Skip to main content

Representation Learning for Cloud Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Abstract

Proper cloud segmentation can serve as an important precursor to predicting the output of solar power plants. However, due to the high variability of cloud appearance, and the high dynamic range between different sky regions, cloud segmentation is a surprisingly difficult task.

In this paper, we present an approach to cloud segmentation and classification that is based on representation learning. Texture primitives of cloud regions are represented within a restricted Boltzmann Machine. Quantitative results are encouraging. Experimental results yield a relative improvement of the unweighted average (pixelwise) precision on a three-class problem by 11% to 94% in comparison to prior work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and New Perspectives. ArXiv e-prints, arXiv:1206.5538 (June 2012)

    Google Scholar 

  2. Bernecker, D., Riess, C., Angelopoulou, E., Hornegger, J.: Towards Improving Solar Irradiance Forecasts with Methods from Computer Vision. In: Computer Vision in Applications Workshop (2012)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Chow, C.W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., Washom, B.: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy 85(11), 2881–2893 (2011)

    Article  Google Scholar 

  5. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Optical Society of America, Journal, A: Optics and Image Science 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  6. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 1554, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hinton, G.: A Practical Guide to Training Restricted Boltzmann Machines. Tech. rep., UTML TR 2010–003 (2010)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recognition 37(8), 1629–1640 (2004)

    Google Scholar 

  10. Marquez, R., Coimbra, C.F.: Intra-hour DNI forecasting based on cloud tracking image analysis. Solar Energy 91, 327–336 (2013)

    Article  Google Scholar 

  11. Richards, K., Sullivan, G.: Estimation of cloud cover using colour and texture. In: British Machine Vision Conference (1992)

    Google Scholar 

  12. Shields, J.E., Karr, M.E., Burden, A.R., Johnson, R.W., Mikuls, V.W., Streeter, J.R., Hodgkiss, W.S.: Research toward Multi-Site Characterization of Sky Obscuration by Clouds, Final Report for Grant N00244-07-1-009, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego. Tech. rep., Technical Note 274, DTIS (Stinet) File ADA126296 (2009)

    Google Scholar 

  13. Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Vinciarelli, A., Burkhardt, F., Son, R.V., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B., Telekom, D., Laboratories, A.G.: The INTERSPEECH 2012 Speaker Trait Challenge. In: Proc. Interspeech (2012)

    Google Scholar 

  15. Welling, M., Rosen-Zvi, M., Hinton, G.: Exponential family harmoniums with an application to information retrieval. Advances in Neural Information Processing Systems 17, 1481–1488 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernecker, D., Riess, C., Christlein, V., Angelopoulou, E., Hornegger, J. (2013). Representation Learning for Cloud Classification. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics