
Engineering the decentralized coordination of
UAVs with limited communication range

Marc Pujol-Gonzalez1, Jesus Cerquides1, Pedro Meseguer1, Juan A.
Rodriguez-Aguilar1, and Milind Tambe2

1 IIIA-CSIC, Campus de la UAB, Bellaterra, Spain
{mpujol,cerquide,pedro,jar}@iiia.csic.es

2 University of Southern California, Los Angeles, CA
tambe@usc.edu

Abstract. This paper tackles the problem of allowing a team of UAVs
with limited communication range to autonomously coordinate to ser-
vice requests. We present two MRF-based solutions: one assumes in-
dependence between requests; and the other considers also the UAVs’
workloads. Empirical evaluation shows that the latter performs almost
as well as state-of-the-art centralized techniques in realistic scenarios.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are an attractive technology for large-area
surveillance. UAVs are fairly cheap, have many sensing abilities, exhibit a long
endurance and can communicate using radios. Several applications can be effi-
ciently tackled with a team of UAVs: power line monitoring, fire detection, and
disaster response among others. The autonomous coordination of a UAV team to
service a sequence of requests is an open problem receiving increasing attention.
In our scenario the requests to be serviced are submitted by a human operator,
and the surveillance area is larger than the UAVs’ communication range. Most
related work comes from robotics, where multi-robot routing [1] is identified as
a central problem. But the usual version of multi-robot routing assumes that
all robots can directly communicate with each other, which is not our case. Al-
though some works drop this assumption [2, 3], they are focused on exploration of
locations, disallowing requests from operators. State-of-the-art research employs
auctions to allocate requests to UAVs (robots bid on requests). Auctions are
quite intuitive, and in some cases they provide quality guarantees [1]. However,
the problem can also be modeled as a Markov Random Field (MRF) [4], or as
a Distributed Constraint Optimization Problem (DCOP) [5], for which efficient
and easy to distribute algorithms exist. Delle Fave et. al. [5] propose an encod-
ing where each UAV directly selects which request it is going to service next.
However their model disregards that UAVs can communicate with each other. In
this paper we explore coordination solutions for a scenario in which each UAV
can communicate with the neighboring UAVs in its range. First, we present an
MRF-based solution where the cost of servicing each request is independent of

operator
⇢1

⇢2

⇢3

⌧1⌧2

⌧3

Fig. 1: Firefighting scenario: ρ1, ρ2, and ρ3 are UAVs; dotted cicles around them
are their communication ranges; τ1, τ2, and τ3 are targets. A solid line between
a target and a UAV means that the UAV is aware of the target.

the remaining requests assigned to the UAV. Thereafter, we introduce a second
solution where UAVs adjust their estimations of the cost of servicing a task
depending on their workload, with a slight increment in complexity. Empirical
evaluation shows that this is a practical solution for realistic problems.
Motivating Example. In a firefighting context, consider a UAV team con-
tinuously monitoring a large natural park. A common approach is to adopt a
centralized strategy: UAVs’ routes are planned at a central commanding base
that guarantees cooperation. However, if the natural park is significantly larger
than the UAV communication range, performing centralized planning is unfea-
sible because the resulting plan can not be effectively transmitted to UAVs.

Figure 1 contains a snapshot of a possible firefighting scenario, with three
UAVs, three targets, and a human operator. A good plan would send UAV ρ1
to target τ3 and UAV ρ2 to targets τ2 and τ1. However, this plan of action can
never be ascertained when assuming limited communication range. The only
reasonable strategy to achieve cooperation with limited communication range is
to make the UAVs directly coordinate between themselves, in a decentralised
manner. Agents themselves must determine their best possible actions at each
point in time so that the overall time to service requests is minimised.
Approach. This is a dynamic problem where UAVs move constantly and re-
quests can be introduced at any time. In our approach, the operators send re-
quests to some UAV in their range, which temporarily becomes its owner. Mean-
while, the UAVs use the algorithms detailed below to compute an allocation of all
pending requests to some UAV. After each allocation cycle, each UAV becomes
the owner of the requests that have been assigned to it, and a new allocation
cycle begins. At every time, each UAV that owns some request flies towards the
nearest of them, and each idle UAV tries to get in range of the closest operator.

2 Coordination using Independent Valuations

Multi-agent coordination, and particularly task allocation, can be modeled as a
MRF [4]. Despite the existance of very powerful algorithms for MRFs, this line
of work has received much less attention than auction-based approaches.

2.1 Encoding the Problem as a Binary MRF

Let R = {τ1, . . . , τm} be a set of requests, P = {ρ1, . . . , ρn} be a set of UAVs,
r and p are indexes for requests and UAVs respectively, Rp ⊆ R be the set of
requests that UAV p can service, and Pr ⊆ P be the set of UAVs that can service
request r. A naive encoding of the requests-to-UAVs allocation as an MRF is:

– Create a variable xr for each request τr. The domain of this variable is the
set of UAVs that can service the request, namely Pr. If xr takes value ρp, it
means that request τr will be serviced by UAV ρp.

– Create an n-ary constraint cp for each UAV ρp, that evaluates the cost of
servicing the requests assigned to ρp. We assume independence, so the cost
of servicing a set of requests is the sum of the costs of servicing each request.

Xp is the set of variables that have ρp in their domains. An assignment
of values to each of the variables in Xp is noted as Xp. Solving the problem
amounts to finding the combination of request-to-UAV assignments X∗ that
satisfies X∗ = arg minX

∑
p∈P cp(Xp).

Figure 2 shows an encoding of the motivating example. There is a variable
for each request. The domain of x1 is the set of UAVs that can service it. This is
the set of all UAVs that are in communication range of the owner of τ1. Hence,
the domain of x1 is just {ρ3}. Likewise, the domain of x2 and x3 is {ρ1, ρ2}
because both UAVs can fulfill them. Next, we create a function cp for each UAV
ρp. Because ρ3 can only service τ1, the scope of function c3 is x1. As a result,
c3 is a unary function that specifies the cost for UAV ρ3 to service τ1, namely
the distance between ρ3 and τ1 (hereafter δpr will be employed as a shorthand
for the distance between ρp and τr). c2’s scope is {x2, x3}, because UAV ρ2 can
service both τ2 and τ3. Hence, c2 has to specify four costs for ρ2:

1. Both requests are allocated to ρ1, which is 0.
2. τ2 is allocated to ρ1 but τ3 is allocated to ρ2, which is δ23 = 2.
3. τ2 is allocated to ρ2, but τ3 is allocated to ρ1, which is δ22 = 2.
4. Both requests are allocated to ρ2, which is δ22 + δ23 = 4.

c1 is similarly computed. From Figure 2 costs, X∗ = 〈x1 = ρ3, x2 = ρ2, x3 = ρ1〉.
This encoding scales poorly. First, it does not exploit the fact that we assume

independence when computing the cost of servicing a combination of requests in
the constraints cp. The number of entries in cp is the product of the domain sizes

2

0

7

2

4

1

6
5

0

x1

⇢3

c1

c2

c3

x2 x3
⇢1 ⇢1
⇢1

⇢1

⇢2
⇢2

⇢2⇢2

x2 x3
⇢1 ⇢1
⇢1

⇢1

⇢2
⇢2

⇢2⇢2

x3

x2 x1

Fig. 2: Naive MRF encoding.

0
2

0
2

5
0

1
0

x2

x2x3

x3

c23 c22

c13 c12

⇢1
⇢2

⇢1
⇢2

⇢1
⇢2

⇢1
⇢2

7

x1

⇢3

x2 x1

c31

x3

Fig. 3: Independent valuation.

F 0
T 2

v23z23

F 0
T 2

v22z22

T 1
F 0

v13z13

T 5
F 0

v12z12 0
7T

F

v31z31

T

F
0

T

F
F
T

T

F

0

s3
1

1

z13z23

s2z12 z22

T

F
0

T

F
F
T

T

F

0
1

1 F
T 0

s1z31
1

z23

z13

z12

z22

z31

Fig. 4: Independent task valuation, binary encoding.

of each of the variables in its scope. Hence, the number of entries in cp scales
exponentially with respect to the number of requests that UAV ρp can service.
However, we can exploit the independence between requests by decomposing
each cost function cp into smaller cost functions, each one evaluating the cost of
servicing a single request. That is, thanks to that independence between requests,
we can represent cp as a combination of cost functions cpr, one per variable in
the scope of cp, such that cp(Xp) =

∑
xr∈Xp

cpr(xr). Now the number of values
to specify the cost of servicing a set of requests scales linearly with respect to
the number of requests. Figure 3 represents the example in Figure 2 using this
new encoding. Notice that for each UAV we specify the cost of servicing a given
request when the request is assigned to it, or 0 when allocated to another UAV.
However, the new encoding still suffers from redundancy. Say that another UAV
ρ4 is in the communication range of both ρ1 and ρ2. Since this UAV would be
eligible to serve requests τ2 and τ3, the domain of x2 and x3 would become
{ρ1, ρ2, ρ3}. As a result, UAV ρ1 must extend its cost function c12 to include a
new entry where τ2 is assigned to ρ4, whose cost is obviously 0. Therefore, we
must aim at an encoding such that a cost function cpr contains only two values:
δpr if τr is allocated to ρp, or 0 otherwise.

With this aim, we now convert the request variables into binary variables,
replacing each original variable xr ∈ X by a set of binary variables zpr, one
per UAV in Pr. Previous cpr cost functions now generate vpr cost functions on
these binary variables. In addition, for each r, zpr are linked through a selection
function sr to ensure that a request can be only serviced by a single UAV.
For instance, consider variable x2 with domain {ρ1, ρ2}. We create two binary
variables z12 and z22. Intuitively, z12 being “on” means that request τ2 is assigned
to UAV ρ1. A selection factor linked to both z12 and z22 would guarantee that
only one of the two variables is set to “on”. In our example, this selection function
is a cost function s2, which introduces an infinite cost whenever there is no single
variable active. Figure 4 shows the binary encoding of the example in Figure 3.

2.2 Solving the Problem with Max-sum

Now we optimize the max-sum algorithm to run on the last encoding of Section 2.
Max-sum sends messages from factors to variables and from variables to factors.

However, our factor graph allows us some simplifications. Notice that each zpr
is only linked to cost function vpr and selector function sr. It is direct to observe
that the message that zpr must send to vpr is exactly the one received from sr,
while the message that it must send to sr is exactly the one received from vpr.
Then, since each variable simply relays messages between the cost function and
selection function it is linked to, henceforth we will disregard variables’ messages
and instead we will consider that functions directly exchange messages.

The max-sum general message expression from function f to function g is

µf→g(Zf∩g) = min
Zf−g

f(Zf−g,Zf∩g) +
∑

g′∈N(f)−g

µg′→f (Zg′∩f)

 , (1)

where Zf∩g stands for an assignment to the variables in the scope of f and g,
Zf−g stands for an assignment to the variables in the scope of f that are not in
g, N(f) stands for the set of functions f is linked to (its neighboring functions),
and µg′→f stands for the message from function g′ to function f .

Observe in Figure 4 that selection and cost functions are connected by a
single binary variable. Thus, the messages exchanged between functions in our
problem will refer to the assignments of a single binary variable. In other words,
the assignment Zf∩g will correspond to some binary variable zpr. Therefore, a
message between functions must contain two values, one per assignment of a
binary variable. At this point, we can make a further simplification and consider
sending the difference between the two values. Intuitively, a function sending a
message with a single value for a binary variable transmits the difference between
the variable being active and inactive. In general, we will define the single-valued
message exchanged between two functions as

νf→g = µf→g(1)− µf→g(0). (2)

Next, we compute the messages between cost and selection functions.
(1) From cost function to selection function. This message expresses the differ-
ence for a UAV ρp between serving request τr or not, therefore

νvpr→sr = vpr(1)− vpr(0) = δpr − 0 = δpr. (3)

(2) From selection function to cost function. Consider selection function sr and
cost function vpr. From equation 1, we obtain:

µsr→vpr (1) = 0, µsr→vpr (0) = min
ρp′∈Pr−ρp

δp′r

Then we can apply equation 2 to obtain the single-valued message νsr→vpr =
−minρp′∈Pr−ρp δp′r. Moreover, this message can be computed efficiently. Con-
sider the pair 〈ν∗, ν∗∗〉 as the two lowest values received by the selection function
sr. Then, the message that sr must send to each vpr is

νsr→vpr =

{
−ν∗ νvpr→sr 6= ν∗

−ν∗∗ νvpr→sr = ν∗
. (4)

To summarize, each cost function computes and sends messages using equa-
tion 3; each selection function computes and sends messages using equation 4.

Max-sum Operation. Max-sum is an approximate algorithm in the general
case, but it is provably optimal on trees. Due to how we encoded the problem,
the resulting factor graph contains a disconnected, tree-shaped component for
each request r (see Figure 4). Thus, Max-sum operates optimally in this case.
The algorithm is guaranteed to converge after traversing the tree from the leaves
to the root and then back to the leaves again. In our case, the tree-shaped
component for each request is actually a star-like tree, with the selection function
sr at the center, and all others connected to it. We are guaranteed to compute the
optimal solution in two steps if we pick sr as the root node of each component.

Typically, Max-sum’s decisions are made by the variable nodes after running
the algorithm. However, we have no variables in our graph because we eliminated
them. Thus, we have to let either the selector nodes sr or the cost nodes vpr
make the decision. Letting selectors choose is better because it guarantees that
the same task is never simultaneously assigned to two different UAVs. Because
the decisions are made by the sr nodes, there is no need for the second Max-
sum iteration (messages from selector to cost functions) anymore. Instead, the
selector nodes can directly communicate their decision to the UAVs.

The logical Max-sum nodes include: a cost function vpr for each each UAV
ρp; and a selection function sr for each request, that runs in its current owner.

Max-sum runs on our motivating example as follows. First, each leaf cost
function vpr must send its cost to the root of its tree, sr. That is, UAV ρ1 sends
1 to s3 (within UAV ρ2), and 5 to s2 (within itself). Likewise, UAV ρ2 sends 2 to
s2 and 2 to s3, whereas UAV ρ3 sends 7 to s1. Thereafter, the sr nodes decide by
choosing the UAV whose message had a lower cost. Hence, s3 (running within
UAV ρ2) decides to allocate τ3 to ρ1, s2 allocates τ2 to ρ2, and s1 allocates τ1
to ρ3. Upon receiving the allocation messages, each UAV knows precisely which
requests have been allocated to itself.

3 Coordination using Workload-based Valuations

In realistic scenarios, requests do not appear uniformly across time and space,
but concentrated around one or several particular areas, namely the hot spots.
In that case, the assumption of independence in the valuation of the requests
provides an allocation that assigns a large number of requests to the UAVs
close to the hot spot, leaving the remaining UAVs idle. In these scenarios, the
independence assumption is too strong. Next, we show that it is possible to relax
this assumption while keeping an acceptable time complexity for Max-Sum. We
introduce a new factor for each UAV: a penalty that grows as the number of
requests assigned to the UAV increases. Formally, let Zp = {zpr|τr ∈ Rp} be
the set of variables encoding the assignment to UAV ρp. The number of requests
assigned to UAV i is ηp =

∑
r∈Rp

zpr. The workload factor for UAV ρp is

wp(Zp) = f(ηp) = k · (ηp)α, (5)

where k ≥ 0 and α ≥ 1 are parameters that can be used to control the fairness
in the distribution of requests (in terms of how many requests are assigned to
each UAV). Thus, the larger the α and the k, the fairer the request distribution.

The direct assessment of Max-Sum messages going out of the workload factor
takes O(N · 2N−1) time, where N = |Zp|. Interestingly, the workload factor is
a particular case of a cardinality potential as defined by Tarlow et. al. [6]. A
cardinality potential is a factor defined over a set of binary variables (Zp in this
case) that does only depend on the number of active variables. That is, it does
not depend on which variables are active, but only on how many of them are
active. As described in [6], the computation of the Max-Sum messages for these
potentials can be done in O(N logN). Thus, using Tarlow’s result we can reduce
the time to assess the messages for the workload factors from exponential in the
number of variables to linearithmic.

In addition, we can add the workload factor the cost factors that describe
the cost for UAV ρp to service each of the requests. The following result3 shows
that if we have a procedure for determining the Max-Sum messages going out of
a factor over binary variables, say f , we can reuse it to determine the messages
going out of a factor h that is the sum of f with a set of independent costs, one
for each variable.

Lemma 1. Let f be a factor over binary variables Y = {y1, . . . , yn}. Let g(Y) =∑n
i=1 γi · yi be another factor defined as the addition of a set of n independent

factors, one over each variable yi. Let h(Y) = f(Y)+g(Y) be the factor obtained
by adding f and g. Let

µf→yj (yj , ν1, . . . , νn) = min
Y−j

f(Y) +
∑
k 6=j

νk · yk


and νf→yj (ν1, . . . , νn) = µf→yj (1, ν1, . . . , νn)− µf→yj (0, ν1, . . . , νn).

We have that νh→yj (ν1, . . . , νn) = νf→yj (ν1 + γ1, . . . , νn + γn) + γj .

Thus, we can define a single factor that expresses the complete costs of a
UAV when assigned a set of requests, that is the sum of the independent costs
for each of the requests assigned plus the workload cost for accepting that number
of requests. Formally the cost factor for UAV ρp is:

wp(Zp) +
∑
τr∈Rp

cpr(zpr). (6)

Summarizing, by introducing workload valuations that do not only depend
on each individual request, but also on the number of requests, we have shown
that it is possible to relax the assumption of independence between valuations
with a very minor impact on the computational effort required to assess the
messages (from linear to linearithmic).

3 Due to lack of space the proof is provided in a technical report [7]

4 Empirical evaluation

Next, we empirically evaluate our decentralized algorithms: (i) d-independent,
that uses independent valuations on tasks; and (ii) d-workload, that employs
workload-based request valuations. Comparing their performance against the
current state-of-the-art is difficult because most methods can not cope with the
communication range limitation of our problem. Thus, we implemented a re-
laxed version of the problem to compare against them. In this relaxation, UAVs
delegate the allocation to a centralized planner agent, disregarding any commu-
nication limits. However, no request can be assigned to a UAV that is not aware
of its existence. The central agent employs one of two different request allocation
algorithms. The c-independent algorithm runs a single-item auction per request
to allocate it to some plane. Hence, this technique assumes independent valua-
tions for requests. In contrast, the c-ssi algorithm employs state-of-the-art Se-
quential Single Item [8] auctions to compute the allocation of requests to planes.
Because we want to minimize the average service time, our SSI auctions employ
the BidMinPath bidding rule as specified in [1]. Notice that these centralized
methods are solving a simplified (less constrained) version of the problem.

We tested the performance of c-independent, d-independent, c-workload and
d-ssi on multiple problems. Each problem represents a time-span (T) of a month.
During that time, 10 UAVs with a communication range of 2 km survey a square
field of 100 km2. We assume that the UAVs always travel at a cruise speed of
50 km/h. In these scenarios, a single operator submits requests at a mean rate
of one request per minute. We introduce four crisis periods during which the
rate of requests is much higher. The requests submission times are sampled
from a mixture of distributions. The mixture contains four normal distributions
Ni(µi, 7.2 h) (one per crisis period) and a uniform distribution for the non-crisis
period. The ui means themselves are sampled from a uniform distribution U(T).

Next, we introduce two scenarios that differ on the spatial distribution of re-
quests. In the uniform scenario, the requests are uniformly distributed, whereas
the hot spot scenario models a more realistic setting where crisis requests are
localized around hot spots. These spatial hot spots are defined as bivariate Gaus-
sian distributions with randomly generated parameters. Figure 5 depicts an ex-
ample of such scenario, where we painted one dot for each request. The scattered
dots correspond to non-related requests, whereas related requests form dot clouds
around their hot spot. Finally, the strong dot represents the operator, and the
light circle surrounding it represents its communication range.

To use our d-workload method we have to set the values of k and α. Hence,
we performed an exploration on the space of these parameters to determine
which values are suitable to the hot spot scenarios. Figure 6 shows the results
we obtained after this exploration. The colors correspond to the median of the
average service time that we obtained after running the algorithm in 30 different
scenarios for each pair (k, α). For instance, when k = 102 and α = 1.12 the
algorithm achieved a median average service time of 137 s. Observe that the
algorithm exhibits a smooth gradient for any fixed value of α or k. Hence, good
combinations of k and α can be found by fixing one parameter to a reasonable

Fig. 5: Example task distribution in
a Gaussian scenario

100 101 102 103 104

k

1.00

1.12

1.26

1.41

1.58

1.78

2.00

α

115

120

125

130

135

140

145

150

155

A
vg

.s
er

vi
ce

ti
m

e
(s

)

Fig. 6: Parameter exploration in the
Gaussian scenario

value and performing a descent search on the other one. We chose k = 1000, and
found the best corresponding α to be 1.36 with 0.01 precision.

Then we ran all the algorithms on a set of 30 new problems, to ensure that the
parameters were not overfitted. In the uniform scenario, c-independent clearly
obtains the best results. Figure 7 shows the results obtained by the other algo-
rithms relative to c-independent ’s performance (better algorithms appear lower
in the graph). Surprisingly, dropping the independence assumption in these sce-
narios actually worsens performance instead of improving it. Nonetheless, the
performance loss is much lower between d-independent and d-workload (5%)
than between c-independent and c-ssi (17%).

In contrast, c-ssi obtains the best overall results in the hot spot scenarios.
Figure 8 shows how the other algorithms fared in comparison. Our d-workload
mechanism obtains very similar results than c-ssi (only 2% worse in median).
Recall that c-ssi requires global communication between the agents, and can not
be distributed without introducing major changes to the algorithm. Therefore, d-
workload stands as the best algorithm when UAVs have limited communication
ranges. These results show that, in the more realistic setting where there are
request hot spots, relaxing the independence assumption provides significant
gains in service time, both in the centralized and distributed algorithms.

d-workload d-independent c-ssi
−10

0

10

20

30

40

A
vg

.s
er

vi
ce

ti
m

e
(%

ov
er

c-
in

de
pe

nd
en

t)

Fig. 7: uniform scenario results

c-independent d-workload d-independent
−10

0

10

20

30

40

A
vg

.s
er

vi
ce

ti
m

e
(%

ov
er

c-
ss

i)

Fig. 8: hot spot scenario results

5 Conclusions

This paper introduced the limited-range online routing problem, which requires
that UAVs coordinate to serve requests submitted by external operators. To
tackle this problem, we employed an MRF-based solution instead of the more
common market-based approaches. Using a novel encoding of the problem and
the max-sum algorithm, we showed that this approach can functionally mimic
the operation of a decentralized parallel single-auctions approach. The MRF-
based approach provides an easily extensible framework. In this case, we show
that it is possible to introduce new factors to represent the workload of each
UAV while maintaining low computational and communication requirements.
Empirical evaluation shows that the improved version achieves 11% lower ser-
vice times than the single-auctions approach. Moreover, the actual performance
comes very close to that of employing state-of-the-art centralized SSI auctions.
Because of the communication range limit, centralized SSI auctions can not be
implemented in the real-world. Therefore, our workload-based mechanism is the
method of choice for decentralized coordination with communication range limit.

Acknowledgments. Work funded by projects RECEDIT (TIN2009-13591-
C02-02), AT (CSD2007-0022), COR (TIN2012-38876-C02-01), EVE (TIN2009-
14702-C02-01), MECER (201250E053), the Generalitat of Catalunya grant 2009-
SGR-1434, and the Spanish Ministry of Economy grant BES-2010-030466.

References

1. Lagoudakis, M., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig, S.,
Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Robotics:
Science and Systems. Volume 5., MIT Press (2005)

2. Sujit, P., Beard, R.: Distributed sequential auctions for multiple uav task allocation.
In: American Control Conference, 2007, IEEE (2007) 3955–3960

3. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a
market economy. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE
International Conference on. Volume 3., IEEE (2002) 3016–3023

4. Butterfield, J., Jenkins, O., Gerkey, B.: Multi-robot markov random fields. In:
Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 3, International Foundation for Autonomous Agents
and Multiagent Systems (2008) 1211–1214

5. Fave, F.M.D., Farinelli, A., Rogers, A., Jennings, N.: A methodology for deploying
the max-sum algorithm and a case study on unmanned aerial vehicles. In: IAAI
2012. (2012) 2275–2280

6. Tarlow, D., Givoni, I.E., Zemel, R.S.: HOP-MAP : Efficient Message Passing with
High Order Potentials. In: 13th International Conference on Artificial Intelligence
and Statistics (AISTATS). Volume 9. (2010) 812–819

7. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodriguez-Aguilar, J.A., Tambe,
M.: Engineering the decentralized coordination of uavs with limited communication
range. Technical report, http://bit.ly/Xuo5yA (2013)

8. Koenig, S., Keskinocak, P., Tovey, C.: Progress on agent coordination with cooper-
ative auctions. In: Proc. AAAI. Volume 10. (2010) 1713–1717

