with just one exception: a pair of tokens, one of length lesser or
equal 2 being a prefix of another, is assumed to have edit distance [14] equal 1.

Computation of the distance is more complex. First of all, we normalise the
length of the whole citation to 1. Next, we align fully matching tokens of two
strings to have the same position — we set it to be an average of their previous
positions. Such tokens are called boundaries. Beginning and end of a string form
additional boundaries. Note that the distance between tokens from a pair forming
a boundary is equal to 0. Position of all other tokens is defined relatively to its
closest boundaries. An example is provided in Fig.

AAA  BBB CCC DDE

ABB C(I)C DIIDD EEE

Fig. 2. Token distances. The length of citation is normalised to 1. Perfectly matching
tokens are aligned to have distance equal 0. All other tokens are positioned relatively
to them.

Source matching Journal names are abbreviated in the most random way.
Usually only a prefix of a word is used (‘appl.’ instead of ‘applied’) or some
letters are omitted (‘journal’ becomes ‘jrnl’).That is why we have decided to
base source similarity on their LCS (longest common subsequence). We compute
character-based LCS of two strings, divide by the length of shorter one and treat
the result as similarity.

Title matching The title of an article is not always present in a citation string.
When it is, however, we usually need to deal only with spelling errors. That is
why a trigram similarity is used in this case.

Year matching All numbers tagged as year are extracted from a citation, their
numeric value is computed and for each citation the number closest to 2000 is
chosen. The final similarity is a binary value indicating if that numbers are equal.



Pages matching We extract all numbers tagged as pages, create a set of them
for each citation and then compute the ratio of their intersection and sum.

Whole-string matching Additionally three features based on trigram simi-
larity of the whole citation string are used. One of them compares unmodified
strings and the other two transformed ones: the first containing only letters and
the second only digits from the original strings.

2.3 Evaluation

The evaluation was conducted on the CORA-ref data set [15]. It contains several
citation clusters (each cluster consisting of citations referencing the same article).
We have randomly distributed clusters into 3 slices (see Tab.[Il) and used them
to perform cross validation. The half of training set for each fold was used in the
CRF parser training and the other half was used for the SVM training.

Table 1. Cluster slices. Some slice statistics are presented along with their usage in
particular cross validation phases.

slice0 slicel slice2

Cluster No. 80 89 79
Citation No. 505 596 774
Avg. cluster size 6.31 6.70 9.80
Max cluster size 33 115 121
Parser training fold0 fold1l fold2
Matcher training fold2 fold0 fold1l
Matcher testing fold1 fold2 foldO

Then, we have computed pairwise similarities between citation strings. The
results were binarised by setting the similarity threshold at 50%. In order to
obtain clusters, a single-link algorithm was applied.

We have performed tests for both versions of author similarity measure (see
section[Z2]). All the results are presented in Tab.[2land[Bl The following metrics
have been used:

— cluster recall - the percentage of correct clusters that were recovered by a
matcher

— pairwise precision — the percentage of links returned by a matcher that
are correct

— pairwise recall — the percentage of correct links that were returned by a
matcher

— pairwise F} — the harmonic mean of precision and recall

As we see, the results are close to those reported in [16]. We can also notice that
the choice of author similarity measure only slightly impacts them.



Table 2. Matching results with complex author similarity measure.

fold0  foldl  fold2 avg.

cluster recall 65.82% 72.50% T77.53% 71.95%
pairwise precision 95.21% 97.51% 94.98% 95.90%
pairwise recall 93.91% 93.06% 97.43% 94.80%
pairwise F 94.56% 95.23% 96.19%  95.33%

Table 3. Matching results with simple author similarity measure.

foldo  foldl  fold2 avg.

cluster recall 67.09% 76.25% 77.53% 73.62%
pairwise precision 94.81% 97.45% 94.66% 95.64%
pairwise recall 93.03% 92.76% 97.60% 94.46%
pairwise F 93.91% 95.05% 96.11%  95.02%

3 Heuristic: author indexing

The main scalability issue in the presented solution is its quadratic runtime.
We, therefore, would like to limit the number of necessary pairwise comparisons.
The standard approach used in an entity disambiguation is called blocking. The
whole set of objects is divided into blocks so that entities are compared pairwise
and possibly merged only within a block (cf. [I7, 18, [19]). We have used different
method, though.

Bear in mind that the main focus of our system is a very specific type of
entity disambiguation: linking citation strings to article metadata stored in the
database. That means each citation will be matched to at most one metadata
record and records in the store will not be merged. Having observed the above,
we have decided to use heuristic based on indexing.

Using an index, metadata records that have the biggest number of author
tokens in common with the examined citation string are retrieved. Author tokens
are those describing author name or surname. They were chosen to be used in
our heuristic because we have noticed they are the most reliably parsed part of
a citation string. In the following of this section the index is described in more
detail.

3.1 Non-exact matches

Spelling errors occur commonly in citation strings. That is why an index sup-
porting non-exact matches was desired. We have decided to implement ideas
presented by Manning et al. in Chapter 3 of [20] to support retrieval of tokens
with edit distance lesser or equal 1. Let us now present this method.

Instead of putting as a key an exact word w, we put all the rotations of w$
(where $ is a character not present in an alphabet). For example, instead of key



‘cat’, keys ‘cat$’, ‘at$c’, ‘t$ca’ and ‘$cat’ are created. Then, to retrieve a word
from the index, we also create all the rotations in a similar manner and for each
rotation 7 of length n, all the keys of length < n that match at least n — 1 first
letters of r and keys of length < n + 1 that match first n letters are returned.

For instance, to lookup word ‘cut’, we would create a set of rotations ‘cut$’,
‘ut$e’, ‘t$cu’ and ‘$cut’. The first three letters of ‘t$cu’ match ‘t$ca’, so this
key would be retrieved. In the similar manner, to lookup ‘at’, we would have a
rotation ‘at$’ which would match ‘at$c’.

The whole process can be formalised in the following steps:

1. Generate all rotations for a token.
2. For each rotation r find all matching rotations in the index:
(a) Let r = be, where |c| =1
(b) Find in the index the lexicographically smallest token ¢, such that b is
prefix of ¢
(¢) Scan the following index entries to retrieve all words beginning with b of
max length |r| and all beginning with r of max length |r 4+ 1| with their
document IDs

3. Flatten document ID lists and convert them to a set.

3.2 Heuristic summary
To conclude, let us present the whole heuristic matching process:

Extract all author tokens from the citation

For each token, retrieve all matching documents

For each document retrieved, compute the number of matching tokens
Filter out documents containing less than max(1, M — 1) matching authors,
where M = the maximum number of matching authors

5. All remaining documents heuristicly match the citation

=W

4 Hadoopisation

Apache Hadoop is the most notable implementation of MapReduce paradigm. In
this section we present how to implement the algorithms described above using
MapReduce and Hadoop environment. To do that accurately, though, we need
to describe some technicalities first. Even more technical details not covered in
this article are discussed in [21].

Hadoop SequenceFile is a binary file containing a list of key-value pairs. A
SequenceFile with sorted keys enriched by additional index file enabling fast
record retrieval is called a MapFile. This data structure is used to store our
index. Additionally, we assume our input and output data will be stored as
SequenceFiles.



4.1 Index building

Let us begin with the presentation of the index building process. The most crucial
part is presented in Fig. [3l Note that steps transforming one entry into many
can be implemented as map tasks (i.e. token extraction and rotations generation)
and those transforming many into one as reduce (i.e. grouping).

The process depicted generates all necessary entries and stores them as a
SequenceFile. To sort it and transform into a MapFile Hadoop built-in functions

are used.
/ @ \ Document retrieval
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Documents
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Fig. 3. Index building. The documents are read from a SequenceFile and all au-
thor tokens (tokenised names) and document IDs are extracted from the metadata.
Then, document IDs with the same tokens are grouped. Eventually, for each token, its
rotations are generated and everything is persisted in a SequenceFile.

docld.2

4.2 Actual matching

Having built the index, we can step to the actual matching phase. It is presented
in Fig @ Here, the reference extraction and the heuristic matching are done in
map steps. Choosing the best matching document is achieved by selecting the one
with the biggest similarity to the citation string, what is done as a reduce step.
The similarity is computed using metrics defined in section 2.2l with whole-string
features omitted and the simple version of author matching.
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Fig. 4. Citation matching steps. The documents are read from an appropriate Se-
quenceFile and references are extracted from their metadata. Then, the actual matching
occurs: in the first step heuristic is used to find documents that may match citations,
in the next the best match is selected for each citation. Eventually, the results are
persisted in a SequenceFile.

4.3 Speed evaluation

We have evaluated efficiency of our solution using PMC Open Access Subset
document set. It consists of over 450 thousand documents containing 12 million
citations.

The benchmark was performed on our Hadoop cluster [22] which consists of
a four ”fat” slave nodes and a virtual machine on a separate physical machine
in the role of NameNode, JobTracker and HBase master. Each worker node has
four AMD Opteron 6174 processors (48 cores in total), 192 GB of RAM, four
600 GB disks which work in RAID 5 array.

The time spent in each phase is presented in the Table (]

Table 4. The time spent in individual phases.

Phase Time spent Mzzsggii.ce
Index building|All 0:00:57 13 2
Citation extraction 0:00:46 13 0
Matching Heuristic matching 3:01:38 | 745 0
Selecting the best match| 2:51:00 | 996 1

5 Conclusions and future work

In this paper we have presented an efficient citation matching solution using
Apache Hadoop. After developing a basic citation matching technique, we have
shown how to scale it up to handle millions of citations. In particular, we



have presented a way of creating an approximate index using the MapReduce
paradigm.

The big data enables new, unparalleled possibilities, which need more re-

search. It is especially worth investigating how our model training phase may
benefit from huge amounts of data. On the other hand, when dealing with enor-
mous training set, perhaps many of examples are not relevant. Maybe we want to
select only the most important ones. If so, how do we do that? Only the further
investigation may answer these questions.
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