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Abstract. Answer set programming (ASP) is a declarative programming paradigm
stemming from logic programming that has been successfully applied in various
domains. Despite amazing advancements in ASP solving, many applications still
pose a challenge that is commonly referred to as grounding bottleneck. Devising,
implementing, and evaluating a method that alleviates this problem for certain
application domains is the focus of this paper. The proposed method is based on
combining backtracking-based search algorithms employed in answer set solvers
with SLDNF resolution from PROLOG. Using PROLOG inference on non-ground
portions of a given program, both grounding time and the size of the ground pro-
gram can be substantially reduced.
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1 Introduction

Answer set programming (ASP) [4] is a declarative programming paradigm stemming
from a knowledge representation and reasoning formalism based on the answer set se-
mantics of logic programs. It can be used whenever we want to solve a search problem
where the goal is to find solutions among a finite, but potentially very large, number of
possibilities. ASP has been successfully applied in different areas of knowledge repre-
sentation and computer science, including Space Shuttle control [25] and Linux pack-
age configuration [13]. Most modern answer set solving tools encapsulate two systems:
a grounder, such as LPARSE or GRINGO, and an answer set solver, such as CMODELS
or CLASP. A grounder is a software system that takes a logic program with variables
as an input and produces an equivalent program without variables – a ground program.
An answer set solver is then invoked on a ground program to generate its answer sets.
Answer set solvers typically rely on the enhancements of the Davis-Putnam-Logemann-
Loveland procedure [6] – classic backtracking-based search algorithm. Despite amazing
advancements in solving technology, many applications still pose a challenge. Ground-
ing bottleneck refers to situations where grounding results in programs that are too large
for the solving tools to handle effectively. Alleviating grounding bottleneck is the main
focus of this work. We describe, implement, and evaluate an approach for combining
backtracking-based search algorithms of answer set solvers with SLDNF resolution



from PROLOG. As a result, the newly implemented approach makes it possible to avoid
the grounding of portions of a program by delegating the processing of those parts to a
PROLOG system.

The grounding bottleneck has been recognized as a serious issue in recent years.
Constraint answer set programming (CASP) [18] is one of the directions of research that
has been largely motivated by an attempt to solve the problem. It integrates answer set
programming with constraint (logic) programming, which allows applying constraint
processing techniques for effective reasoning over non-boolean constructs. CASP in-
troduces a notion of constraint atoms that trigger additional processing by constraint
programming tools and at the same time may reduce the size of the grounding. Mel-
larkod et al. [22] developed one of the earliest CASP languages called AC. They also
introduced an algorithm for a special class of programs in that language. The primary
focus of the work on AC was integrating efficient constraint processing capabilities into
answer set solving methods. Yet, [22] touched on another crucial aspect of the inte-
gration of ASP and CLP: integrating ASP backtracking search with PROLOG SLDNF
resolution. In the present paper we resume and expand the investigation on this topic,
focusing on a special case of AC programs that consist of “standard” (non-constraint)
answer set programs.

More on related work: Works by Alviano and Faber [1], de Cat et al. [5], Eiter et al. [8,
7] are other interesting attempts to alleviate grounding issues. Alviano and Faber pro-
pose a magic sets-based program rewriting method as a query optimization technique
in ASP. This method helps an answer set solver prune the search space by disregarding
parts of the program irrelevant to a given query. The goal is achieved by rewriting an
original program (if a class of a program permits) in a form that guides the computa-
tion by the ASP grounder and solver by taking advantage of information provided by
the query. The approach attempts to “mimic” PROLOG-like behavior using ASP tech-
nology. The approach advocated here is orthogonal. We propose to take advantage of
the PROLOG engine itself when possible. Techniques in the spirit of incremental answer
set programming [12] were developed by de Cat et al. [5] and employ a “grounding as
needed” approach in solving. The DLVHEX solver [8, 7] also provides a possibility for
grounding as needed: it uses special Splitting Sets to process parts of a program in a
sequence, so that the grounding of the current part depends on the answer sets of the
previous parts.

Paper Structure: We start the presentation by a review of preliminary concepts as well
as a special case of AC programs that are at the center of attention in this work. We
then introduce a variant of the AC algorithm and describe its implementation within the
CASP solver EZCSP [3]. We conclude with a discussion on an experimental analysis
that we conducted to assess the introduced technique.

2 Hybrid Programs

A logic program is a finite set of rules of the form

a0← a1, . . . ,al ,not al+1, . . . ,not am, not not am+1, . . . , not not an, (1)



where a0 is ⊥ or an atom, and each ai (1 ≤ i ≤ n) is an atom. Atoms may be non-
ground. We call a rule a constraint, if a0 = ⊥. This is a special case of programs with
nested expressions [21]. We assume that the reader is familiar with the definition of an
answer set of such programs and refer to the paper by Lifschitz et al. ([21]) for details.
According to [11], a choice rule {a} of the LPARSE4 language [23] can be seen as an
abbreviation for a rule a← not not a. We adopt this abbreviation in the rest of the
paper.

The expression a0 is the head of rule (1). If B denotes the body of (1), the right hand
side of the arrow, we write Bpos for the elements occurring in the positive part of the
body, i.e., Bpos = {a1, . . . ,al}.

To process a logic program, or in other words, to find answer sets of a program or
establish some properties about its answer sets, such software systems as answer set
solvers and sometimes PROLOG interpreters are used. A sample logic program is:

down(T )← not on.
down(0). down(1). . . . down(3600).
okTime(T )← not down(T ).
⊥← occurs(a,5000), not okTime(5000).
occurs(a,5000).
{on}.

(2)

This program has a unique answer set

{occurs(a,5000), okTime(5000), on, down(0), . . . ,down(3600)}. (3)

Note that neither answer set solvers nor PROLOG systems can handle such a pro-
gram. First, program (2) contains a constraint and a choice rule, which makes PROLOG
systems inapplicable. Second, (2) contains a rule

okTime(T )← not down(T ),

which violates the common safety condition imposed by ASP grounders. A safe rule
is such that each variable occurring in its head or its negative part of the body appears
in the positive part of the body. Nevertheless, the first three lines of (2) form a logic
program that may be processed by PROLOG systems, whereas the last three lines form
a program that is acceptable by an answer set solver. In a sense, program (2) is a “hy-
brid” program that borrows acceptable features from two worlds of logic programming:
“classic” PROLOG programming and answer set programming. In this paper we present
an algorithm (a family of algorithms) that takes advantage of two inference technolo-
gies that are usually used disjointly in logic programming, in PROLOG systems and
in answer set solvers. As a result programs such as (2) can be processed by a solver
supporting such an algorithm. We implement a variant of this algorithm in the solver
EZCSP5 [3].

In order to treat parts of a program differently (using PROLOG inference in one case,
and answer set solver inference in another) we identify a group of program predicates

4 http://www.tcs.hut.fi/Software/smodels/
5 http://marcy.cjb.net/ezcsp/



that we use to guide the splitting of the program into two disjoint parts. To make it
precise we introduce the following notation.

For a program Π and a set p of predicate symbols, the part of Π that consists of
all the rules whose heads are atoms formed using predicate symbols from p is denoted
by Πp. By Π−p we denote Π \Πp. For example, let Π stand for (2) and let p1 be the set
of predicate symbols

{okTime, down}. (4)

Then, Πp1 is:
down(T )← not on.
down(0). . . . down(3600).
okTime(T )← not down(T ),

(5)

whereas
⊥← occurs(a,5000), not okTime(5000)
occurs(a,5000).
{on}.

(6)

is Π−p1
. For a program Π , by ground(Π) we denote the set of all ground instances of

all rules in Π . We say that Π is semi-ground w.r.t. a set p of predicate symbols if Π−p
is a ground program (i.e., contains no variables) and Πp is such that all of its non-
ground atoms are formed from predicate symbols in p. For example, program (2) is
semi-ground w.r.t. predicate symbols (4).

For any atom p(t), by p(t)0 we denote its predicate symbol p. For any program Π ,
the predicate dependency graph of Π is the directed graph that

– has all predicates occurring in Π as its vertexes, and
– for each rule (1) in Π has an edge from a0

0 to a0
i where 1≤ i≤ l.

We say that a program Π is splittable w.r.t. predicate symbols p if each strongly
connected component of the predicate dependency graph of Π is either a subset of p or
a disjoint set from p. Program (2) is splittable w.r.t. predicate symbols (4).

The hybrid algorithm that we propose in this note is applicable to splittable pro-
grams. To present this algorithm we introduce several concepts.

Given a program Π and a set p of predicate symbols, a set X of atoms is a p-input
answer set (or an input answer set w.r.t. p) of Π if X is an answer set of Π ∪X−p where
by X−p we denote the set of atoms in X whose predicate symbols are different from
those occurring in p. 6 For instance, let X be a set {a(1),b(1)} of atoms and let p be a
set {a} of predicates, then X−p is {b(1)}. The set X is a p-input answer set of a program
a(1)← b(1). On the other hand, it is not an input answer set for the same program with
respect to a set {a,b}.

By At(Π) we denote the set of all atoms occurring in a program Π .

Proposition 1. For a program Π and a set p of predicate symbols, if Π is splittable
then a set of atoms A over At(ground(Π)) is an answer set of Π iff A is an input answer
set of Πp w.r.t. p and A is an input answer set of Π−p w.r.t. predicate symbols in Π−p
different from p.

6 Intuitively set p denotes a set of intentional predicates [10]. The concept of p-input answer
sets is closely related to “p-stable models” in [9].



This proposition outlines the basis for our approach. Given a semi-ground and split-
table program Π wrt predicate symbols p, we would like to use a PROLOG system for
inference over Πp and an answer set solver for inference over Π−p . Note that Πp may
contain rules that are not ground whereas Π−p is a propositional program so that any an-
swer set solver is applicable to it. Recall that PROLOG is designed to effectively process
non-ground programs whereas answer set solvers (without grounders) are able to deal
only with propositional programs.

3 Review: Abstract Answer Set Solver

Most state-of-the-art answer set solvers are based on algorithms closely related to the
DPLL procedure [6]. Nieuwenhuis et al. described DPLL by means of a transition system
that can be viewed as an abstract framework underlying DPLL computation [24]. Our
goal is to design a similar framework for describing an algorithm suitable for processing
semi-ground splittable programs – QUERY+ASP. As a step in this direction we introduce
the graph ASΠ that extends the DPLL graph by Nieuwenhuis et al. so that the result can
be used to specify an algorithm for finding answer sets of a program.

We frequently identify the body of (1) with the conjunction of its elements (in which
not is replaced with the classical negation connective ¬):

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an.

Similarly, we often interpret a rule (1) as a clause

a0∨¬a1∨·· ·∨¬al ∨al+1∨·· ·∨am∨¬am+1∨·· ·∨¬an (7)

(in the case when a0 =⊥ in (1) a0 is absent in (7)). Given a program Π , we write Π cl

for the set of clauses (7) corresponding to all rules in Π .
For a set σ of atoms, a record relative to σ is an ordered set M of literals over σ ,

some possibly annotated by ∆ , which marks them as decision literals. A state relative
to σ is a record relative to σ possibly preceding symbol ⊥. For instance, some states
relative to a singleton set {a} of atoms are

/0, a, ¬a, a∆ , a ¬a, ⊥, a⊥, ¬a⊥, a∆⊥, a ¬a⊥.

We say that a state is inconsistent if either⊥ or two complementary literals occur in
it. For example, states a ¬a and a⊥ are inconsistent. Given a state M, we frequently ig-
nore both annotations and order of elements and consider M as a set of literals possibly
including the symbol ⊥.

If neither a literal l nor its complement occur in M, then l is unassigned by M.
If C is a disjunction (conjunction) of literals then by C we understand the conjunc-

tion (disjunction) of the complements of the literals occurring in C. In some situations,
we will identify disjunctions and conjunctions of literals with the sets of these literals.

By Bodies(Π ,a) we denote the set of the bodies of all rules of a ground program Π

with the head a. A set U of atoms occurring in a ground program Π is unfounded [26,
16] on a consistent set M of literals with respect to Π if for every a ∈ U and every



B ∈ Bodies(Π ,a), M |= B (where B is identified with the conjunction of its elements),
or U ∩Bpos 6= /0.

Each ground program Π determines its Answer-Set graph ASΠ . The set of nodes of
ASΠ consists of the states relative to the set of atoms occurring in Π . The edges of the
graph ASΠ are specified by the transition rules

Unit Propagate: M =⇒ M l if C∨ l ∈Π cl and C ⊆M

Decide: M =⇒ M l∆ if l is unassigned by M

Fail: M =⇒ ⊥ if
{

M is inconsistent and different from ⊥, and
M contains no decision literals

Backtrack: P l∆ Q =⇒ P l if
{

P l∆ Q is inconsistent, and
Q contains no decision literals

Unfounded: M =⇒M ¬a if a ∈U for a set U unfounded on M wrt Π .

A node is terminal in a graph if no edge leaves this node.
For a set M of literals, by pos(M) and neg(M) we denote the set of positive and neg-

ative literals in M respectively. For instance, pos({a,¬b}) = {a} and neg({a,¬b}) =
{b}.

The graph ASΠ can be used for deciding whether a ground program Π has an answer
set by constructing a path from /0 to a terminal node. The following proposition serves
as a proof of correctness and termination for any procedure that is captured by ASΠ .

Proposition 2. For any ground program Π ,

(a) graph ASΠ is finite and acyclic,
(b) for any terminal state M of ASΠ other than ⊥, pos(M) is an answer set of Π ,
(c) state ⊥ is reachable from /0 in ASΠ if and only if Π has no answer sets.

Let Π be a program (6). The following is a path in ASΠ , with every edge annotated
by the name of a transition rule that justifies the presence of this edge in the graph:

/0
Unit Propagate

=⇒
occurs(a,5000)

Unit Propagate
=⇒

occurs(a,5000) okTime(5000)
Unfounded

=⇒
occurs(a,5000) okTime(5000) ¬okTime(5000) Fail=⇒
⊥

Since the last state in the path is terminal and ⊥, Proposition 3 asserts that this program
has no answer sets.

The graph ASΠ is inspired by the graph SMΠ introduced by Lierler [17] for speci-
fying answer set solver SMODELS [23]. The graph SMΠ extends ASΠ by two additional
transition rules (in other words, inference rules or propagators): All Rules Canceled and
Backchain True. Lierler and Truszczynski [20] developed a similar framework to model



such modern answer set solvers as CMODELS [15], SUP [17], and CLASP [14]. For the
simplicity of this presentation, we settle on the ASΠ formalism as a choice for depicting
an answer set solver. Nevertheless, the procedure described in this paper for combining
the inference mechanisms of answer set solving and of PROLOG is not limited to answer
set solvers whose algorithm is captured by the ASΠ graph. For example, the procedure
can be easily adopted by more sophisticated solvers implementing learning, such as
CMODELS or CLASP.

4 Abstract QUERY+ASP

Query, Extensions, and Consequences: For a program Π and a set p of predicate
symbols, by Atp(Π) we denote a set of atoms occurring in Π whose predicate symbols
are in p. By At−p (Π), we denote a set of atoms in Π whose predicates symbols are not
in p.

For a semi-ground program Π w.r.t. a set p of predicate symbols, a (complete)
query Q is a (complete) consistent set of literals over At−p (Πp)∪Atp(Π−p ). For a query
Q of Π , a complete query E is a satisfying extension of Q w.r.t. Π if Q⊆ E and there is
an input answer set A of Πp w.r.t. predicates p such that pos(E)⊆A and neg(E)∩A = /0.

We say that literal l is a consequence of Π and Q if for every satisfying extension E
of Q w.r.t. Π , l ∈ E. By Cons(Π ,Q), we denote the set of all consequences of Π and
Q. If there are no satisfying extensions of Q w.r.t. Π we identify Cons(Π ,Q) with the
singleton {⊥}.

Let Π be (2) and Q be {on}. The set {on,okTime(5000)} forms a satisfying ex-
tension of Q w.r.t. Π . Furthermore, this is the only satisfying extension of Q w.r.t. Π .
Consequently, it forms Cons(Π ,Q). On the other hand, there are no satisfying exten-
sions for a query Q = {¬on, okTime(5000)} so that {⊥} corresponds to Cons(Π ,Q).
The graph QASΠ ,p: For a program Π and a set p of predicate symbols, by Π c we
denote a set of choice rules {a} for each atom a in Atp(Π−p ). For instance, let Π be (2)
then Π c consists of a choice rule

{okTime(5000)} (8)

Let Π be a logic program and p a set of predicate symbols. The nodes of the graph
QASΠ ,p are the states relative to the set of atoms occurring in Π−p .

The edges of the graph QASΠ ,p include the transition rules of AS
Π
−
p ∪Π c . Note how

these transition rules take into consideration not only a part of program meant to be
processed by an answer set solver Π−p but also its extension with choice rules for atoms
whose predicate symbols are in p. For instance, let Π be program (2) and let p1 be set
of predicate symbols (4). The program Π−p1

∪Π c contains the rules of (6) extended with
choice rule (8).

Another transition rule that concludes the definition of the graph QASΠ ,p is called
Query Propagate. To present this rule we introduce the notion of a query. For a state M
of QASΠ ,p, by query(M) we denote the largest subset of M over At−p (Πp)∪Atp(Π−p ).
Let Π be (2) and M be a state occurs(a,5000) okTime(5000) ¬on∆ , then query(M) is
{okTime(5000),¬on}.



The transition rule Query Propagate follows

Query Propagate: M =⇒ M l if l ∈Cons(Π ,query(M)).

The graph QASΠ ,p can be used for deciding whether a splittable semi-ground pro-
gram Π w.r.t. predicate symbols p has an answer set by constructing a path from /0 to a
terminal node:

Proposition 3. For any splittable semi-ground program Π w.r.t. predicate symbols p,

(a) graph QASΠ ,p is finite and acyclic,
(b) for any terminal state M of QASΠ ,p other than ⊥, pos(M) is a set of all Π−p atoms

in some answer set of Π ,
(c) state ⊥ is reachable from /0 in QASΠ ,p if and only if Π has no answer sets.

Proposition 3 shows that algorithms, which find a path in the graph QASΠ ,p from /0 to a
terminal node, can be regarded as solvers for splittable semi-ground programs. We call
the class of algorithms captured by the graph QUERY+ASP. Let Π be a program (2). The
following is a path in QASΠ ,p, with every edge annotated by the name of a transition
rule that justifies the presence of this edge in the graph:

/0
Unit Propagate

=⇒
occurs(a,5000)

Unit Propagate
=⇒

occurs(a,5000) okTime(5000) Decide=⇒
occurs(a,5000) okTime(5000) ¬on∆ Query Propagate

=⇒
occurs(a,5000) okTime(5000) ¬on∆ ⊥ Backtrack=⇒
occurs(a,5000) okTime(5000) on

Since the last state in the path is terminal, Proposition 3 asserts that

{occurs(a,5000), okTime(5000), on}

is a set of all Π−p atoms in some answer set of Π . Indeed, recall answer set (3).
We note that the QASΠ ,p graph can be seen as a special case of the graph ACΠ

introduced in [18] for a more sophisticated class of programs called AC programs.

5 The “blackbox” QUERY+ASP Algorithm

We can view a path in the graph QASΠ ,p as a description of a process of search for a
set of atoms in some answer set of splittable semi-ground program Π by applying the
graph’s transition rules. Therefore, we can characterize an algorithm of a solver that
utilizes the transition rules of QASΠ ,p by describing a strategy for choosing a path in
this graph. A strategy can be based, in particular, on assigning priorities to transition
rules of QASΠ ,p, so that a solver never follows a transition due to a rule in a state if a
rule with higher priority is applicable.



The priorities

Backtrack,Fail,Unit Propagate,Unfounded,Decide >> Query Propagate.

describe a “blackbox” architecture of a QUERY+ASP system that operates as follows:
first, it uses an answer set solver on Π−p ∪Π c to find an answer set; then it invokes
a procedure to verify whether the Query Propagate transition is available; if no such
transition is available then the answer set found represents a terminal state of QASΠ ,p;
otherwise, the answer set solver is instructed to look for another answer set and the
process is repeated.
PROLOG for Implementing Query Propagate: PROLOG systems can be used to im-
plement the Query Propagate transition rule for programs satisfying some additional
syntactic constraints. We now discuss one class of such programs.

Let Π be a splittable program w.r.t. predicate symbols p. We say that such a pro-
gram is PROLOG-friendly if Πp is in PROLOG syntax (i.e., contains no rules with nested
negation) and acyclic [2, Definition 1.4, Corollary 4.3].7 Recall that an acyclic program
(i) has a unique answer set, and (ii) any PROLOG system terminates on it. Thus a PRO-
LOG system can be used to implement the Query Propagate transition rule in a situation
in which query(M) assigns all atoms in At−p (Πp). Indeed, PROLOG can be invoked on
(i) a program that consists of Πp, and atoms (given as facts) occurring positively in
query(M) whose predicate symbols are not in p; (ii) a query formed by the literals in
query(M) whose predicate symbols are in p.

We refer to the variant of QUERY+ASP that implements the “blackbox” approach
and uses PROLOG for Query Propagate as PROLOG+ASP. It is a direction of future
research to find other means for implementing more general settings of QUERY+ASP.
PROLOG+ASP implementation in EZCSP: We expect the reader to be familiar with the
syntax of the EZCSP language [3] and with the main principles behind this CASP solver.
The EZCSP language has been extended to allow a program Π to contain a declaration,
P(Π), of the form

#begin de f ined. Ω #end de f ined.

where Ω is an acyclic PROLOG program, which intuitively corresponds to Πp. All atoms
whose predicate symbols are intended to occur in Πp but not in p must be prefixed by
“prolog ” (to notify EZCSP that these atoms are relevant to forming a PROLOG pro-
gram while implementing Query Propagate). All atoms whose predicate symbol is in
p are specified as arguments of the special unary relation “required” of the language of
EZCSP. For instances, logic program (2) in the modified language of EZCSP is:

#begin de f ined.
down(T )← not prolog on.
down(0). down(1). . . . down(3600).
okTime(T )← not down(T ).
#end de f ined.
required(okTime(5000))← occurs(a,5000).
occurs(a,5000)← .
{prolog on}.

7 More general “PROLOG-friendly” syntactic conditions on programs are possible.



The EZCSP algorithm is extended so that, given an EZCSP program Π , it starts by
invoking the answer set solver to compute an answer set A of Π \ P(Π). The PRO-
LOG interpreter is then used to determine if the query formed by the atoms of the
form required(·) from answer set A holds for the program consisting of Ω and of the
“prolog ”-prefixed atoms from A. If the PROLOG interpreter answers positively, then A
is returned. Otherwise, the algorithm iterates, instructing the answer set solver to find
another answer set.

6 Experimental Domains and Results
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total 91 5.8 4.0 612 0.0 2.6 13.6 10.3 132

Fig. 1. Emergency Exit benchmark results. Instances are grouped by the number of paths from
start to goal location. We compare ASP (left stacks) with ASP+Prolog (right stacks) and display
the time spent for grounding (dark red), solving (white), and Prolog (light blue) in each stack.
Section EE in the table shows memory usage, grounding and search time with an encoding in
ASP, while EE+ shows results for PROLOG+ASP and additionally shows the number of calls to
PROLOG and the time spent in PROLOG execution.

In this work we designed an experimental domain called Emergency Exit to evalu-
ate the implementation of the PROLOG+ASP procedure in EZCSP. Emergency Exit is a
planning problem involving a robot on a grid. Some grid cells are occupied by obstacles
and cannot be traversed. One unoccupied cell is selected as a goal cell, and another one
as an emergency exit. At every time step, the robot can move along the x or y axis by
one cell, as long as the destination cell is unoccupied. The goal of the robot is to reach



the goal cell from its initial location in such a way that: (i) doing so takes at most n
steps, and (ii) the emergency exit is reachable within k steps from any cell traversed by
the robot. We also consider a simpler variant in our analysis that we call Path Finding.
In this problem the task is to find a path that satisfies the requirement (i). It is easy to see
that any solution to the Emergency Exit problem is also a solution to the Path Finding
problem but not the other way around.

For our experiments we randomly generated 91 instances with a 100×100 grid,
n = 10, k = 194, cells (1,6), (6,1), and (100,100) marked as a goal, start, and an
emergency exit respectively. The instances vary in how obstacles are distributed on a
grid: in each case there are between 12 and 25 occupied cells in the part of the grid
between (1,1) and (10,10). This randomly varies the number of possible paths from
start to goal of length n. Moreover, we selected k = 194 and located the emergency exit
at (100,100) to ensure that reaching the exit would be possible only for certain paths
from start to goal.

In the following presentation, by PF we denote an ASP encoding of Path Finding; by
EE we denote an ASP encoding of Emergency Exit. We constructed EE by extending
PF with an encoding of the reachability requirement (ii). Finally, we constructed variant
EE+ of EE in such a way that: (1) the PF component is processed by the answer set
solver of PROLOG+ASP, whereas (2) EE+ \ PF is processed by the PROLOG interpreter
used in the implementation of PROLOG+ASP in EZCSP.

The experiments were run on a Linux server with 32 2.4GHz Intel R© E5-2665 CPU
cores and 64GB memory. Every run used a single core only. As grounder we used
GRINGO 3.0.5. To evaluate PROLOG+ASP on EE+ we used EZCSP 1.6.20b57 with
CMODELS 3.85 (running MINISAT v 1.12b) and BPROLOG 7.8 as backends. As a refer-
ence we also present the performance of CMODELS 3.85 (running MINISAT v 1.12b) on
EE. The supporting files can be found at http://www.mbalduccini.tk/ezcsp/lpnmr2013/.

Figure 1 shows the experimental results. We group the instances according to how
many answer sets are found by PF. This number serves as an upper bound to the number
of invocations of the PROLOG interpreter needed in the PROLOG+ASP algorithm to find
a solution or establish the unsatisfiability of a problem in the EE+ encoding. For each
instance group, the histogram reports the grounding time at the bottom, followed by the
search time, followed by the PROLOG execution time; the left stacks (with dark red) are
for EE, the right stacks (with light blue) for EE+.

First, we observe that EE performs nearly the same for all instance groups, includ-
ing the ratio between grounding (dark red) and solver (white) effort. The grounding size
for EE is on average 47MB (not shown in the figure).

EE+ performs quite differently. The number of invocations of the PROLOG inter-
preter by the algorithm greatly affects the efficiency. Groups of instances with up to
10 plans in PF can be computed more efficiently with EE+, exhibiting a difference in
order(s) of magnitude. In the instances that require more iterations, the time spent in
the PROLOG interpreter dominates the overall time for solving. As PROLOG is never
called in group 0, it has particular low memory usage for EE+. The time required for
grounding EE+ is nearly zero, and the average size of grounding is 0.3MB, which is
much lower than for EE. Overall, we observe that for instances where only few or no
plans from start to goal exist, EE+ is significantly faster than EE.



7 Conclusions

In this paper we described a method for alleviating the grounding bottleneck by combin-
ing backtracking-based search algorithms employed in answer set solvers with SLDNF
resolution from PROLOG. By means of experimental evaluations, we have demonstrated
that, for problems where constraints have large groundings, using PROLOG as an infer-
ence engine over these constraints may save grounding time and memory and may lead
to significant gains in the performance. However this is only true when the part of a
program evaluated by an answer set solver of PROLOG+ASP is such that it produces
only few candidates that have to be verified against the constraints evaluated by PRO-
LOG. This conclusion aligns well with an observation reported in [19], where a study
was conducted, comparing the solving technology of answer set solvers and of con-
straint answer set solvers. As in PROLOG+ASP, the answer set solving component of
a constraint answer set solver has access only to a portion of all the constraints of the
problem. The other constraints are processed separately by a constraint solver. Such
separation of concerns may be very fruitful in solving the grounding bottleneck, yet it
has to be used with care in order not to undermine the advanced technology of answer
set solvers.
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