
Intelligent Tableau Algorithm for DL Reasoning

Ming Zuo and Volker Haarslev

Concordia University, Montreal QC H3G 1M8, Canada,
{ming zuo|haarslev}@encs.concordia.ca

Abstract. Although state-of-the-art description logic (DL) reasoners are equipped
with a comprehensive set of optimizations, reasoning performance is still a major
bottleneck in both research and real world applications. In this paper, we propose
a sound and complete algorithm called the intelligent tableau algorithm by in-
corporating comprehensive learning techniques to tackle all DL reasoning tasks.
We also provide a reference implementation reasoner called LIGHT for the DL
ALC dialect based on the algorithm we developed. Preliminary tests indicate that
significant improvements can be achieved, i.e., compared to other state-of-the-art
reasoners, LIGHT is up to two orders of magnitude faster for simple problems
and several orders of magnitude faster for more difficult problems. Even though
in this work our discussion is restricted to the ALC reasoning problem, our con-
jecture is that the algorithm developed can easily be extended to super-logics of
ALC.

Keywords: description logic, automated reasoning, learning, forgetting

1 Introduction

Most state-of-the-art DL reasoners implement tableau-based decision procedures which
typically check the consistency of an ontology by constructing a so-called pre-model for
the ontology. These procedures create pre-models in an often blind way which highly
depends on the syntax of the input ontologies. Despite many optimization techniques
studied and implemented so far, it is easy to find ontologies where one reasoner per-
forms very well while the other is hopelessly inefficient (e.g., see [5] for combinations
of nominals and qualified cardinality restrictions).

To simplify our discussion in the following sections, we restrict our research scope
in this work on the DL dialectALC (Attributive Concept Language with Complements)
which is a subset of nearly every expressive DL [2]. Applications of the results intro-
duced in this work to more expressive DL dialects will be addressed in our future work.

The paper is structured as follows. We first briefly introduce the syntax and seman-
tics ofALC and its relationship with other logics. Then we study a sound and complete
reasoning procedure based on a special DL normal form (DLNF). Afterward we dis-
cuss the integration of different types of learning into the reasoning procedure to come
up with the so-called intelligent reasoning algorithm. At last, we show that any TBox
can be converted into DLNF easily. The effectiveness of the algorithm proposed in this
work is demonstrated by empirical results obtained from processing a number of typical
test cases based on our reference implementation.

1.1 ALC Description Logic

Let A be a concept name (atomic concept), C and D are arbitrary concepts, and R a
role name (atomic role). In ALC, concepts are formed with the syntax as following:

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | ∀R.C | ∃R.C
where > is the abbreviation of ¬A t A, and ⊥ of ¬A u A. An atomic concept corre-
sponds to a unary relation in first order predicate logic (FOL), and an atomic role to
a binary relation in FOL. If C and D are concepts, then C v D is a terminological
axiom. C ≡ D is the abbreviation of the two axioms C v D andD v C. A finite set of
terminological axioms is called a terminology or TBox. An interpretation I = (∆,.I)
consists of a non-empty set ∆ and a mapping function .I . The function .I maps ev-
ery role to a subset of ∆ × ∆ and every concept to a subset of ∆. If there exists an
interpretation I which satisfies every axiom in T , i.e., CI ⊆ DI must hold for every
C v D in T , we call the interpretation a model of T . Hence T is called satisfiable
if such a model exists, and unsatisfiable otherwise. ALC is a syntactic variant of the
propositional modal logic K(m) and can be seen as a fragment of FOL. Axioms in a
TBox can be translated into FOL sentences correspondingly [2]. Let us use the function
F() to represent such a translation. Therefore,

F(A v ∃R.C) = ∀x∃y : A(x)→ (R(x, y) ∧ C(y))1

F(A v ∀R.C) = ∀x∀y : A(x)→ (R(x, y)→ C(y))

F(A v B) = ∀x : A(x)→ B(x) = ∀x : ¬A(x) ∨B(x)

In the following sections we shall only focus on the ALC TBox satisfiability reason-
ing problem for ease of illustration and evaluation. Solving other reasoning tasks is
discussed in Section 6.

1.2 The contribution of this paper

In this paper we present a reasoning procedure which systematically and effectively uses
a highly optimized DPLL algorithm for DL reasoning. This can be partially compared
to SMT (Satisfiability Modulo Theory) based approaches but offers more advantages.
In addition, we also propose a learning algorithm called unsat-learning which is proven
to be very effective for reasoning optimization. Prior to our work, only approaches for
unsat-caching [4, 3, 20] have been proposed, which can only prevent unsat-nodes (their
number could be exponential) to be repeatedly expanded whereas our approach can
prevent unsat-nodes to be repeatedly generated, which can reduce the search space ex-
ponentially in the best case. Moreover, we also integrate so-called forgetting techniques
into our DL reasoning algorithm, which improve an algorithm’s tractability in prac-
tice. At last, besides the standard negation normal form (NNF), a new DL normal form
(DLNF) specifically for reasoning optimization is also investigated.

1 In the following sections, we find it more appropriate to replace y by a skolem function f(x).

2 An Intelligent TBox Reasoning Procedure

2.1 A reasoning procedure for DLNF TBoxes

Suppose we are given a TBox T in which the axioms can be divided into three sets Tg ,
Tue, and Tua. In Tg , each axiom is in the format > v C where C is a disjunction of
unary literals. In other words, if we ignore the “> v” part in Tg for all axioms, Tg can be
considered in propositional logic conjunctive normal form (CNF). Let us call it PCNF
to distinguish it from CNF in FOL that allows n-ary relations rather than only unary
ones. In Tue and Tua, all axioms are in the format such that A v ∃R.C and A v ∀R.C
respectively, where A is a positive unary literal; R is an atomic role and C is a concept
in the format of PCNF. In addition, all positive unary literals on the left-hand side of
Tue and Tua are unique.

Definition 1. A TBox T is in Description Logic Normal Form (DLNF) if all axioms
in T can be divided into the three sets Tg , Tue, and Tua as described above.

Example 1.

T
′
= {> v ¬A0 t ¬B0, ¬A0 v B0, ∀R.(A0 u ¬B0) v ¬A0 t ∀R.¬B0}

T
′′
= {> v ¬A0 t ¬B0, > v A0 tB0, > v ¬A0 tA1 tA2,

A1 v ∀R.¬B0, A2 v ∃R.(¬A0 tB0)}

In Example 1, T ′
is not in DLNF since the last two axioms do not match the definition

of any of the three sets while T ′′
is in DLNF. If a TBox T is in DLNF, then it can be

easily translated to sets of skolemized FOL sentences (as shown below), where f(x) is
a skolemization function which maps instances to instances; x and y are variables of
instances of the underlying domain:

F(Tg) = ∀x
m∧
i=1

n∨
j=1

αij(x)

F(Tua) = ∀x∀y
q∧

l=1

γl(x)→ (sl(x, y)→ dl(y))

F(Tue) = ∀x
p∧

k=1

δk(x)→ (rk(x, fk(x)) ∧ ck(fk(x)))

(1)

Therefore, in Example 1, we have the FOL translation F(T ′′
) as follows:

F(T
′′

g) = ∀x : (¬A0 ∨ ¬B0, A0 ∨B0, ¬A0 ∨A1 ∨A2)(x)

F(T
′′

ua) = ∀x∀y : A1(x)→ (R(x, y)→ ¬B0(y))

F(T
′′

ue) = ∀x : A2(x)→ (R(x, f(x)), (¬A0 ∨B0)(f(x)))

where (¬A0 ∨¬B0)(x) is the abbreviation of (¬A0(x)∨¬B0(x)), and we replace the
symbol “∧” with “,” to emphasize the fit of set data structure during implementation.

Let us assume a TBox T is satisfiable and Im = (∆,.I
m

) is a model of T . There-
fore, ∆ must be non-empty, and it should at least contain one instance. If the existence
of such an instance is impossible, i.e, it is impossible to construct a mapping function
.Im

to satisfy all axioms in T , then T must be unsatisfiable. Without loss of generality,
let us say i0 is such an instance in ∆. We call the problem space w.r.t. only one single
instance a node. We also use instance names to identify nodes if this does not cause
any confusion. The problem space w.r.t. i0 is called root node or root. Let us take T ′′

from Example 1 to illustrate how we can solve the satisfiability problem for a TBox in
DLNF effectively. As we already stated, the underlying idea of solving the satisfiability
problem of T ′′

is to prove that the existence of i0 is possible.
Step (i) Construct the root node from T .
The logical semantics of the root node is that w.r.t. i0 all axioms in T map to the

logical true under a mapping function. If we can prove that such a mapping function
exists, T is satisfiable. Otherwise, T is unsatisfiable. Now let us consider the root node
of T ′′

which is the instantiation of x with i0 in F(T ′′
) (for unary relations, we use A

instead A(i0) for simplification purpose). Then, we get the root node of T ′′
:

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨A1 ∨A2}
2) A1 → ∀y : (R(i0, y)→ ¬B0(y))
3) A2 → {R(i0, f(i0)), (¬A0 ∨B0)(f(i0))}

Mapping 3) and 2) to the logical true can be easily achieved if we include (¬A2(i0) :
true) and (¬A1(i0) : true) in our mapping function. We call such kind of sentences
rules. To differentiate the two types of rules, we call the sentences instantiated from
F(Tue) ∃-rules and the ones from F(Tua) ∀-rules. As for 1), finding a mapping to
satisfy all sentences in it is equivalent to finding a propositional model for the corre-
sponding CNF. If there does not exist such a model, it means the mapping function .Im

can not be constructed, hence T ′′
must be unsatisfiable. Let us assume there exists a

propositional model for the CNF of the root node. We call the propositional model of
the CNF inside a node a path of the node. We call an individual element in the path
such as ¬A2(i0), A1(i1) an item.

Step (ii) Find a path of the corresponding node.
Provided that the path of the root node does exist, let us consider a specific item in

the path. We have only three possibilities:

(a) The item matches to an item on the left-hand side of a ∀-rule.
(b) The item matches to an item on the left-hand side of an ∃-rule.
(c) The item does not match to any item on the left-hand side of any rule.

As for (c), the item occurring in the path has no impact on the sentences instantiated
from F(Tua) and F(Tue). If all items in the path fall into this category, satisfiabil-
ity of the underlying TBox is directly proven. For instance, in the above example,
{¬A0, B0,¬A1,¬A2} is a path of the root node. However, none of the elements in
it matches the elements on the left-hand side of 3) and 2). Therefore, T ′′

is satisfiable,
and one can easily construct a model with a complete mapping function for it. As for
the other options (a) and (b), rule expansions are required.

Step (iii) Perform rule expansions.

If a ∀-rule is triggered, the right-hand side of the rule needs to be added to the
corresponding node, i.e., adding the sentence ∀y : sl(i, y)→ dl(y) to node i. Similarly,
if an ∃-rule is triggered, a relation rk(i, fk(i)) needs to be added to .Im

. Without loss
of generality, let us use a new instance name i1, which does not exist in ∆, to replace
fk(i) instead of keeping the function name.2 Therefore, we add a new instance i1 to ∆
and a binary relation rk(i, i1) to .Im

. Thus a new node w.r.t. i1 is added to the search
space and ck is added to the new node as part of the rule.

A node which generates new nodes is called a predecessor, and the generated nodes
its successors. The corresponding role rk is called an edge. If a PCNF ck is added to
a node because a ∃-rule is triggered by some δk, then δk is called an ∃-prefix and ck
is called an ∃-label of the node. Similarly, if a dl is added to a node due to a triggered
∀-rule by a γl, then γl is called a ∀-prefix and dl a ∀-label of the node. The set of prefixes
of a node is called a prefix set and the set of labels a label set of the node. We call two
nodes equivalent if they contain the same label set. If there is no conflict detected in any
of its successor nodes, then the node is called satisfiable.

To illustrate how it works, let us still use T ′′
from Example 1. Let us assume that

the path we found for the root node is {¬A0, B0, A1, A2} this time.3 A1 triggers a ∀-
rule, therefore we add a special rule ∀y : R(i0, y) → ¬B0(y) to the root node. A2

triggers an ∃-rule. Therefore, ∆ = ∆ ∪ {i1} where i1 is a new name and .Im

=.Im

∪{R(i0, i1)}. Furthermore, we also create a new node w.r.t. i1. ¬A0 ∨ B0 is added to
the newly created node as part of the ∃-rule. Since we have R(i0, i1) in .Im

, the rule
∀y : R(i0, y) → ¬B0(y) in the node i0 is triggered in which we instantiate y with
i1. Therefore, we have the following node i1 which contains all instantiated sentences
(rules) of F(T ′′

) (due to the ∀x restriction) by replacing x with i1 together with ¬B0

(∀-label) and ¬A0 ∨B0 (∃-label). We separate the label set from the instantiated PCNF
below just for illustration purposes.

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨A1 ∨A2}, {¬B0,¬A0 ∨B0}
2) A1 → ∀y : (R(i1, y)→ ¬B0(y))
3) A2 → {R(i1, f(i1)), (¬A0 ∨B0)(f(i1))}

It is obvious that there does not exist a proposition model for the PCNF in 1). It
means that the prefix set {A1, A2} of node i1 (which is part of the path of node i0)
leads to a contradiction. In such kind of situation, the path found in the predecessor node
needs to be rolled back and recalculated. This rollback and recalculation procedure is
applied recursively until no valid path can be found for the root node (the corresponding
TBox is unsatisfiable) or all paths have been found for all nodes in the problem space
(the corresponding TBox is satisfiable).

Step (iv) Apply steps (ii) to (iii) recursively until either all paths have been found
for all nodes or no path could be found for the root node.

Proposition 1. The reasoning procedure from step (i) to step (iv) is sound and com-
plete.

2 Refer to [2] for details on the open world assumption in DLs.
3 We chose a complete propositional model for illustration purposes here. A partial model con-

taining only {¬A0, B0} is already sufficient for a satisfiability proof.

Proof. The proposition holds because a TBox T can straightforwardly be translated to
FOL to which Herbrand’s theorem applies. The above-mentioned procedure is exactly
a procedure for constructing a herbrand model [10].

2.2 Integrating learning into reasoning

The underlying idea of learning w.r.t. logic reasoning is to prune unvisited search space
based on the knowledge achieved from previous search steps. With the pruned search
space, reasoning algorithms are supposed to find search results faster. By considering
the size of the underlying search space regarding to ALC, which can be exponential
w.r.t. the size of input ontologies [2], it is almost certain that effective learning should
improve the average reasoning performance significantly.

As discussed in Section 2.1, finding a path for a node is reduced to finding a propo-
sitional model for the underlying PCNF of the node. Therefore, some proven to be very
effective optimization algorithms such as DPLL equipped with conflict-driven learning
and back-jumping that are also employed by state-of-the-art SAT solvers [22, 15] can
be directly used. We call such kind of learning inside a single node local learning. The
discussion and improvements of local learning are beyond the scope of this paper and
we shall focus on global learning, i.e., the kind of learning that affects the reasoning
search space on the pre-model level, which directly affects the number of nodes to be
searched. To be more specific, global learning can be categorized into three types:

1. Unsat-learning: If the status of a node has already been determined as unsatisfiable,
the algorithm should learn from it and block all related unexplored search space
that would definitely lead to a failed search result.

2. Sat-learning: If the status of a node has already been determined as satisfiable,
the algorithm should directly mark the status of its equivalent nodes as satisfiable
without performing reasoning or expansion on them.

3. Unknown-learning: When the algorithm starts, the status of visited nodes are first
marked as “unknown” meaning that the sat/unsat status has not yet been deter-
mined. As the model graph is expanded during reasoning, if a newly created node
is equivalent to a node already marked as “unknown”, then we should avoid du-
plicate reasoning on the latter. In this case, we mark the latter node as “blocked”
meaning its satisfiability should refer to another node. The previously visited node
with an unknown status is called a blocker, and the blocked node is called a blockee.

Let us first check how an algorithm can learn from an unsat node. Without loss of
generality, let us suppose the label set of an unsat node is {cm, d1, d2, . . . , dn}.4 Cor-
respondingly, the prefix set is {δm, γ1, γ2, . . . , γn}. If the node is marked as unsat, it
means that the combination of all its prefixes leads to a conflict w.r.t. T . That is

T |= ∃x : δm(x) ∧ γ1(x) ∧ γ2(x) ∧ · · · ∧ γn(x)→ ⊥ (2)

It is equivalent to:

T |= ∀x : ¬δm(x) ∨ ¬γ1(x) ∨ ¬γ2(x) ∨ · · · ∨ ¬γn(x) (3)
4 For ALC, a non-root node contains exactly one existential label.

We call the right-hand side of axiom (3) a learned sentence. Let us add the learned
sentence toF(Tg) and populate it to all nodes with a still unknown status. We can easily
prove that all nodes whose prefix set contains the set {δm, γ1, γ2, . . . , γn} are pruned
from the search space. To illustrate how unsat-learning works, let us again consider the
example we used in Section 2.1. Node i1 is unsat and its prefix set is {A1, A2}. Then
the learned sentence is ∀x : (¬A1 ∨ ¬A2)(x). First we rollback the path found for the
root node and the corresponding elements related to that path which were added/created
during reasoning. The second step is to add the learned sentence to T and populate it to
the nodes with an unknown status. In our example, after the second step we get:

F(T
′′

g) = ∀x : {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨A1 ∨A2,¬A1 ∨ ¬A2}(x)

The changed root node:

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨A1 ∨A2,¬A1 ∨ ¬A2}
2) A1 → ∀y : (R(i0, y)→ ¬B0(y))

3) A2 → {R(i0, f(i0)), (¬A0 ∨B0)(f(i0))}

Now if we recalculate the path of the root node or any other node in our problem space
in future search, any supersets containing {A1, A2} will be automatically excluded.
Unsat-learning does not affect the soundness or completeness of the algorithm and the
proof is trivial.

As for sat-learning and unknown-learning, these techniques are also called sat-
caching and blocking in other papers [4, 3]. They can be simply implemented as buffer-
ing, i.e., all nodes in the underlying search space are identified by their labels, and if a
newly created node has a buffer hit, it can be directly marked either as ‘sat’ or ‘blocked’
without further expansion.

However, naive buffering may cause the algorithm to become unsound [8]. Solu-
tions to fix the unsoundness are discussed in [3, 6]. The solution introduced in [6] is
widely considered to be the best so far. However, it requires EXPSpace in the worst
case to construct a pre-model which can easily cause the reasoning algorithm to be-
come intractable.

Considering the procedure we discussed so far, unknown-learning is not a source
of unsoundness since the status of both blockers and blockees is restricted only to “un-
known” whereas sat-learning may cause unsoundness due to the problematic defini-
tion of “satisfiable” in Section 2.1. For example, in the case where all successors are
“blocked” by some other “unknown” nodes, the reasoning algorithm normally marks
the predecessor as “sat” due to no conflict detected in any of its successor nodes. In our
case, such a node will be saved in the sat-buffer and might be reused by others after-
wards due to a buffer hit. This is the source for the unsoundness w.r.t. sat-learning since
any of the related blockers could be proven as “unsat” afterwards. Therefore, in DL we
characterize node satisfiability as relative to blockers compared to absolute node unsat-
isfiability. In fact, there is a simple solution to ensure soundness. All we need to do is to
remove the nodes from the sat-buffer which directly or indirectly depend on a blocker
node whenever such a node is detected as “unsat”.

Algorithm 1 Normalization to CNF
1: function NORMALIZE(axiom)
2: remove ≡ and non-top concept from lefthand side of v from axiom
3: convert axiom to NNF
4: if axiom matches > v C t (D u E) then
5: normalize(> v ¬η tD) . η is a new name
6: normalize(> v ¬η t E)
7: normalize(> v C t η)

Algorithm 2 Remove value restrictions
function REMOVEROLEITEM(aDLCNFClause)

for all concept in aDLCNFClause do
if concept matches ∃R.C then

replace concept with δ . δ is a new name
Tue.add(δ v concept)

else if concept matches ∀R.D then
replace concept with γ . γ is a new name
Tua.add(γ v concept)

3 Intelligent Tableau Algorithm

3.1 Normalization

Reasoning algorithms used by state-of-the-art DL reasoners usually require axioms of
the input TBox to be transformed into NNF which can be done easily in linear time.
However, in the above mentioned reasoning procedure we require the input TBox to be
in DLNF. Therefore, before performing reasoning on a TBox, we need an algorithm to
convert an arbitrary TBox into the format of DLNF which is called normalization.

We divide the normalization into two steps: The first step is to remove all conjunc-
tions from all axioms in the target TBox (see Algorithm 1). In the second step, we
remove all concepts with value restrictions from the resulting CNF and then add corre-
sponding axioms to Tua and Tue (see Algorithm 2). Concepts C and D in Algorithm 2
can also be reduced to PCNF easily in a similar way. One can easily tell that in Example
1, T ′′

is the normalization result of T ′
.

Based on Algorithms 1 and 2, we have Proposition 2.

Proposition 2. There exists an algorithm that converts an arbitrary TBox T to T ′ in
polynomial time where T ′ is in DLNF and T ′ is equisatisfiable to T .

Proof. It is obvious that these algorithms require polynomial time. We only need to
prove that T ′ is equisatisfiable to T after normalization. The conversion from line 4
to line 7 in Algorithm 1 is widely used in converting an arbitrary SAT problem into a
3-SAT problem, and the equisatisfiability proof needs not to be repeated here. When
converting to DLNF, the only difference is the introduction of ∃-rules and ∀-rules. In
fact, the equisatisfiability of such a conversion can be proven in exactly the same way.
As for the PCNF conversion of role fillers, the proof can be easily done based on the
fact that equisatisfiability is closed under conjunction.

3.2 Intelligent reasoning algorithm

As we already mentioned in previous sections, the algorithm for finding a path inside
a specific node is implemented as finding a propositional model w.r.t. a CNF. A DPLL
procedure with local learning is described in Algorithm 3.

Algorithm 3 findModel
1: function FINDMODEL(aPCNF)
2: while true do
3: while ¬unsat and ¬finish do
4: unfold()
5: propagateAndDeduce()
6: if unsat then
7: if currentLevel = 0 then
8: return false
9: else

10: resolveConflict()
11: else if ¬ decideNextBranch() then
12: return true

Algorithm 4 ∀- and ∃-unfold
function ∀-UNFOLD(aPositiveUnaryLiteral)

rule← createLocalRule(aPositiveUnaryLiteral)
for all successor ∈ successorList do

if successor.role = rule.role then
successor.addPrefix(rule.prefix)
successor.cnf.add(rule.filler)

function ∃-UNFOLD(aPositiveUnaryLiteral)
node← createNewNode(aPositiveUnaryLiteral)
for all rule ∈ getLocalRule(node.role) do

node.cnf.add(rule.filler)
node.prefix.add(rule.prefix)

successorList.add(node)

Compared to SAT reasoning, we have to consider the ∃-rule and ∀-rules in DL rea-
soning. The function unfold() for rule expansions is called at line 4 in Algorithm 3. It
is executed whenever a propositional model item has been added. For other functions,
the details are similar to what is described in [22] except that the function resolveCon-
flict() needs to additionally deal with unsat caused by global learning and the rollback()
needs to do the opposite of unfold() if the rolling back item is unfoldable. ∃-unfold and
∀-unfold are described in Algorithm 4.

A recursive depth-first search (DFS) algorithm to determine satisfiability of an in-
put TBox is shown in Algorithm 5. At line 3, the algorithm checks and updates the
local CNF from the results of global learning, if applicable. This can avoid a global
propagation when global learning results are applicable that may affect system perfor-
mance at runtime. At line 15 we ensure the soundness of sat-learning, if applicable.
Line 16 can be as simple as adding a disjunction of negated prefixes to Tg as described
in Section 2.2.

Algorithm 5 satCheck
1: external satBuffer, unknownBuffer
2: function SATCHECK(aNode)
3: updateCNFFromGlobalLearning()
4: if ¬ findModel(aNode.pcnf) then
5: return false

6: for all successor ∈ successorList do
7: if successor ∈ satBuffer then
8: successor.status← SAT
9: else if successor ∈ unknownBuffer then

10: successor.status← BLOCKED
11: else
12: unknownBuffer.add(successor)
13: if ¬ satCheck(successor) then
14: unknownBuffer.remove(successor)
15: ensureSATLearningSoundness()
16: Learn from successor.prefix
17: return satCheck(aNode)
18: if current 6=root then
19: unknownBuffer.remove(current)
20: satBuffer.add(current)
21: return true

3.3 Forgetting

In Algorithm 5, a pre-model is constructed through DFS. Therefore, during reasoning
we only need to keep one single branch in memory to construct the pre-model. Such
kind of algorithms can be implemented in PSPACE as further studied and proved in
[16]. As a result, many tableau-based decision procedures for DL reasoning can be
considered as overall “practically tractable”. With the presence of global buffers, worst
case optimal algorithms using DFS are also studied and presented in [4] in which the
analysis of “practically tractable” algorithms by using global buffers focus only on the
space and time required for the construction of the pre-model whereas the space used by
the global buffers is ignored. As a matter of fact, we can easily prove that, if no proper
action is taken, the size of global buffers, even though only unsat-caching is involved,
can be exponential with regard to the size of the input TBox. Therefore, the “practically
tractable” feature might no longer hold in the presence of global buffers.

By considering the algorithm we proposed in this work, without special treatment,
the size of learning buffers for both global and local learning can also be EXP size
in the worst case. To achieve tractability, an intuitive solution is to remove less useful
learned knowledge from learning buffers, which can be seen as an opposite operation
to learning, and it is normally called forgetting. In our work, forgetting is applicable
to local learning, unsat-learning, and sat-learning but not to unknown-learning. This
scheme is good enough for practical reasoning since through DFS the number of nodes
with an unknown status is normally small. A forgetting algorithm could be as simple as
using a size-restricted FIFO queue, and it could be as complicated as some advanced
heuristic algorithms.

4 Related Work

We named the algorithm developed in this work as “intelligent tableau” to emphasize
its relationship to the traditional tableau algorithms [2] in that both algorithms construct
tree-like pre-models forALC reasoning. One can easily prove that both are variants for
finding a herbrand model to tackle DL reasoning problems. Learning and forgetting can
be considered as optimization techniques, which could also possibly be integrated into
traditional DL tableau algorithms. The major difference to our work is on how to deal
with disjunctions, i.e., a tightly integrated DPLL vs. standard tableau branching.

Traditional tableau algorithms are implemented by almost all state-of-the-art rea-
soners such as FaCT++ [21], Pellet [19], RacerPro [9] and HermiT [18]. These algo-
rithms are widely blamed for a low efficiency in the presence of many general inclusion
axioms or disjunctions [12]. Even though equipped with many optimization techniques
such as boolean constraint propagation (BCP), semantic branching, back-jumping, etc.,
most DL reasoners still easily become intractable when dealing with ontologies con-
taining many disjunctions. Even though the JNH test cases we used in Section 5 are
considered as trivial examples for a SAT solver, no state-of-the-art DL reasoner is able
to provide an efficient solution. As for more complicated CNF test cases, these reason-
ers easily become intractable based on our test results. Modified versions of tableau
algorithms such as hypertableaux [14], which uses hyper-resolution instead of simple
tableau branching, are developed and applied in reasoners such as HermiT. Even though
the performance in dealing with disjunctions is improved, based on our test results, Her-
miT is normally performing worse than others in situations where a big amount of nodes
needs to be constructed in the underlying pre-model (see Section 5).

Researchers also presented approaches for DL reasoning through SMT [17], which
make it possible to solve DL reasoning problems by using efficient state-of-the-art SAT
solvers. Some of the underlying ideas coincidentally overlap with our work. However,
even though the SMT solutions have achieved a similar performance for some bench-
mark test cases compared to state-of-the-art DL reasoners, they did not provide effective
ways to prune the underlying search space. In addition, the encoding algorithms used
to reduce DL problems to SAT problems are still as hard as EXPTime which may cause
some significant overhead when considering performance in real-world applications.
Moreover, the black-box consideration of the SAT portion might cause unnecessary

search if a conflict could be easily detected before a full SAT model is constructed. So
far, we were unable to include a practical SMT reasoner in our comparison tests.

The research on EXPTime Tableau for ALC [4] (by applying global caching) has
been further developed and implemented by [6, 7]. These kinds of algorithms either
heavily use subset checking or require EXPSpace to construct the pre-model. Both cases
can easily cause intractability in real world applications. Implementations of such kind
of reasoning algorithms are still far from building a practical reasoner for real world DL
applications.

5 Empirical Results

The primary goal of the algorithm developed in Section 3.2 is to conduct “fast” reason-
ing — the purpose of DPLL based algorithm is to improve the reasoning performance
w.r.t. to a single node while comprehensive learning is to reduce the number of nodes
to be searched. A good way to verify whether our goal has been achieved is through
running typical benchmark test cases. In addition, designing an enable/disable switch
on some specific optimization feature is the best way to verify its effectiveness. Based
on such motivation, we provide a reference implementation called LIGHT in which sat-
learning and unsat-learning can be switched on and off. We consider the features of our
reasoning procedure such as being DPLL-based, employing DLNF ontology normaliza-
tion and unknown-learning as so fundamental that they are tightly integrated into our
architecture and therefore can not be disabled. We conducted our benchmark tests using
four different settings of LIGHT (see Table 1): (i) both sat-learning and unsat-learning
switched off (L-N); (ii) only sat-learning switched on (L-S); (iii) only unsat-learning
switched on (L-U); (iv) both sat-learning and unsat-learning switched on (LIGHT). Part
of the test results for the employedALC benchmark test cases are shown in Table 1. The
LIGHT reasoner for different platforms together with all test cases we used, complete
test results and test scripts are available for download.5

All test results in Table 1 are based on a Ubuntu Linux 12.04 32 bit platform. The
used hardware is a DELL Precison 390 with Intel Core 2 Duo processor 2.4G equipped
with 4GB memory. For Java based reasoners, we used Oracle JDK v7.0.11. In Table
1, all runtimes are given in seconds. The word “cr” means the system crashed (out of
memory or segment fault) during the test, and “to” means the system was aborted after
a timeout (≥ 2000 seconds). The suffix “s” and “u” of ontology names represents the
corresponding TBox that is either satisfiable or unsatisfiable.

The JNH [11] test cases are CNF benchmarks converted to OWL syntax and are
used to test the capability of DL reasoners for dealing with ontologies containing many
(global) disjunctions. BCS (Basic Call System) [1] test cases are real-world examples
and typical in the sense that large amount of nodes are required to construct a pre-
model. GALEN test cases are used to evaluate the reasoners when dealing with simple
problems. The test cases named “k XX” are taken from Tableaux’98 [13].

As shown in Table 1, in some situations where very limited number of branches is
required to build a pre-model or conflicts can be easily detected, sat and unsat learning

5 http://www.lightreasoner.co.nf/

Table 1. Benchmark results for ALC test cases (runtimes in seconds)

L-N L-S L-U LIGHT HermiT Pellet Fact++ Racer
galen1s 0.12 0.12 0.14 0.12 1.2 1.3 0.44 1.7
galen2s 0.16 0.15 0.16 0.15 1.3 1.4 0.46 1.9
JNH15u 0.02 0.02 0.02 0.02 6.2 119.1 94.7 119.5
JNH16u 0.07 0.06 0.06 0.07 237.4 452.3 cr 15384
JNH17u 0.02 0.02 0.02 0.02 1.6 21.1 9.5 1165
k d4 12nu to to 44.32 44.47 to to 1054 to
k d4 13nu to to 99.77 98.70 to to to to
k dum 18nu 18.04 15.05 17.33 13.99 to to cr 196.29
k dum 19nu to to 37.59 32.27 to to cr 140.88
k ph 14pu 963.7 1001 1005 1014 cr cr cr to
k tp4 21nu 15.84 15.31 5.32 0.32 to 0.54 cr to
k branch 20nu 0.34 0.34 0.35 0.35 to 2.3 14.7 16.1
k branch 21nu 0.39 0.40 0.40 0.39 to 2.4 18.2 19.2
k path 20pu 1.5 1.53 0.19 1.53 cr 21.03 5.85 7.88
k path 21pu 1.7 1.76 0.23 1.78 cr 25.63 7.30 9.0
k poly 15pu 18.36 18.3 18.0 0.43 179.27 27.67 34.97 1.62
k poly 16pu cr cr cr 0.61 373.4 76.98 cr 2.03
k poly 20ns cr cr to 236.7 cr cr cr 149.9
k poly 21ns cr cr to 325.4 cr cr cr 524.6
BCS3s to 0.03 to 0.02 1.6 20.7 cr 0.69
BCS4s to 1.37 to 0.20 133.8 to cr 13.8
BCS5s to to to 2.14 cr to cr 276.2

have no significant impact on the results for GALEN and JNH. In these situations,
the effectiveness of LIGHT’s reasoning compared to other reasoners can be primarily
attributed to the optimized DPLL algorithm used. Learning may also have negative
impact in some situations such as K PH 14P. In some cases, with only unsat learning
enabled we can achieve better results than using the combination of the two, i.e., sat-
learning only causes overhead for a test case such as K PATH 20P. In many situations,
unsat-learning is critical for obtaining a good performance. However, in the BCS test
cases, we also see that sat-learning plays a critical role to ensure effective reasoning.
Overall, the combination of both sat and unsat learning achieves very good results in
most of the cases.

Compared to other DL reasoners, LIGHT is up to one order of magnitude faster for
the GALEN test cases. For the BCS benchmarks, LIGHT is two orders of magnitude
faster than Racer, which is the only reasoner besides LIGHT that can process all three
variants. The overall performance of LIGHT is significantly improved for the bench-
marks selected from Tableaux’98 (the test cases with prefix “k ”). The JNH benchmark
results demonstrate the effectiveness of LIGHT by using an optimized DPLL algo-
rithm in dealing with situations where one has only one node in the pre-model that has
many disjunctions while the other reasoners are several orders of magnitude slower than
LIGHT.

6 Discussion

The TBox satisfiability problem we discussed in this work can be seen as a special case
of the (>) concept satisfiability problem w.r.t. a non-empty TBox. From this perspec-
tive, once an algorithm solves the TBox satisfiability problem, all other DL reasoning
tasks such as concept satisfiability, classification, concept subsumption, ABox satisfia-
bility etc. can also be solved easily by using exactly the same algorithm [2].

Some may consider the normalization algorithm we presented in this work that
introduces additional variables to be a source of inefficiency. After all, the worst case
complexity analysis even for DPLL based algorithms is tightly related to the number of
variables involved. As a matter of fact, this kind of concern is unjustified. First of all, the
normalization algorithm requires only polynomial (linear) time which is normally trivial
compared to the EXPtime reasoning algorithm. Another fact is that no proof or test
results indicate that the introduction of variables can significantly affect the reasoning
performance. Our test results have shown that the introduction of new variables such as
the conversion from 5CNF to 3CNF in SAT reasoning in most of the cases interestingly
improved the reasoning performance.

At last, one may wonder the necessity of the algorithm we proposed in this work.
After all, the algorithm proposed in this work can be easily reduced to finding a Her-
brand model in FOL which is also the case for traditional tableau algorithms. In fact,
one can easily reduce the algorithm proposed in this work to traditional tableau-based
algorithms for further analysis such as computational complexity and termination anal-
ysis. From our perspective, the major benefits of the algorithm proposed in this work
are based on two points. First, this algorithm helps us reduce a DL-based problem to
a SAT based problem so that we can delegate efficient reasoning by using proven to
be efficient algorithms. The other reason is that we simplified the pre-model structure
from an AND-OR graph [6] to an AND-only graph, i.e., all nodes in the discourse have
to be satisfiable to make the corresponding TBox satisfiable. The “OR” portion in the
graph with its reasoning algorithm is completely merged to the “AND” node. Thus,
with the simplified model structure, it is easier to develop and integrate more efficient
optimization algorithms such as comprehensive learning.

7 Conclusion and Future Work

In this paper we presented an efficient reasoning algorithm that incorporates learning
for solving the TBox satisfiability problem. It is based on searching herbrand models,
which is related to but also different from traditional DL tableau algorithms. Preliminary
test results have shown that our presented algorithms are significantly more efficient
than other existing ones. Besides a systematical discussion of learning on DL reason-
ing, our DLNF normalization form has been systematically presented and investigated,
which makes it easier to incorporate effective optimization techniques into automated
reasoning algorithms due to the structured format. Even though the discussion in this
work is restricted to the DL ALC, our conjecture is that the algorithm can be applied
to super-logics ofALC or even other DL related logics with slight modifications which
will be presented in our future work.

References
1. C. Areces, W. Bouma, and M. de Rijke. Description logics and feature interaction. In

Proceedings of the International Workshop on Description Logics (DL’99), pages 28–32,
Linköping, Sweden, 1999.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2nd edition, 2007.

3. Y. Ding and V. Haarslev. Tableau caching for description logics with inverse and transitive
roles. In Proceedings of the 2006 International Workshop on Description Logics (DL-2006),
pages 143–149, 2006.

4. F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence,
124(1):87–138, 2000.

5. J. Faddoul. Reasoning algebraically with description logics. PhD thesis, Department of
Computer Science and Engineering, Concordia University, 2011.

6. R. Goré and L. Nguyen. Exptime tableaux for ALC using sound global caching. Journal of
Automated Reasoning, pages 1–27, 2011.

7. R. Goré and L. Postniece. An experimental evaluation of global caching for ALC (sys-
tem description). In Proceedings of IJCAR 2008, volume 5195, pages 299–305. Automated
Reasoning, 2008.

8. V. Haarslev and R. Möller. Consistency testing: The RACE experience. In Proceedings of In-
ternational Conference on Tableaux, St Andrews, Scotland, July 4-7, pages 57–61. Springer-
Verlag, 2000.

9. V. Haarslev and R. Möller. Racer system description. In Proceedings of International Joint
Conference on Automated Reasoning, pages 701–705. Springer-Verlag, 2001.

10. J. Herbrand. Recherches sur la théorie de la démonstration. PhD thesis, University of Paris,
1930.

11. J. Hooker. Satlib - benchmark problems. Website, 2011. http://www.cs.ubc.ca/

˜hoos/SATLIB/benchm.html.
12. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of KR’1998,

pages 636–647.
13. I. Horrocks and P. Patel-Schneider. DL systems comparison. In Proc. of the 1998 Description

Logic Workshop (DL’98), pages 55–57. volume 11 of CEUR, 1998.
14. B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description logics. Journal

of Artificial Intelligence Research, 36:165–228, 2009.
15. L. O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon

Fraser University, BC, Canada, 2004.
16. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.

Artificial Intelligence, 1(48):1–26, 1991.
17. R. Sebastiani and M. Vescovi. Automated reasoning in modal and description logics via

SAT encoding: the case study of K(m)/ALC-Satisfiability. Journal of Artificial Intelligence
Research, 35, 2009.

18. R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly efficient OWL reasoner. In 5th
OWL Experiences and Directions Workshop, 2008.

19. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

20. A. Steigmiller, T. Liebig, and B. Glimm. Extended caching, backjumping and merging for
expressive description logics. In Proc. of IJCAR’2012, pages 514–529.

21. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description. In
Third International Joint Conference on Automated Reasoning, pages 292–297, 2006.

22. L. Zhang. Searching for truth: techniques for satisfiability of boolean formulas. PhD thesis,
Departement of Electrical Engineering, Princeton University, 2003.

