Skip to main content

Efficient Approximation of Well-Founded Justification and Well-Founded Domination

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8148))

  • 979 Accesses

Abstract

Many native ASP solvers exploit unfounded sets to compute consequences of a logic program via some form of well-founded negation, but disregard its contrapositive, well-founded justification (WFJ), due to computational cost. However, we demonstrate that this can hinder propagation of many relevant conditions such as reachability. In order to perform WFJ with low computational cost, we devise a method that approximates its consequences by computing dominators in a flowgraph, a problem for which linear-time algorithms exist. Furthermore, our method allows for additional unfounded set inference, called well-founded domination (WFD). We show that the effect of WFJ and WFD can be simulated for a important classes of logic programs that include reachability. Finally, we take a stand for native ASP solvers and show that unfounded set inference cannot be replaced by logic program transformations or translations into CNF-SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: Proceedings of NMR 2006, pp. 58–66 (2006)

    Google Scholar 

  2. Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions of global constraints. In: Proceedings of IJCAI 2009, pp. 412–418 (2009)

    Google Scholar 

  3. Chen, X., Ji, J., Lin, F.: Computing loops with at most one external support rule. ACM Trans. Comput. Logic 14(1), 3:1–3:34 (2013)

    Google Scholar 

  4. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum Press (1978)

    Google Scholar 

  5. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proceedings of IJCAI 2007, pp. 386–392. AAAI Press/MIT Press (2007)

    Google Scholar 

  8. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proceedings of SODA 2004, pp. 869–878. SIAM (2004)

    Google Scholar 

  10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. SIAM Journal on Discrete Mathematics 3(2), 255–265 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of IJCAI 2005, pp. 503–508. Professional Book Center (2005)

    Google Scholar 

  14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7(2), 261–268 (2006)

    Article  MathSciNet  Google Scholar 

  16. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In: Proceedings of AAAI 2002, pp. 112–118. AAAI Press/MIT Press (2002)

    Google Scholar 

  17. Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85, 112–133 (2005)

    MATH  Google Scholar 

  18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  20. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: Incremental computation of dominator trees. ACM Trans. Program. Lang. Syst. 19(2), 239–252 (1997)

    Article  Google Scholar 

  22. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drescher, C., Walsh, T. (2013). Efficient Approximation of Well-Founded Justification and Well-Founded Domination. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40564-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40563-1

  • Online ISBN: 978-3-642-40564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics