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Abstract. Sophisticated compact SAT encodings exist for many types
of constraints. Alternatively, for instances with many (or large) con-
straints, the SAT solver can also be extended with built-in propagators
(the SAT Modulo Theories approach, SMT). For example, given a car-
dinality constraint x1+ . . .+xn ≤ k, as soon as k variables become true,
such a propagator can set the remaining variables to false, generating
a so-called explanation clause of the form x1 ∧ . . . ∧ xk → xi. But cer-
tain “bottle-neck” constraints end up generating an exponential number
of explanations, equivalent to a naive SAT encoding, much worse than
using a compact encoding with auxiliary variables from the beginning.
Therefore, Ab́ıo and Stuckey proposed starting off with a full SMT ap-
proach and partially encoding, on the fly, only certain “active” parts of
constraints. Here we build upon their work. Equipping our solvers with
some additional bookkeeping to monitor constraint activity has allowed
us to shed light on the effectiveness of SMT: many constraints generate
very few, or few different, explanations. We also give strong experimen-
tal evidence showing that it is typically unnecessary to consider partial
encodings: it is competitive to encode the few really active constraints
entirely. This makes the approach amenable to any kind of constraint,
not just the ones for which partial encodings are known.

1 Introduction

The “SAT revolution” [Var09] has made SAT solvers a very appealing tool for
solving constraint satisfaction and optimization problems. Apart from their ef-
ficiency, SAT tools are push-button technology, with a single fully automatic
variable selection heuristic. For many types of constraints, sophisticated com-
pact SAT encodings exist. Such encodings usually introduce auxiliary variables,
which allows one to obtain succinct formulations. Auxiliary variables frequently
also have a positive impact on the size and reusability of the learned clauses
(lemmas), and, in combination with the possibility of deciding (splitting) on
them, on the quality of the search.

Building in constraints: SAT Modulo Theories (SMT). On problem
instances with many (or very large) constraints, where encodings lead to huge
numbers of clauses and variables, it may be preferable to follow an alternative ap-
proach: in SMT [NOT06,BHvMW09], the SAT solver is extended with a built-in
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propagator for each constraint, making it amenable to sophisticated constraint-
specific reasoning (as in Constraint Programming). For example, given a cardi-
nality constraint x1 + . . . + xn ≤ k, as soon as k of its variables become true,
such a propagator can set any other variable xj to false. If at some later point
this propagated literal xj takes part in a conflict, a so-called explanation clause
of the form xi1 ∧ . . . ∧ xik → xj is used, thus fully integrating such propagators
in the SAT solver’s conflict analysis and backjumping mechanisms. As usual in
SMT, here we consider that such explanations are (i) only produced when needed
during conflict analysis and (ii) are not learned (only the resulting lemma is).

The remarkable effectiveness of SMT. SMT is remarkably effective. The in-
tuitive reason is that, while searching for a solution for a given problem instance,
some constraints only block the current solution candidate very few times, and
moreover they do this almost always in the same way. In this paper we shed some
more light on this intuitive idea. We perform experiments with a number of no-
tions of constraint activity in this sense, that is, the (recent or total) number of
(different or all) explanations that each constraint generates. Indeed, as we will
see: A) many constraints generate very few, or few different, explanations, and
B) generating only these explanations can be much more effective than dealing
with a full encoding of the constraint.

The dark side of SMT. Frequently, there are also certain “bottle-neck” con-
straints that end up generating an exponential number of explanations, equiva-
lent to a naive SAT encoding. A theoretical but illustrative example is:

Lemma 1. An SMT solver will generate an exponential number of explanations
when proving the unsatisfiability of the input problem consisting of only the two
cardinality constraints x1 + . . .+ xn ≤ n/2 and x1 + . . .+ xn > n/2.

This lemma holds because any SMT solver, when proving unsatisfiability,
generates a propositionally unsatisfiable set of clauses (the input ones plus the
lemmas), and if a single one of the all
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explanations (where k = n/2)
has not been generated, say, the explanation x1∨ . . .∨xk+1, then the assignment
that sets x1, . . . , xk+1 to true and the remaining n − k − 1 variables to false is
a model. Such situations indeed happen in practice: for some constraints SMT
ends up generating a full or close to full encoding, which is moreover a very naive
exponential one, with no auxiliary variables. If a polynomial-size encoding for
such a constraint exists (possibly with auxiliary variables), using it right from
the beginning is a much better alternative. This is shown in the following figure:
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It gives the number of conflicts needed to prove unsatisfiability of the previous
example, varying n, with our Barcelogic solver in SMT mode and with a SAT
encoding based on Cardinality Networks. SMT exhibits exponential behavior
(note the logarithmic scale). The encoding-based version scales up much better;
in fact, a polynomial-size refutation for it exists, although it is not clear from
the figure whether the solver always finds it or not.

Getting the best of both. In their conflict-directed lazy decomposition (LD)
approach [AS12], Ab́ıo and Stuckey proposed starting off the solver using an
SMT approach for all constraints of the problem instance, and partially encod-
ing (or decomposing), on the fly, only the “active” parts of some constraints. The
decision of when and which auxiliary variables to introduce during the solving
process is taken with a particular concrete encoding in mind: if, according to the
explanations that are being generated, it is observed that an auxiliary variable
of the encoding and its corresponding part of the encoding would have been “ac-
tive”, then it is added to the formula, together with all of the involved clauses of
the encoding. In this way, fully active constraints end up being completely en-
coded using the compact encoding with auxiliary variables, and less active ones
are handled by SMT. In [AS12] it is shown that this can be done for the Cardi-
nality/Sorting Network encoding of cardinality constraints, and, although in a
complicated way, for BDD-encodings of pseudo-Boolean constraints, performing
essentially always at least as well as the best of SMT and encoding.

Going beyond. A shortcoming of [AS12] is that it is highly dependent on the
constraint to be dealt with and the chosen encoding, making it unlikely to be ap-
plicable to other more complex constraints, and in any case equipping the theory
solver with the required features is a highly non-trivial task. Here we propose
another technique that is much simpler. It does not depend on the concrete con-
straint under consideration and can in fact be applied to any class of constraints
that can be either encoded or built in. As mentioned previously, we have devised
and analyzed bookkeeping methods for different notions of constraint activity
that are cheap enough not to slow down solving appreciably. As a result, here
we show, giving strong experimental evidence, that it is typically unnecessary
to consider partial encodings: the few really active constraints can usually be
encoded –on the fly– entirely. This makes the approach amenable to any kind of
constraint, not just the ones for which partial encodings are known. Results on
problems containing cardinality and pseudo-Boolean constraints are compara-
ble, and frequently outperform all three of its competitors: SMT, encoding, and
the partial lazy decomposition method of [AS12].

2 SAT and SAT Encoding

Let X = {x1, x2, . . . xn} be a finite set of propositional variables. If x ∈ X then
x and x are literals. The negation of a literal l, written l, denotes x if l is x, and
x if l is x. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A (CNF) formula is
a conjunction of clauses.
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An assignment A is a set of literals such that {x, x} ⊆ A for no x. A literal l
is true in A if l ∈ A, is false if l ∈ A, and is undefined otherwise. A clause C is
true in A if at least one of its literals is true in A. A formula F is true in A if all
its clauses are true in A, and then A is a model of F . The satisfiability (SAT)
problem consists in, given a formula F , to decide if it has a model. Systems that
decide the SAT problem are called SAT solvers.

A function C : {0, 1}n → {0, 1} is called a constraint. Given a constraint C, a
(SAT) encoding for it is a formula F (possibly with auxiliary variables) that is eq-
uisatisfiable. An important class of constraints are cardinality constraints, which
state that at most (or at least, or exactly) k out of n variables can be true. Com-
mon encodings for it are based on networks of adders [BB03,uR05,AG09,Sin05],
or Sorting Networks [ES06,CZI10,ANORC09,ANORC11]. Cardinality constraints
are generalized by pseudo-Boolean constraints, of the form a1x1+· · ·+anxn # k,
where the ai and k are integer coefficients, and # belongs to {≤,≥,=}. Again,
several encodings exist, based on performing arithmetic [War98,BBR09,ES06] or
computing BDD’s [BBR06,ES06,ANO+12]. Most convenient encodings are the
ones for which the SAT solver’s unit propagation mechanism preserves domain-
consistency.

3 To Encode or Not to Encode?

In this section we will discuss situations where encoding a constraint is better
than using a propagator for it or vice versa, and how to detect them. The rea-
soning will consist of both theoretical insights and experimental evaluation. For
the latter, 5 benchmarks suites will be used, in which all benchmarks solvable
in less than 5 seconds by both methods have been removed.

1.-MSU4: 5729 problems generated in the execution of the msu4 algorithm
[MSP08] for Max-SAT. Each benchmark contains very few 6-cardinality con-
straints.
2.-Discrete-event system diagnosis: 4526 discrete-event system (DES) diag-
nosis [AG09] problems. Each benchmark contains a single very large6-cardinality
constraint.
3.-Tomography: 2021 tomography problems introduced in [BB03]. Each prob-
lem contains many =-cardinality constraints.
4.-PB evaluation: 669 benchmarks from the pseudo-Boolean Competition1

2011 (category DEC-SMALLINT-LIN), with multiple cardinality and pseudo-
Boolean constraints.
5.-RCPSP: 577 benchmarks coming from the PSP-Lib2. These are scheduling
problems with a fixed makespan. Several pseudo-Boolean constraints are present.

To start with, let us experimentally confirm that SMT and encoding-based
methods are complementary, and so a hybrid method getting the best of both
is worth pursuing. For this purpose, we implemented an SMT-based system

1 http://www.cril.univ-artois.fr/PB11/
2 http://webserver.wi.tum.de/psplib

http://www.cril.univ-artois.fr/PB11/
http://webserver.wi.tum.de/psplib
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and encodings into SAT. For cardinality constraints, we used the Cardinality
Networks encoding of [ANORC11], whereas for pseudo-Boolean constraints, the
BDD-based one of [ANO+12]. The reason for this choice is that, according to
the experimental results of [ANORC11,ANO+12], these two encodings are the
globally most robust ones in practice. However, any other choice would have been
possible, since the approach we will present is encoding-independent. A time limit
of 600 seconds was set per benchmark and, in order to have a fair comparison,
in both systems the same underlying SAT solver was used (Barcelogic). Results
can be seen in Table 1, where one can observe that the encoding performs very
well in the MSU4 and DES suite, and is significatively worse in the other three.3

Geometric mean
Benchmark suite Encoding ≥ 1.5x faster SMT ≥ 1.5x faster Encoding SMT
MSU4 39.37% 15.39% 1.71 23.53
DES 92.06% 0.28% 2.3 56.02
Tomography 5.93% 86.49% 46.95 4.37
PB evaluation 7.02% 43.49% 25.53 3.79
RCPSP 0.69% 46.62% 106.65 5.8

Table 1: Comparison between encoding and SMT. Table on the left indicate the
percentage of benchmarks where each method outperforms (is at least 1.5 times
faster than) the other. On the right, the geometric mean (in seconds) of the
instances solves by both methods.

Lemma 1 explains why SMT is worse in some suites, but not why it is better
in some others. The latter happens on benchmarks with many constraints. A
possible explanation could be that many of these constraints are not very active,
i.e. they produce very few, if any, explanations. If this is the case, SMT has an
advantage over an encoding: only active constraints will generate explanations,
whereas an encoding approach would also have to encode all low-activity con-
straints right from the beginning. This notion of constraint activity, counting
the number of times the propagator generates an explanation, is very similar to
earlier activity-based lemma deletion policies in SAT solvers [GN02]. In order to
evaluate how often this situation happens, we ran our SMT system computing
the number of explanations each constraint generates. Results can be seen in
Table 2, where we considered a constraint to have low activity if it generates less
than 100 (possibly repeated) explanations.

Each row contains the data for each suite: e.g., in 74.6% of the MSU4 bench-
marks between 0 and 5% of the constraints had low activity. In the PB evalu-
ation and in the RCPSP benchmarks, the number of low-activity constraints is
high and hence, this might explain why SMT behaves better than the encod-
ing on these suites. However, in the Tomography suite, constraints tend to be
very active, which refutes our conjecture of why SMT performs so well on these
benchmarks.

3 Note that rows do not add up to 100 % as benchmarks in which the two methods
are comparable are not shown.
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Perc. of benchs with this perc. of low-act. constr.
Suite 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-95% 95-100%
MSU4 74.6 0 0 0 24.9 0.5 0 0

DES 99.9 0 0 0 0 0 0 0.1

Tomography 100 0 0 0 0 0 0 0
PB evaluation 54 21.6 20.5 0.6 1.1 0.6 1.7 20.5

RCPSP 0 0 2.2 13.2 51.1 31.3 2.2 0

Table 2: Number of low-activity constraints in distinct benchmarks suites.

What happens in the Tomography suite is that although constraints are very
active, the SMT solver does not end up generating the whole naive encoding
because many explanations are repeated. Hence, a sophisticated encoding would
probably generate many more clauses, as the whole constraint would be decom-
posed, even irrelevant parts.

To confirm this hypothesis we ran our SMT solver counting repeated expla-
nations. Results can be seen in Table 3. Each row4 corresponds to a different
suite: e.g., the 100 in the third row indicates that all benchmarks in the Tomog-
raphy suite had at least half of its constraints producing between 80 and 95% of
repeated explanations. In general, if a constraint produces many repeated expla-
nations, it is unlikely that it might end up generating its whole naive encoding.
This explains why SMT has good results in this suite, as well as in PB evaluation
and RCPSP. Hence, the number of repeated explanations seems to be a robust
indicator of whether we should encode a constraint or use a propagator.

Benchs with >50% of the ctrs. w./ this perc. of rep. expl.
Suite 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-95% 95-100%

MSU4 53.8 9.1 11.6 8.5 2 0.8 0.2 0
DES 21.4 29.8 35.2 13.6 0 0 0 0

Tomography 0 0 0 0 0 0 100 0

PB evaluation 6.2 0 0 0 0 0.6 14.2 51.7

RCPSP 0 0 0 0 0 5.5 52.7 1.1

Table 3: The percentage of benchmark instances where more than half the con-
straints have a given percentage of repeated explanations.

4 Implementation and Experimental Evaluation

Taking into account Section 3, we implemented a system that processes SAT
problems augmented with cardinality and pseudo-Boolean constraints. Although
our approach is easily applicable much more generally, here we focus on these
two types of constraints in order to be able to compare with [AS12]. Our aim
is to show that a very simple approach gets the best of SMT and encoding
methods. The starting point for our implementation is an SMT solver equipped
with the ability of encoding cardinality constraints via Cardinality Networks and
pseudo-Boolean constraints via BDDs.

In order to know which constraints to encode we need to keep track of the
percentage of different explanations that the constraints generate. To do this we

4 Note that the percentages in each row do not need to add 100.



7

attach to each constraint all the different explanations it produces. When an
explanation is generated, we traverse the list of previous explanations, check-
ing if it already exists. To speed up comparison, we first compare the size and
only if they are equal, we compare the explanations, which are sorted to make
comparison faster. This would be very expensive if constraints with many differ-
ent explanations existed, but those constraints end up being encoded and after
that do not cause any further bookkeeping overhead. Hence, more complex data
structures would not help here. In our implementation, we only collect informa-
tion during the first 2 minutes, since, according to our experiments, after that
the information stabilizes.

Another important source of information to consider is how large the ad-hoc
encoding of each constraint would be. If the number of generated explanations
becomes close to the number of clauses the encoding requires, according to our
experiments then it is advantageous to encode the constraint. Besides, if a con-
straint is producing many different explanations, we found that it is likely to
end up generating the full (or a large part of the) naive encoding. Discovering
and avoiding this situation is highly beneficial.

We also experimented with different ways of counting the number of recent
occurrences of a given explanation in conflicts, without any significant findings.

Finally, following all previous observations, we encode a constraint if at least
one of two conditions holds: (i) the number of different explanations is more than
half the number of clauses of the compact, sophisticated encoding, (ii) more than
70% of the explanations are new and more than 5000 explanations have already
been generated.

We compared the resulting system (New in the tables) with an SMT sys-
tem, another one which encodes all constraints from the start (Enc.) and Lazy
Decomposition [AS12] (LD). Results can be seen in Table 4. Each cell contains
the number of problems that could be solved in less than the number of seconds
of the corresponding column.

The first important conclusion is that we can obtain comparable, in some
cases better, results than the LD method. This is worth mentioning since our
approach is much simpler to implement and does not pose any requirement on
the encodings to be used. Secondly, our approach always solves a very similar
number of problems to the best option for each suite. Only in the DES suite, there
is some difference that can be explained by the fact that SMT has extraordinarily
poor performance on those benchmarks. Thus, just running the system in SMT
mode for few seconds before encoding the constraints, as our new system does
on these instances, has a strong negative impact because the many explanations
generated in this early stage hinder the search later on. This could be mitigated
by using more aggressive lemma deletion policies.

5 Conclusions and Other Related Work

This work is part of a project with the aim of deepening our understanding of
what choices between SMT and encodings are optimal in practical problems.
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MSU4
<10s <30s <60s <120s <300s <600s

Enc. 5374 5525 5578 5621 5659 5677

SMT 4322 4530 4603 4667 4737 4767

LD 5196 5414 5528 5598 5655 5674
New 5222 5479 5585 5636 5666 5679

DES
<10s <30s <60s <120s <300s <600s

Enc. 2521 3333 3692 3903 4102 4228
SMT 362 654 850 1023 1256 1452

LD 570 1230 1761 2525 3558 4019
New 836 2156 3293 3800 4053 4166

Tomography
<10s <30s <60s <120s <300s <600s

Enc. 773 1112 1314 1501 1759 1932
SMT 1457 1748 1858 1962 2014 2021
LD 1027 1239 1399 1561 1763 1918

New 1556 1818 1935 1971 2012 2021

PB evaluation
<10s <30s <60s <120s <300s <600s

Enc. 268 337 358 376 399 414
SMT 364 377 386 392 409 414

LD 352 371 379 388 403 416
New 269 341 360 381 404 415

RCPSP
<10s <30s <60s <120s <300s <600s

Enc. 7 22 52 91 139 175

SMT 132 179 206 224 249 272
LD 114 160 178 189 216 228

New 111 169 202 225 249 271

Table 4: Comparison among different methods on all benchmarks suites.

Here we have seen that the use of adaptive strategies is clearly advantageous.
Moreover, we have given a simpler approach for which it becomes possible to
handle many other types of constraints, as we plan to investigate next.

Another possibility for future work concerns the version of SMT in which
explanation clauses are generated and learned immediately when a constraint
propagates, as in the initial version of Lazy Clause Generation [OSC07], which
worked remarkably well on resource-constrained project scheduling problems
(RCPSPs). Indeed, we have now discovered that in these problems the number
of different explanations is specially low. It may turn out to be advantageous to
handle these constraints with clauses, which are prioritized in the solver with
respect to constraint propagators.

Related Work. Apart from [AS12], another related proposal is [MP11]: to solve
a propositional formula F plus additional pseudo-Boolean constraints, the SAT
solver first finds a model M for F (“unsat” if there is none); then a few of the
constraints that are false in M are picked (“sat” if there is none), simplified
using the unit clauses found so far, encoded, and added to F ; and the process
is iterated. A drawback of this method is that it may fully encode low-activity
constraints just because they happen to be false in M , whereas we really monitor
activity. Also, we only need one run of the solver. Finally, it is clear that any
method that encodes on the fly (including ours) can simplify constraints with
the unit clauses available at that point.
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