Skip to main content

Augmented Semi-naive Bayes Classifier

  • Conference paper
Advances in Artificial Intelligence (CAEPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8109))

Included in the following conference series:

  • 1649 Accesses

Abstract

The naive Bayes is a competitive classifier that makes strong conditional independence assumptions. Its accuracy can be improved by relaxing these assumptions. One classifier which does that is the semi-naive Bayes. The state-of-the-art algorithm for learning a semi-naive Bayes from data is the backward sequential elimination and joining (BSEJ) algorithm. We extend BSEJ with a second step which removes some of its unwarranted independence assumptions. Our classifier outperforms BSEJ and five other Bayesian network classifiers on a set of benchmark databases, although the difference in performance is not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minsky, M.: Steps toward artificial intelligence. Transactions on Institute of Radio Engineers 49, 8–30 (1961)

    MathSciNet  Google Scholar 

  2. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley and Sons (1973)

    Google Scholar 

  3. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  Google Scholar 

  4. Pazzani, M.: Constructive induction of Cartesian product attributes. In: Proceedings of the Information, Statistics and Induction in Science Conference (ISIS 1996), pp. 66–77 (1996)

    Google Scholar 

  5. Blanco, R., Inza, I., Merino, M., Quiroga, J., Larrañaga, P.: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics 38(5), 376–388 (2005)

    Article  Google Scholar 

  6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)

    Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press (2009)

    Google Scholar 

  8. Agresti, A.: Categorical Data Analysis. Wiley (1990)

    Google Scholar 

  9. Yaramakala, S., Margaritis, D.: Speculative Markov blanket discovery for optimal feature selection. In: ICDM 2005: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 809–812. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  10. Murphy, K.P.: Machine learning: a probabilistic perspective. The MIT Press (2012)

    Google Scholar 

  11. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (UAI 1994), pp. 399–406. Morgan Kaufmann (1994)

    Google Scholar 

  12. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml

  13. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 1022–1029. Morgan Kaufmann (1993)

    Google Scholar 

  14. Mihaljevic, B., Larrañaga, P., Bielza, C.: BayesClass: A package for learning Bayesian network classifiers (2013), R package version 1.0

    Google Scholar 

  15. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012)

    Google Scholar 

  16. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T.: Caret: Classification and Regression Training (2013) R package version 5.15-052

    Google Scholar 

  17. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  18. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32(200), 675–701 (1937)

    Article  Google Scholar 

  19. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

    Article  Google Scholar 

  20. Iman, R., Davenport, J.M.: Approximations of the critical region of the friedman statistic. Communications in Statistics 9(6), 571–595 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihaljevic, B., Larrañaga, P., Bielza, C. (2013). Augmented Semi-naive Bayes Classifier. In: Bielza, C., et al. Advances in Artificial Intelligence. CAEPIA 2013. Lecture Notes in Computer Science(), vol 8109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40643-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40643-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40642-3

  • Online ISBN: 978-3-642-40643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics