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SUMMARY

Virtualization is emerging as the prominent approach to mutualise the energy consumed by a single server
running multiple Virtual Machines (VMs) instances. The efficient utilization of virtualized servers and/or
computing resources requires understanding of the overheads in energy consumption and the throughput,
especially on high-demanding High Performance Computing (HPC) platforms. In this paper, a novel holistic
model for the power of virtualized computing nodes is proposed. Moreover, we create and validate instances
of the proposed model using concrete measures taken during a benchmarking process that reflects an
HPC usage, i.e. HPCC, 10Zone and Bonnie++, conducted using two different hardware configurations on
Grid5000 platform, based on Intel and AMD processors, and three widespread virtualization frameworks,
namely Xen, KVM, and VMware ESXi.

The proposed holistic model of machine power takes into account the impact of utilisation metrics of the
machine’s components, as well as the employed application, virtualization, and hardware. The model is
further derived using tools such as multiple linear regressions or neural networks that prove its elasticity,
applicability and accuracy. The purpose of the model is to enable the estimation of energy consumption of
virtualized platforms, aiming to make possible the optimization, scheduling or accounting in such systems,
or their simulation.
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1. INTRODUCTION

With the advent of Cloud Computing (CC), more and more workloads are being moved to virtual
environments. Yet the question of whether CC is suitable for High Performance Computing (HPC)
workload remains unclear. With a growing concern on the considerable energy consumed by HPC
platforms and data centers, having a clear answer to this question becomes more and more crucial.

In this paper, we evaluate and model the overhead induced by several virtualization environments
(often called hypervisors) at the heart of most if not all CC middleware. In particular, in this study
we analyse the performance and the energy profile of three widespread virtualization frameworks,
namely Xen, KVM, and VMware ESXi, running a single VM instance and compare them with a
baseline environment running in native mode. It is worth to notice that it is quite hard to find in
the literature fair comparisons of all these hypervisors. For instance, in the few cases where the
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VMWiare suite is involved, the study is generally carried on by the company itself. The experiments
presented in this paper were performed on top of benchmarking tools that reflect an HPC usage,
i.e. the HPC Challenge (HPCC), I0Zone and Bonnie++. They helped to refine a novel holistic
model for the power consumption of HPC components which is proposed in this article. Moreover,
to abstract from the specifics of a single architecture, the benchmarks were run using two different
hardware configurations, based on Intel and AMD processors. In this context, the Grid’5000
platform helped to deploy in a flexible way such heterogeneous configuration and provide a unique
environment as close as possible to a real HPC system. To this extent, the work presented in this
paper offers an interesting complement to precedent studies, which targeted a similar evaluation,
yet limited the analysis to a subset of hypervisors (generally excluding VMWare products) and a
fewer number of benchmarks. Our experimental settings reflect the increasing complexity of HPC
systems’ analysis and management. From the green computing perspective it is crucial to be able
to estimate and predict the power and consequently the energy of a data center. Such prediction
could be used to optimise the system by assisting scheduling or hypervisor choice, to simulate
systems’ future behaviour or even to account the consumed energy in case of insufficient physical
monitoring infrastructure. The hardware, configuration and type of processing have an impact
on the power consumption of a machine, which is reflected in the novel model. First, the model
redefines the structure of computing in a virtualized data center. The classical Task and Machine
models [1, 2] are extended by the Configuration layer that represents the chosen middleware. Then,
we propose a power model that combines multiple factors, either directly measured utilisation
metrics or classifiers such as used node, hypervisor or application, consequently calling the model
holistic. The power modelling can be lightweight in terms of creation and usage, as it is based on
multiple linear regression. Similarly, modelling by neural networks is also tested, because it offers
similar operational cost despite the training time that is significantly longer than the regression
process. The purpose of power modelling is to validate the theoretical assumption that increasing
the amount of information about the node enables better power estimation.

Compared to the related studies, our contribution in this paper can be summarised in the following
elements: (1) a novel holistic model of resource allocation of virtualized computing nodes is
proposed, together with exact methodology for the power consumption; (2) the model is derived
using the runs of hypervisors in a concrete HPC environment, using three widespread virtualization
frameworks (Xen, KVM and VMware ESXi), and two leading concurrent hardware architecture
(Intel and AMD — 91% of the represented processor technologies in the Top500 November 2013
list). Our performance evaluation involves industrial reference benchmarks and does not ignore a
measure of the impact on I/O operations, too often disregarded in the literature; (3) it is one of the
few independent studies that takes into consideration not only open-source hypervisors (Xen and
KVM) but also a proprietary solution from the leading vendor in the domain i.e. VMWare; (4) the
energy-efficiency of the considered configuration is properly modelled and quantified with exact
measures offered by the Grid5000 platform, using two independent modelling tools: multiple linear
regressions and neural networks. The data used during modelling is gathered from a production
environment using standard monitoring tools, proving that the model is robust and does not require
high frequency and/or precision of inputs, being applicable in a wide range of systems. The obtained
models present high accuracy (0.8-2.6% of cumulative error for the best models);

The article is organised as follows: Section 2 presents the background of this study and reviews
related work. Our novel holistic model is detailed in Section 3. Section 4 describes the experimental
setup used within this study, in particular we will present the different cutting-edge platforms
we compare, together with the benchmark workflow applied to operate these comparisons. Then,
Section 5 details the experimental results obtained and the derivation of model instances by multiple
linear regressions and neural networks. Finally, Section 6 concludes the paper and provides the
future directions.
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Hypervisor: || Xen 4.0 | KVYMO0.12 | ESXi51 |

Host architecture || x86, x86-64, ARM | x86, x86-64 x86-64
VT-x/AMD-v Yes Yes Yes
Max Guest CPU 128 64 32
Max. Host memory 1TB - 2TB
Max. Guest memory 1TB - 1TB
3D-acceleration || Yes (HVM Guests) No Yes

License GPL GPL/LGPL | Proprietary

3

Table I. Overview of the considered hypervisors characteristics.

2. CONTEXT & MOTIVATIONS

In essence, Cloud middleware exploits virtualization frameworks that authorise the management
and deployment of Virtual Machines (VMs). Whereas our general goal is to model Cloud systems
in an HPC context, we present here the first step toward this global modelling focusing on the
underlying hypervisor or Virtual Machine Manager. Subsequently, a VM running under a given
hypervisor will be called a guest machine. There exist two types of hypervisors (either native or
hosted) yet only the first class (also named bare-metal) presents an interest for the HPC context. This
category of hypervisor runs directly on the host’s hardware to control the hardware and to manage
guest operating systems. A guest operating system thus runs on another level above the hypervisor.
Among the many potential approaches of this type available today, the virtualization technology
of choice for most open platforms over the past 7 years has been the Xen hypervisor [3]. More
recently, the Kernel-based Virtual Machine (KVM) [4] and VMWare ESXi [5] have also known a
widespread deployment within the HPC community such that we limited our study to those three
competitors and decided to place the other frameworks available (such as Microsoft’s Hyper-V or
OpenVZ) out of the scope of this paper. Table I provides a short comparison chart between Xen,
KVM and VMWare ESXi.

2.1. Considered HPC platforms

To reflect a traditional HPC environment, yet with a high degree of flexibility as regards the
deployment process and the fair access to heterogeneous resources, the experiments presented in
this paper were carried out on the Grid’5000 platform [6]. Grid’5000 is a scientific instrument for
the study of large scale parallel and distributed systems. It aims at providing a highly reconfigurable,
controllable and monitorable experimental platform to its users. One of the unique features offered
by this infrastructure compared to a production cluster is the possibility to provision on demand
the Operating System (OS) running on the computing nodes. Designed for scalability and a fast
deployment, the underlying software (named Kadeploy) supports a broad range of systems (Linux,
Xen, *BSD, etc.) and manages a large catalog of images, most of them user-defined, that can be
deployed on any of the reserved nodes of the platform. As we will detail in Section 4, we have
defined a set of common images and environments that were deployed in two distinct hardware
architectures (based on Intel or AMD) on sites that offer the measurement of Power distribution
units (PDUs).

2.2. Considered benchmarks

Several benchmarks that reflect a true HPC usage were selected to compare all of the considered
configurations. For reproducibility reasons, all of them are open source and we based our choice
on a previous study operated in the context of the FutureGrid' platform [7], and a better focus
on I/O operation that we consider as under-estimated in too many studies involving virtualization
evaluation. We thus arrived to the three benchmarks:

The HPC Challenge (HPCC) [8], an industry standard suite used to stress the performance of
multiple aspects of an HPC system, from the pure computing power to the disk/RAM usage

tSee https://portal. futuregrid.org/.
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or the network interface efficiency. It also provides reproducible results, at the heart of the
ranking proposed in the Top500 project.

HPCC basically consists of seven tests: (1) HPL (the High-Performance Linpack benchmark),
which measures the floating point rate of execution for solving a linear system of equations.
(2) DGEMM - measures the floating point rate of execution of double precision real matrix-
matrix multiplication. (3) STREAM - a simple synthetic benchmark program that measures
sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple
vector kernel. (4) PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful test of the
total communications capacity of the network. (5) RandomAccess - measures the rate of
integer random updates of memory (GUPS). (6) FFT - measures the floating point rate of
execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).
(7) Communication bandwidth and latency - a set of tests to measure latency and bandwidth of
a number of simultaneous communication patterns. A view of the design choices — as regards
data usage patterns — made in the development of HPCC is given in Table II.

Table II. HPCC tests locality metrics

. Spatial
Locality Low p High
=
§_ Low | RandomAccess PTRANS, STREAM
E High FFT DGEMM, HPL

Bonnie++ [9], a file system benchmarking suite that is aimed at performing a number of simple
tests of hard drive and file system performance.

I0Zone [10], a more complete cross-platform suite that generates and measures a variety of file
operations. Iozone is useful for performing a broad filesystem analysis of a given computing
platform, covering tests for file I/O performances for many operations (read, write, re-read,
re-write, read backwards/strided, mmap etc.)

The results that are obtained from these benchmarks provide an unbiased performance analysis
of the hypervisors and thus provide a valid reference for the holistic model proposed in this article.

2.3. Related Work

The computing system power models could be classified to three groups, dependent on the level
of granularity: component-level, machine-level, or distributed-system level [11]. The focus of our
study are machine-level models, thus this section is devoted to such approaches.

Different studies describe or apply models for power draw for data centers and HPC centers
subsystems. Some modelling research work indicate that server power varies roughly linearly
in CPU utilisation [12]. Economu et al. [13] study the component-level power breakdown and
variation, as well as temporal workload-specific power consumption of a blade server. The authors
suggest to consider, beside CPU and disk utilisation, also the design properties of the server. Kansal
et al. [14] proposed a power meter model for virtual machines, called Joulemeter. The model
makes use of power models of individual hardware resources; at runtime software components
monitor the resource usage of VMs and they convert it to energy usage using the available model.
Lim et al. [15] present a power budgeting system for virtualized infrastructures that enforces
power limits on individual distributed applications. The authors utilise the method proposed by
Kansal et al. to budget power for VM of virtual clusters in data centers. Bohra et al. in [16]
proposed vMeter, a power modelling technique. The authors observed a correlation between the
total system’s power consumption and component utilisation. They proposed a four-dimensional
linear weighted power model for the total power consumed. The components of the model are:
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performance parameters for CPU, cache, DRAM and disk. The weights of the model are calculated
per workflow. The authors refunded the power model by separating the contribution of each active
domain in a node, either a VM or domain. Chen et al. [17] present a study in profiling virtual
machines with respect to three power metrics: power, power efficiency and energy, under different
high performance computing workloads. The authors proposed a linear power model that represents
the behaviour of a single work node and includes the contribution from individual components. Liu
et al. [18] proposed a GreenCloud architecture that utilises live migration of VMs based on power
information of the physical nodes reducing energy consumption for applications running in clouds,
specifically for online gaming. Chengjian et al. [19] present a system power estimation and VM
power metering by using performance events counter. The power models are built to infer power
consumption from the system resource usage such as CPU and memory which can be indicated by
certain performance events counter value. Stoess et al. [20] consider a prototype implementation
targeting hypervisor-based virtual machine systems. The authors develop a framework for energy
management in modular, multi-layered operating system structures. The framework explicitly takes
the recursive energy consumption into account, which is spent in the virtualized layer or subsequent
driver components. The framework provides a unified model to partition and distribute energy, and
mechanisms for energy-aware resource accounting and allocation. Kim et al. [21] suggest a model
to estimate the energy consumption of VMs. The model estimates the energy consumption of a VM
based on the in-processor events generated by the VM. Based on the estimation model, the authors
propose the energy-credit scheduler, a VM scheduling algorithm that conforms to the energy budget
of each VM machine. Li et al. [22] provide an online power metering model at per VM level using a
nonintrusive approach. Firstly, the characteristics are analysed and a basic ternary linear regression
model is proposed based on the performance of three major components impacting VM power:
CPU, memory and disk. Based on the comparison of estimated power values and measured values
in experiments, inadequacies and improvements of the basic model are found and the sub classified
piecewise linear model is proposed to improve the basic model. The model is used to estimate the
power consumption of a physical server as well as one or more VMs running on it. Basmadjian and
de Meer presents a model of multi-core processors [23], underlying differences between multi-core
and single-core system power consumption modeling.

Linear regression model is frequently used to model power consumption and performance
indicators. Bellosa [24] verified the linear relationship between power consumption of processor
and some performance counters. Multivariate linear regression is also used to build models
between power consumption and metrics of multiple components [12, 13, 25, 26, 27]. The further
elaboration of such models includes usage of techniques such as clustering and decision trees, to
create models applicable for wide range of applications [28].

At the level of the pure hypervisor performance evaluation, many studies can be found in the
literature that attempt to quantify the overhead induced by the virtualization layer. Yet the focus on
HPC workloads is recent as it implies several challenges, from a small system footprint to efficient
I/O mechanisms. A first quantitative study was proposed in 2007 by A. Gavrilovska et al. in [29].
While the claimed objective was to present opportunities for HPC platforms and applications to
benefit from system virtualization, the practical experimentation identified the two main limitations
to be addressed by the hypervisors to be of interest for HPC: I/O operations and adaptation to multi-
core systems. While the second point is now circumvented on the considered hypervisor systems,
the first one remains challenging. Another study that used to guide not only our benchmarking
strategy but also our experimental setup is the evaluation mentioned in the previous section that was
performed on the FutureGrid platform [7]. The targeted hypervisors were Xen, KVM, and Virtual
Box and a serious performance analysis is proposed, with the conclusion that KVM is the best
overall choice for use within HPC Cloud environment.
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3. THE HOLISTIC SYSTEM MODEL

In this section, we introduce a novel model for the performance and energy-efficiency analysis
of HPC or CC components. The model is holistic, i.e. it includes all elements important for the
performance and power of distributed computing systems, and it relies on classical scheduling
models with machines and tasks [1, 2].

The first contribution of the proposed model is an extension of the classical definition of resources.
Instead of representing resources as discrete entities, the holistic model represents each resource by
a resource vector: res = (typs, . .., typ.). The vector is composed of resource types that represents
distinct resource types, e.g. Computing, Memory, Storage, and Network. Every resource type is
further expressed as a vector of resource supplies: typ; = (sup;1, ..., sup;,) that represents the
exact implementation and number of resource supplies, i.e. hardware components. Finally, every
resource supply is defined as sup;; = (arch;j,cap;;), where arch;; represents the component
architecture (that determines the components characteristics ) and cap;; represents the component
capacity (e.g. MIPS, RAM, disk size, or bandwidth). The architectures can create a partial order,
based on the relation of the strict superiority (in terms of performance) of arch; over archy, denoted
as archy < arch;. A sample graphical resource vector of a real node is presented on the top of
Figure 1. The node is composed of four resource types. Each of the types is composed of specific
supplies: in this case there are 4 symmetric cores of CPU, single supplies for Memory and Storage,
and 2 Network interfaces. The architecture ordering could be done based on the comparison of
architectures of this node with other architectures in the same data centre.

Node
PowerEdge R310

/

Resource

Types Computing l I Memory l Storage l I Networking l
| | | |

Intel® Xeon® 4GB M Broadcom 5709

Resource  |x3430, 24 GHz, (2><2G|zse)fno'y g‘;",\fg Kfiﬁ sin Dual Port 1GbE

H 8M Cache, 1333MHz Single " . NIC w/TOE

Supplies Turbo Ranked UDIMM No Raid iSCSI, PCle-4
e A
ol|lo||of]o

Resource |[r||r||r|]|r 4GB 500 1 1

Capacities [e||e||e||e GB Gbps || Gbps
1112(|3]|4

Figure 1. Example of a representation of a computing node within an HPC cluster

The second contribution is the addition of a machine configuration layer that corresponds to
the used middleware (e.g. Figure 2). The bottom layer, the Machine layer, describes the physical
characteristics of the host. Modelling that layer assumes the derivation of the energy model of a
machine which is based on the measured utilisation of its components or environmental factors (e.g.
temperature, supply voltage). In this work we take into account utilisation metrics of CPU, Memory,
Disk and Networking of a node. This layer describes each machine separately, taking into account
their heterogeneity. The middle Configuration layer corresponds to the overhead induced by the
software that is used to process tasks. The basic element of this layer is Container that represents
the used OS, including a potential virtualization technology. In case of virtualized systems there can
exist multiple, possibly heterogenous, containers on a single machine. The top 7ask layer represents
the computation or work performed by applications. A Task represents a workload processed by an
application and its corresponding data. Multiple tasks can be executed simultaneously in a single
Container, with the performance depending on the availability of resources.
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Physical
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Figure 2. Example of allocation for one resource-type machines.

The resource allocation in a holistic model is represented by resource provisions and resource
demands. A Resource provision is the representation of the resource offered by a lower layer
to the higher layer. Resource providers are the resources of machines and the resources offered
by containers to tasks. The Resource demand is the representation of the resources consumed by
higher layer entities and it corresponds to the resources reserved by a container on a machine, or the
resources requested by a task from a container. Figure 2 presents also a simple allocation example,
where two architecture types (A = {1,2} and 1 < 2) are defined for two nodes, each having various
capacity of provisioned resources P. D denotes the resource demand of resource consumers. The
difference between P and D of a container represents its overhead. The colour of VMs and Tasks
represents their type: blue tasks can be executed on blue or red VMs, while yellow tasks can be
executed on yellow or red VMs.

The main issue in such a holistic model is to relate the resource utilisation with the obtained
performance and power. In this paper, we present two approach for power modelling: multiple
linear regressions and neural networks. Both methods can be used to accurately predict the impact
of the used Machine, Configuration, and Task on the system power. As it is of prime importance to
correctly derive the parameters of this model, the best approach requires the collection of concrete
observations in a real situation, featuring the virtualization technologies we try to characterise. The
next section details the experimental setup used to reach this goal.

4. EXPERIMENTAL SETUP

Two sites of Grid5000, Lyon and Reims were selected for the benchmarking process, as they host
two modern HPC clusters: Taurus and StRemi, with diverse hardware architectures and support for
Power distribution unit (PDU) measurements. Table III provides an overview of the selected systems
we compare in this article.

The benchmarking workflow, as presented in Figure 3, has been described in the following
paragraphs. The baseline benchmark uses a customised version of the Grid’5000 squeeze-x64-base
image, which contains the benchmark application suite comprised of OpenMPI 1.6.2, GotoBLAS2
1.13, HPCC 1.4.1, Bonnie++ 1.96 and 10zone 3.308. This image is deployed on the target node

Table III. Overview of the two types of computing nodes used in this study.

| Vendor [[ Site | Cluster | #RAM | Processors ] Rpeak ]
Intel Lyon Taurus 32GB 2 Intel Xeon E5-2630@2.3GHz 12C | 110,4 GFlops
AMD Reims | StRemi | 48GB | 2 AMD Opteron 6164 HE@1.7GHz 24C | 163.2 GFlops

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Benchmarking workflow

Baseline KVM, XEN ESXi
GRID'5000 GRID'5000 GRID'5000
site frontend Q site frontend Q site frontend Q
{ deployment of baseline image } { deployment of {kvm,xen} image } reboot target host with ESXi PXE
on target host on target host cluster-customized automated
installation script
hypervisor-benchmark-baseline hypervisor-benchmark-{kvm,xen}
launcher cluster-customized launchers

[Ereboot target host with local boot
PXE profile

hypervisor-benchmark-esxi
cluster-customized launcher

host
A can prepare
create VM image H
'red |;1ult|ple VMs prepare-esxi

prepare-{kvm,xen}
[
A

host 4

mount shared home

\
i
i
i
i
collect host statistics _[asynchronous | start VM - i T
‘dstat’ utility execution i | create VM configuration file
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; - asynchronous copy VM image to host
inshared ! runbench-{kvm,xen} Seaiin Py 9
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i | |
2 \ 4 i Y
host collect host statistics __[asynchronous host regietamun
‘dstat’ utility execution 9
|
' A4
VM il add disk to VM
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'dstat’ utility execution *
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in VM |
|
I
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and VM results in shared ¥
home ¥
E VM partition and format
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A
mount VM secondary disk
A\
collect VM statistics lasynchronous
__________________ N ‘dstat’ utility execution
rLegend

results stored
in VM

= manual control }
|

[ application/script } { may be required

activity executed .
by application/script EOE IR

frontend \ results stored
retrieve VM results in shared
’{ benchmark script controlling the J‘

1 home
execution of HPCC, Bonnie++, 10zone

e | O

Figure 3. Benchmarking workflow.

with the kadeploy3 Grid’5000 utility from the sites’ frontend and then the hypervisor-benchmark-
baseline script is used to launch the benchmark process. This script mounts on the host the site’s
NFS shared homes, launches in background the dstat utility which is being used to collect resource
usage statistics from the node, then starts the benchmark script. The benchmark script runs HPCC,
Bonnie++ and I0zone with cluster-specific values, logging the progress of these applications and
archiving their results at the end, along with the output from the dstat utility. The archive is placed
directly in the user’s NFS shared home.

The benchmarking workflow for KVM and XEN is identical, although it is based on different
scripts customised to work with these hypervisors, deploying KVM or Xen - enabled system images.
Both host images contain VM image files which incorporate the same benchmark suite as the
baseline image. After the deployment of the appropriate host image the corresponding hypervisor-
benchmark-{kvm,xen} launcher is started, which contains user-configured parameters that specify
how many virtual machines will be configured, the number of virtual cores and memory available
to each. The launcher starts the appropriate prepare-{kvm,xen} script, which in turn connects to the
host node, copies and resizes the virtual image (to more than twice the configured VM RAM size, as
needed by the Bonnie++ benchmark), pushes the benchmark script to it, then starts the VM, pinning
the virtual cores to host cores one-to-one. In the next step, a VM-controller runbench-{kvm,xen}
script is started in the background on the frontend, which waits for the VM to become available on
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the network, launches the dstat utility in the background on the host and in the VM, then starts the
benchmark. When the benchmark script has finished, the results archive (containing also the dstat
statistics) is retrieved from the VM, along with the host statistics, and the results are placed on the
site frontend, in the user’s home directory following the same pattern as for the baseline test. The
workflow for the ESXi benchmark requires that the target host be booted (through the Grid’5000
kareboot application) with a specific PXE profile and configuration files so that the ESXi installer
boots and configures the host according to a cluster-specific kickstart automated installation script.
After the installation is done, the host automatically reboots and manual user intervention is required
in order to ensure that the host will boot from the local drive by having an ESXi-install script reboot
the host with another PXE profile that chainloads the newly installed MBR. The ESXi installer
has been forced to use a MBR type partitioning scheme, as opposed to its default GPT in order to
not interfere with the operation of the Grid’5000 platform. When the ESXi hypervisor has booted,
the hypervisor-benchmark-esxi user-customised launcher starts the prepare-esxi script which then
creates an appropriate ESXi VM configuration file and copies it along with the VM image to the
host. The script registers the VM and adds a second disk to it as the VM image itself cannot be
resized on the host as was the case for KVM and XEN, then starts the VM. This last step may
require manual user control, as in some cases the VM is not successfully started automatically. The
runbench-esxi script is then used to control the VM, in which it partitions, formats and mounts the
new disk that was added (which will hold both temporary files from the benchmark and the results),
then launches the dstat tool in background and starts the benchmark script. After the benchmark
ends, the results archive (with the dstat statistics) is retrieved and stored on the Grid’5000 site’s
frontend in the same way was as for the baseline, KVM and XEN tests. Table IV presents the
number of experimental runs for combinations of environments and nodes. Due to the need of
manual interventions and special preparation of cluster, the ESXi environment was tested only on
nodes 7,9, and 10 in Taurus cluster and nodes 30 and 31 in StRemi cluster. The baseline environment
was tested only 4 times on Taurus-8 due to technical problems with that node that appeared at the
end of the sequence of experiments.

Table IV. Number of runs for environment and node.

config: | baseline | KVM | Xen | VMWare ESXi | Observation No. |

stremi-3 5 5 5 0 10916
stremi-6 5 5 5 0 10907
stremi-30 5 5 5 5 13706
stremi-31 5 5 5 5 14026
taurus—7 5 5 5 5 6439
taurus-8 4 5 5 0 4769
taurus-9 5 5 5 5 6285
taurus-10 5 5 5 5 6545

To accurately estimate the status of the analysed system at a given period of time, a set of
performance and power metrics have to be collected. This data was gathered using two monitoring
tools: Ganglia and dstat. Ganglia is a monitoring tool that works at the grid level and is used in this
work to gather power readings of the monitored nodes: in the StRemi cluster, instantaneous power
readings are available every 3s using SNMP (Raritan)* with resolution of 7W and ISO/IEC +1%
billing-grade accuracy (see [27] for discussion about using the Raritan meters), while in the Taurus
cluster, power is recorded using OmegaWatt power meters that return average power each second
with an accuracy of 1W. In both cases, Ganglia aggregates measured values over 15s periods. In
order to ensure persistency of values recorded using Ganglia, they are accessed using Grid5000 API
and stored in an external database. The utilisation metrics of CPU, memory, disk I/O and networking
I/O are recorded using dstat with a frequency of 1s. The recorded metrics and corresponding units
are: (1) CPU — user, system, idle, wio (%) (2) Memory — used, buffered, cached, free (B) (3) Disk —
read, write (B) (4) Network — received, send (B). Due to the specifics of dstat, missing or duplicated

Thttp://www.raritan.com
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readings are possible. In order to prepare the data for modeling, the dstat values are aggregated
(summed for flow values such as I/O, averaged for utilisation metrics such as cpu_user) over 15s
periods corresponding to the Ganglia monitoring readings. In case of missing dstat values for periods
longer than 15s, the data from Ganglia are discarded from modeling (the amount of data removed
in this way is 1.1%, removed observations do not follow any obvious pattern). Such granularity of
measurements corresponds to the monitoring utilities used in production systems and diminishes the
impact of measuring infrastructure on the system performance. Additionally, each observation has
supplemental categorical information about the cluster, node_uid, hypervisor and benchmark phase.
The data was preprocessed and statistically analysed using R? statistical software with the packages
zoo for data series processing. The only outlier removal procedure is pruning the rare occurrences
of infeasible power readings: the observations that include less than 45W of measured power are
removed. The 45W threshold is a conservative value chosen to be less than the half of the normal
power of an idle machine. As a result, 73593 observations are used in further studies, as presented
in detail in Table I'V.

5. EXPERIMENTAL RESULTS

The presentation of the experimental results is divided into three parts. Section 5.1 presents the raw
performance scores.

Section 5.2 relates the scores with the energy consumption of various hypervisors, to estimate
energy efficiency of various configurations. Finally, Section 5.3 exhibits the results of modelling by
multiple linear regressions and neural networks, together with the formal analysis of the quality of
the models, and sample prediction plots.

5.1. Performance analysis

While the core of this study does not reside in the pure performance evaluation of the considered
virtualization technology, we present here the average raw performance results obtained over the
multiple runs of the HPCC benchmark in each considered configuration. In an attempt to improve
the readability of the article, we limit on purpose the number of displayed test results to the ones
of HPL, DGEMM, PTRANS, STREAM and RandomAccess. First of all, a synthetic view indexed
over the hardware architecture is proposed in Figure 4. We can see that in every single case, the Intel-
based configuration outperforms its AMD counterpart, despite a presumed lower peak performance
Tpeak- Then, we illustrate the performances for each test to extract a trend in the relative overhead
induced by the considered virtualization technologies. It can be seen in these plots that the three
considered hypervisors present varying overhead as regards the computing benchmarks. In the
computationally intensive HPL and DGEMM phases, the hypervisors show a limited (up to 4%)
overhead on the Intel-based platform. On the AMD-based platform KVM and ESXi show a 7%
overhead running the HPL benchmark and of 4% in DGEMM. Xen performs significantly worse
in these tests on AMD, showing around 50% and 30% overhead respectively in these benchmarks.
The memory-oriented RandomAccess test reveals a large overhead for the KVM on both hardware
platforms and limited performance degradation for Xen on AMD. Interestingly, in the STREAM
test on both platforms, some virtualization performance values are higher than the corresponding
baseline scores, showing the effect of hypervisor caching mechanisms. This behaviour is further
discussed in Section 5.2.

One inherent limitation to the usage of virtualization in an HPC environment obviously resides
in the huge overhead induced on I/O operations. Thus, we present results of the I[0Zone benchmark
in Figure 5, corresponding to different usage scenarios. Typically a significant degradation of the
performances is observed as soon as a hypervisor is present, however there is a surprising element
as regards the read, reread and random_read test on the ESXi environment which performs

Shttp://www.r-project.org
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Figure 4. Average performance of the considered virtualization technologies.

better than the bare-metal system in the 1GB file benchmark. This is probably due to a favorable
caching strategy on the file system deployed by this environment.

5.2. Energy-efficiency Analysis

For each considered configuration we have measured the energy consumed to run the different
benchmarks. As an illustration of the many runs performed, we provide in Figure 6 traces of
selected runs, and in Figure 7 a comparison across the considered hypervisors of the Performance
per Watt (PpW) obtained during the HPCC tests detailed in Section 2.2. The figure presents some
trends in the energy consumption of hypervisors. The baseline environment is shown to be superior
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Figure 5. I0Zone results for the selected hypervisors with different I/O usage scenarios.

except in some cases of the STREAM benchmark. The STREAM tests measure memory bandwidth,
exhibiting high spatial locality, thus caching and prefetching mechanisms in the hypervisors allow
the VMs to attain better performance (resulting also in higher PpW) than the baseline environment,
behaviour which has also been observed in other studies [30]. In the CPU-intensive phases of HPCC
(HPL, DGEMM), the Xen hypervisor performs best on the Intel-based Taurus cluster, and worst on
the AMD-based StRemi cluster — where KVM has the highest PpW, scoring slightly better than
ESXi. In both clusters on the FFT tests, whose memory access patterns exhibit high temporal
locality, the highest relative PpW results are obtained by the ESXi hypervisor, and the worst by
Xen. ESXi has the best PpW on the AMD platform, while on Intel Xen performs slightly better
in the HPL, DGEMM and RandomAccess tests. The ESXi host OS is lightweight compared to
Xen and KVM which run multiple Linux system-level daemons. Its low OS overhead enables it
to achieve similar or better results in most tests, and appears to also take better advantage of the
AMD-V virtualization extensions than the other hypervisors.

5.3. Power Modelling

The analysis of the traces left of each run on the selected configuration permitted to refine the
parameters of the holistic model presented in Section 3. To ensure fair comparison of various
models, we perform the modelling on the identical input data. The observations prepared as
described in Section 4 are divided into training and test sets. The R? and Residuals statistic presented
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Figure 6. Power profile of selected runs in each configuration.

in this section are generated using training set, while the error statistics are computed for the test
set.

5.3.1. Multiple Regressions The presented approach to model power using utilisation metrics as
predictors is multiple regression. This method’s advantage is the low computational complexity, no
need for parameters and deterministic results. The final model is presented as a linear function of
predictors [31]:

E(ylzy, ..., 2) = Bo+ Biw1 + -+ - + Bry, (H

where E(y|z1,...,z)) is the expected value of response y given fixed values of regressors
x1,...,TE. The coefficient 3y is referred to as intercept and the other coefficients (31, . .., Bx)
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Figure 7. Comparison of the relative Performance per Watt for individual HPCC benchmarks

are called slopes. In the context of this work two categories of predictors can be distinguished.
Numerical predictors are based on the data gathered by monitoring tools. Categorical predictors are
additional data that group the observations, i.e. benchmark phase, hypervisor type, and node/cluster
name. The aim of modelling at the node level is twofold: to analyse the operation of a system and
to predict its behaviour. The results of multiple regressions are presented according to concepts of
complete-pooling and no-pooling [32]. In the former case all observations are taken into account
disregarding groups specifics, while in the latter case different groups are modelled separately. The
following models, varying by sets of predictors, are proposed:

1. Basic — all possible predictors taken into account

2. Refined — Basic processed by backward stepwise algorithm based on AIC (using default step
function in R). In all cases it resulted removing only disk read.

3. No Phases — all possible predictors taken into account but no explicit information about the
workload type

4. CPU Hom. — only cpu user and cpu idle taken into account for a simplest homogeneous
bottom-line model

5. CPU Het. — only cpu user, cpu idle and node uid taken into account for a simplest
heterogenous model

6. No Group — all possible numerical predictors, no categorical predictors

7. Cluster-wise — all possible numerical predictors and cluster predictor, test of homogenous
hardware hypothesis (possible only in Complete-pooling analisys)

8. Group Only — all possible categorical predictors, no numerical predictors

Two distinct division methods were used to divide data to training and test sets. The first approach
is random sampling: 2/3 of the observations are sampled as a training set, while the rest form a test
set; it is further referred to as random sampling. The second method divides the data by full runs: the
training set consist of 3 runs of each configuration while the test set consist of 2 runs (or 1 in case
only 4 runs were successfully performed) and is referred to as sequential division. The comparison
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of the two methods is designed to compare the method that uniformly samples the whole data set
with more realistic assumption that after gathering of training set data, the model is continuously
used in production scenario, represented by the runs from the test set.

The tables in this section are based on various quality indicators of models. R? value, distribution
of residuals including standard error, minimal and maximal values, first and third quartile, and
median are based on the training set. The test set was used to calculate the prediction errors, defined
as difference between power values observed during experiments and the ones predicted by a model.
The average values of absolute prediction error (I[Errorl) and average values of prediction error
(Error) are presented in Watts or as relative error in percents. The absolute prediction error can
be treated as a value indicating a temporary accuracy of a model (it presents how far is on average
the prediction from the measured value), while the prediction error can be treated as the indicator of
long-run accuracy model (i.e. to what extent errors are cumulative).

The results of Complete-pooling analysis are presented in Table V for random sampling and
in Table VII for the sequential division. The model fitting quality indicators are similar in both
cases of data set division. The models that take into account all predictors (Basic and Refined) have
the highest R? values, the smallest residual standard error. The No Phases model presents similar
scores, arguing that knowledge about applications specifics is not necessary if utilisation metrics
and environment information are available. The CPU Het. model has high R? value and acceptable
values for the statistics of residuals, contrary to the CPU Hom. that is the worst of investigated
models, which however presents an unexpected property of cancelling large temporal errors in
long run, represented by the best average prediction error among all models in sequential division
case. Similarly, the No Group model has a low quality, worse than the Group Only model that
estimates the best value for categorical predictors and has in effect only several possible response
values. The comparison of Cluster-wise and CPU Het. is interesting: the former model has slightly
better B2 values and residual standard error, but the distribution of residuals is better for the latter
model, pointing out that the nodes in each cluster have heterogenous power consumption, despite
their homogenous hardware configuration. Reassuming, the Basic and Refined models are the
most accurate and they include all elements of holistic model, confirming the necessity of detailed
information for accurate system modelling .

Contrary to the above mentioned similarity, there is a significant degradation in values of average
errors in case of sequential division, which points that random sampling results in over fitting the
data and this cannot be used to assess the final accuracy of the model. Despite the larger values
of errors, the sequential division achieves smaller relative errors, meaning that the large prediction
errors occur more often for large observed values.

The quality of No-pooling models is presented for clusters StRemi and Taurus in Table VI for
random sampling and in Table VIII for the sequential division. The No-pooling methodology divides
the set of data used in the Complete-pooling scenario into two disjoint subset, one for each of the
clusters. As a result, the obtained model have distinct slopes of coefficients for two clusters, which is
motivated by the differences in the underlying hardware. As a result, No-pooling models should have
better quality than corresponding Complete-pooling models. Despite that, the quality of No-pooling
modelling is apparently worse than the complete-pooling model, especially in the case of sequential
division, but it must be taken into account that the averaging results from both clusters in complete-
pooling case can result in decreasing overestimation error in one cluster by underestimation in the
other. Additionally, the longer running times of experiments on StRemi nodes resulted in more
observations from this cluster, that bias the Complete-pooling model results and accuracy towards
this cluster results. The more interesting fact is the worse prediction results for the Taurus cluster,
which has more accurate power measurement infrastructure. The results of error prediction analysis
in Taurus cluster suggests larger variability in the data for this cluster, as the prediction errors are
large for three complex models, listed in the Table VIII as the first three.

The results of models can be used to create an instance of the holistic model. In such case, given the
used, node, hypervisor, and utilisation levels of hardware components of a selected machine, one
can predict the final power output. The model can be further refined by observation of the phases
of computation. General utilisation of the holistic model for decision making is presented in this

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOL: 10.1002/cpe



16

M. GUZEK ET AL.

Table V. Complete-pooling models quality, random sampling

Model R2 Residuals |[Errorl Error
Ster. [ Min [ 1Q [ Median | 3Q [ Max W I % W | %
Basic 0.957 10.7 | -119 | -3.46 0.921 5.1 116 6.85 | 3.8% || 0.0025 | 0.4%
Refined 0.957 10.7 | -119 | -3.46 0.921 5.1 116 6.85 | 3.8% || 0.0025 | 0.4%
No Phases | 0.938 12.8 | -130 | -4.56 0.72 5.14 | 125 8.32 | 44% -0.022 | 0.5%
CPU Hom. | 0.819 219 | -147 | -12.7 3.71 13.6 | 158 16.5 | 9.4% -0.042 | 1.5%
CPU Het. 0.922 143 | -134 | -5.63 0.28 5.05 | 127 9.86 | 5.1% -0.03 | 0.5%
No group 0.86 192 | -142 | -8.08 3 11.2 | 129 13.8 | 7.8% -0.027 | 1.1%
Clusterwise | 0.927 139 | -122 | -7.68 1.17 798 | 132 102 | 5.5% 0.059 | 0.6%
Group only | 0.926 14 -116 | -4.08 1.83 5.58 | 90.8 8.58 | 4.8% -0.12 | 0.6%
Table VI. No-pooling models quality, random sampling
No-pooling StRemi cluster models quality
Residuals |[Errorl Error
2
Model | R | Gfer. [ Min [ 1Q | Median [ 3Q [ Max | W [ % W ] %
Basic 0.968 8.78 | -104 | -2.86 0.447 354 | 99.9 524 | 2.7% 0.022 0.2%
Refined 0.968 8.78 | -104 | -2.82 0.448 354 | 99.9 524 | 2.7% 0.022 0.2%
No Phases | 0.954 105 | -113 | -3.23 0.797 349 | 118 6.08 | 3.0% -0.033 | 0.2%
CPU Hom. | 0.925 134 | -116 | -7.12 | 0.0869 | 7.94 | 122 9.35 | 4.7% -0.012 | 0.4%
CPU Het. | 0.937 122 | -119 | -43 1.01 393 | 122 77 | 37% -0.1 0.3%
No group | 0.942 11.8 | -120 | -6.35 1.06 6.77 | 115 8.13 | 42% 0.046 0.4%
Group only | 0.96 9.76 | -103 | -3.09 0.774 431 112 5.87 | 3.0% || -0.0068 | 0.2%
No-pooling Taurus cluster models quality
Residuals |[Errorl Error
2
Model | R | Sfer. [ Min [ 1Q | Median [ 3Q [ Max | W [ % W | %
Basic 0.956 11.8 | -116 | -5.67 | 0.0885 57 130 774 | 4.7% -0.033 | 0.4%
Refined 0.956 11.8 | -117 | -5.67 | 0.0762 57 130 774 | 4.7% -0.032 | 0.4%
No Phases | 0.924 156 | -129 | -9.06 | -0.214 11 144 11.6 | 6.5% 0.041 0.7%
CPU Hom. | 0.897 18.1 | -129 -11 -1.62 158 | 136 14 | 7.6% 0.2 1.0%
CPU Het. | 0.902 17.7 | -136 | -11.2 -1.58 162 | 132 138 | 7.6% 0.16 1.0%
No group | 0.916 164 | -128 | -9.25 -0.262 122 | 147 124 | 6.8% 0.15 0.8%
Group only | 0.905 17.3 | -114 | -5.85 0.834 745 1 109 104 | 6.5% -0.27 0.9%

section. Table IX presents the difference between nodes in the two clusters as well as between nodes
with the same hardware configuration. In this case, the difference between clusters is approximately
40W. The difference between nodes in StRemi cluster is up to 14W, while in Taurus node it is up to
10W.

The phases also have a large impact on the final power consumption in the derived model (Table
IX, second row). The presented values are adjustments to the amount based on the utilisation
metrics. Therefore, there is no sense in the direct comparison of these values (e.g. nodes do not
consume approximately 2.8W more in an idle state than during the STREAM phase). However,
these values show that knowledge about the running application’s characteristics can add valuable
information to power predictions. The influence of the hypervisor type is also depicted. The
presented values show a gap between hypervisors and baseline. However, it is important to
remember that performance metrics were collected at the container (guest VM) level, therefore
these differences may be adjustments for the resources consumed by the hypervisor, which were not
used for modelling. Finally, we discuss the numerical predictors. The intercept has a high positive
value. The CPU utilisation coefficients are negative. The most power consuming mode is cpu user,
followed by cpu system. Cpu idle and cpu wio are the least power-consuming modes of operation.
The memory in used, cached, and free states has significantly higher power consumption that in
buffered state. The output activities generally decrease the power of the system, which is coherent
with the cpu wio values and may be caused by entering cpu into lower power states during large
output operations. Contrary to that, network receive state increases the system power, however less
significantly than the decrease of network send.
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Table VII. Complete-pooling models quality, sequential division

Model R2 Residuals |Errorl Error
Ster. [ Min [ 1Q [ Median | 3Q [ Max W [ % W [ %
Basic 0.958 105 | -113 | -3.39 0.547 5.09 | 115 781 | 44% || -0.67 | 0.1%
Refined 0.958 105 | -113 | -3.39 0.547 5.09 | 115 781 | 44% || -0.67 | 0.1%
No Phases 0.94 126 | -117 | -4.49 0.551 494 | 126 9.52 | 52% -1 -0.1%

CPU Hom. | 0.817 219 | -147 | -12.1 3.89 134 | 161 164 | 9.4% || -0.21 1.5%
CPU Het. 0.923 142 | -126 | -5.14 -0.298 534 | 125 10.3 | 5.3% 044 | 09%
No group 0.858 193 | -142 | -8.14 2.95 10.7 123 14.7 | 8.4% -1.3 0.5%
Clusterwise | 0.928 13.8 | -123 | -7.52 0.908 7.25 130 11.6 | 6.4% -1.1 -0.0%
Group only | 0.926 14 -112 | -3.51 1.63 5.15 | 90.3 8.63 | 5.0% 0.9 1.2%

Table VIII. No-pooling models quality, sequential division

No-pooling StRemi cluster models quality
Residuals |[Errorl Error

Ster. [ Min [ 1Q | Median | 3Q | Max W1 % W | %
Basic 0.972 8.16 | -103 | -2.8 0.0674 | 3.08 | 106 5.8 3.1% 0.75 0.8%
Refined 0.972 8.16 | -103 | -2.8 0.0736 | 3.08 106 5.8 3.1% 0.73 0.8%
No Phases | 0.957 10 -114 | 295 | 0.0543 | 342 | 123 6.6 3.4% 0.72 0.8%
CPU Hom. | 0.929 129 | -116 | -7.51 -0.326 | 7.37 | 128 10.1 | 52% 0.88 1.0%
CPU Het. 0.941 11.8 | -119 | -3.71 0.555 405 | 125 834 | 4.1% 0.73 0.9%
No group 0.946 11.3 | -120 | -6.57 0.736 6.84 | 127 8.71 | 4.6% 0.87 1.0%
Group only | 0.965 9.12 | -103 | -3.13 0.126 389 | 112 6.38 | 3.4% 0.67 0.8%

Model R?

No-pooling Taurus cluster models quality

Model R2 Residuals |[Errorl Error
Ster. [ Min [ 1Q [ Median | 3Q [ Max W I % W [ %
Basic 0.955 119 | -115 | -591 0.126 581 | 124 119 | 7.1% -5.1 -2.6%
Refined 0.955 119 | -115 | -591 0.138 582 | 124 119 | 7.1% -5.1 -2.6%
No Phases | 0.922 157 | -120 | -9.42 0.27 11 137 17.5 | 10.0% -1.5 -3.8%

CPU Hom. | 0.893 184 | -130 | -10.9 -1.77 159 | 135 139 | 7.6% -0.27 0.8%
CPU Het. 0.899 179 | -128 | -11.4 -1.57 159 | 130 13.7 | 7.6% -0.074 | 0.9%
No group 0.914 16.5 | -117 | -9.41 -0.556 122 | 148 16.6 | 9.3% -5.4 -2.5%
Group only | 0.901 17.7 | -111 | -5.64 1.03 7.57 108 9.99 | 6.4% 1.1 1.7%

Table IX. The Complete-pooling model coefficients for nodes, phases, and hypervisors, together with the
model numerical coefficients.

stremi-3 stremi-30 stremi-31 stremi-6 | taurus-10 taurus-7 taurus-8 taurus-9

0 -2.2 -14 -3.2 -45 -36 -46 -43

Bonnie | DGEMM | FFT | HPL | IOZONE | PTRANS | RandomAccess | STREAM | idle
0 12 14 22 -0.04 -0.36 -5.3 7.2 10

ESXi | KVM | Xen | baseline

0 -2.8 -4.1 -14
Intercept cpu user | cpu system cpu idle cpu wio mem used
314 -0.78 -1.2 -1.7 -1.8 8.9E-10
mem buffers | mem cached | mem free | disk write | disk read | bytesrec. | bytes send
6.7E-09 6.6E-10 5.9E-10 -6.3E-10 -3.7E-10 2.8E-05 -1.1E-03

5.4. Neural Network Modelling

The neural network modelling is a tool of artificial intelligence that can accurately describe or
control complex systems, with little a priory theoretical knowledge. The goal of a neural network is
to map a set of input patterns onto a corresponding set of output patterns. The network carries out the
mapping by first learning from a series of past examples defining input and output sets for the given
system. The network then applies what it has learned to a new input pattern to predict the appropriate
output. Figure 8 shows a multilayer feed-forward neural network formed by an interconnection of
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nodes. This neural network has an input layer, a hidden layer, and an output layer. A neural network
can be considered as a black box into which an specific input is sent to each node in the input layer.
The input layers receive the information from an external source, and send this information to the
network for processing. Then, the network processes this information through the interconnections
between nodes. The hidden nodes receive the information from the input layer, and process it. The
entire processing step is hidden from view. Finally, the network provides an output from the nodes
on the output layer. The output nodes receive the processed information from the network, and send
the results out to an external receptor.

Some advantages of neural network models are: automated abstraction without needing an expert
in a particular problem-solving domain to develop knowledge base that expert systems require,
the information is distributed over a field of nodes providing greater flexibility than one finds in
symbolic processing, neural networks can learn, that is, if an error or novel situation occurs that
produces inaccurate system results, an error-correction training technique can be used to correct
it by adjusting the strengths of the signals emitted from nodes until the output error disappears.
Another advantage is that neural networks are better suited for processing incomplete, noisy or
inconsistent data. Neural networks are used for classification, prediction, data conceptualization,
data association, data filtering, and optimization.

In this study, we are interested in a feed-forward network. Multilayer feed-forward neural
networks are the most popular and most widely used models in many practical applications.
Multilayer neural networks can represent a large variety of problems and estimate non-linear effects,
the study of neural networks is therefore an additional validation of the results of linear regressions.
The data for the neural network training is additionally prepared: all numerical values are normalised
by dividing them by the maximum value in the population, while categorical variables are coded
using additional dummy variables for each value of a factor.
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Figure 8. Neural Network design

The neural network is implemented in R, using the nnet package. The stopping criterion were
250 iterations of the network optimisation by quasi-Newton method (variable metric algorithm).
The output units have logistic function and the network fitting is guided by a least-square function.
Studied networks allow skip-layer connections (between input and output layers). The initial
weights of the network are randomly initialised with values close to 0.5. 11 various network sizes are
tested, including networks with O to 10 hidden units. As the training process is non-deterministic,
30 independent runs are performed for each number of hidden units. As the sequential division is
more realistic and challenging for models, we test only this method of division data set for training
of neural networks.

The aggregated results presented in Table X describe the average performance of the neural
network models. The results of incorrectly fitted networks (defined as networks with R? < 0.8)
were removed before aggregating the results of independent runs. All of the models with hidden
neurones present good fitting to the training data, visible as high R? values. Adding additional
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Table X. Neural networks models quality, sequential division

Hidden R2 Residuals |[Errorl Error
Units Min | 1Q [ Median | 3Q [Max || W [ % W [ %
0 0.884 || -130 | -9.01 2.12 102 | 207 || 164 | 8.6 || -8.82 | -3.45
1 0.949 || -125 | -5.8 0.784 | 596 | 129 || 12.1 | 6.21 || -7.49 | -3.06
2 096 || -119 | -496 | 0.686 | 522 | 125 || 11.8 | 6.07 || -7.92 | -3.44
3 0.964 || -118 | -4.43 0.7 484 | 127 || 11.8 | 6.08 || -8.2 | -3.59
4 0.967 || -117 | -3.96 | 0.753 | 456 | 125 || 11.6 | 598 || -8.14 | -3.61
5 0.968 || -117 | -3.83 | 0.772 | 451 | 126 || 11.5 | 5.89 || -8.05 | -3.55
6 0.969 || -116 | -3.73 | 0.798 | 438 | 124 || 11.7 | 6.03 || -8.41 | -3.78
7 097 || -116 | -3.57 | 0.786 | 439 | 126 || 11.8 | 6.09 || -8.8 | -4.03
8 0971 || -116 | -3.55 0.81 433 123 || 11.8 | 6.12 || -8.72 | -3.98
9 0971 || -116 | -3.49 | 0.793 | 431 | 125 || 11.8 | 6.11 || -8.76 | -4.01
10 0971 || -117 | -3.44 | 0.799 | 428 | 124 || 11.8 | 6.1 || -8.64 | -3.92

hidden units increases the fit accuracy, as R? increases and the distribution of residuals is closer to
0. However, the increased fit does not necessarily result in better performance during validation by
the test set: the average absolute error values is the lowest for 5 hidden unit while the average error
is the lowest for a single hidden unit. The observation indicates that large neural network sizes can
be counter-productive. On the other hand it proves, there are no significant non-linear effects that
would be better mapped by more complex networks.

The analysis of the error values reveals bad running properties of the neural network modelling.
While the absolute error values are still acceptable in comparison with the values of less performant
linear regression models, the values of errors reveals that the prediction by neural network is
underestimated by few Watts, which can lead to more significant cumulation of error for longer
estimation periods.

5.5. Predicting Power using the Proposed Models

Sample results of power prediction by the Refined non-pooling models and the Neural Model
identified as the best one among all runs are presented in Figure 9. The figure presents the
predicted power consumption against the observed values for sample runs for each combination
of hardware and hypervisor. The less accurate prediction of ESXi can be explained by the most
distinct hypervisor engine or limited amount of samples for this hypervisor. Despite that, the model
is able to accurately follow the power consumption pattern for each configuration.

6. CONCLUSION

In the paper we introduce and experimentally evaluate a holistic model of virtualized computing
nodes and evaluate its applicability for power estimation. The principle of the model is based
on division of a system into three layers: Physical Node (Server), Container (VM), and Task
(Application), and further description of each of these layers in terms of distinct resource types. The
utilisation of the resource types is combined with the discrete information about host, hypervisor,
and application types to derive models of the power consumption of a system. The utilization data
was preprocessed to represent an overhead of monitoring acceptable in production settings, e.g. all
measurements corresponds to 15s intervals.

The parameters of the models have been refined by a set of concrete experiments on the Grid’ 5000
platform using three widespread hypervisors, namely Xen, KVM and VMware ESXi on the two
leading hardware architectures (AMD and Intel).
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Figure 9. The predicted energy profiles for the best identified models.
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When compared to a baseline environment running in native mode, the usage of hypervisors in an
HPC environment raises a limited overhead, and can be foreseen if the I/O operations are correctly
handled, as the computing performances are nearly identical between the considered virtualization
technologies. In this sense, we confirm the results of preceding studies.

Two distinct modelling approaches are used in this study to finally derive power models: multiple
linear regression and neural network.

The holistic power modelling using multiple linear regression is able to accurately estimate the
power consumption in a virtualized system with an acceptable temporary and cumulative errors.
The model is lightweight — it is represented by a single equation, and its creation has a low time
complexity. It can be extended after creation by adding or modifying the coefficients, thus it can
adapt to dynamic systems.

The modelling based on the neural network results in larger errors and requires orders of
magnitude more time for the training of the network, in comparison with linear regression. The risk
of overfitting and the cost of training discourages usage of networks with more than 5 hidden units.
The neural network models presented significantly larger cuamulative errors. Modifying an existing
network can require additional costly training phase. Larger error of neural network approach
suggest that there are no significant non-linear behavior that could be exploited by non-linear
activation function of neurones.

The high quality of the prediction with respect to related work despite low-frequency sampling of
high-level predictors indicates that using wide range of metrics that covers not only CPU behaviour
is sufficient to determine the power of a system, even in a virtualized system.

The future work includes adding more elements to the holistic model, such as environmental
metrics (temperature, supplied voltage), examining the effect of multi tenancy and overhead of cloud
management systems (e.g. OpenNebula, OpenStack), modelling the performance of configurations,
considering network-intensive loads and parallel tasks, and building such models based on the
hardware component of node (directly using the resource vector concept to build the power model),
rather than full hardware platform. This future work will require further experimentation on a larger
set of applications and machines.
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