Skip to main content

On Using the PC Algorithm for Learning Continuous Bayesian Networks: An Experimental Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8109))

Abstract

Mixtures of truncated basis functions (MoTBFs) have been recently proposed as a generalisation of mixtures of truncated exponentials and mixtures of polynomials for modelling conditional distributions in hybrid Bayesian networks. However, no structural learning algorithm has been proposed so far for such models. In this paper we investigate the use of the PC algorithm as a means of obtaining the underlying network structure, that is finally completed by plugging in the conditional MoTBF densities. We show through a set of experiments that the approach is valid and competitive with current alternatives of discretizing the variables or adopting a Gaussian assumption. We restrict the scope of this work to continuous variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langseth, H., Nielsen, T., Rumí, R., Salmerón, A.: Mixtures of truncated basis functions. International Journal of Approximate Reasoning 53, 212–227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moral, S., Rumí, R., Salmerón, A.: Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Shenoy, P., West, J.: Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning 52, 641–657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lauritzen, S.: Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association 87, 1098–1108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shenoy, P.P., Shafer, G.: Axioms for probability and belief function propagation. In: Shachter, R.D., Levitt, T.S., Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, vol. 4, pp. 169–198. North-Holland, Amsterdam (1990)

    Google Scholar 

  6. Zhang, N., Poole, D.: Exploiting causal independence in Bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Langseth, H., Nielsen, T., Salmerón, A.: Learning mixtures of truncated basis functions from data. In: Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM 2012), pp. 163–170 (2012)

    Google Scholar 

  8. Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Langseth, H., Nielsen, T., Rumí, R., Salmerón, A.: Parameter estimation and model selection for mixtures of truncated exponentials. International Journal of Approximate Reasoning 51, 485–498 (2010)

    Article  MathSciNet  Google Scholar 

  10. López-Cruz, P., Bielza, C., Larrañaga, P.: Learning mixtures of polynomials from data using B-spline interpolation. In: Proceedings of the 6th European Workshop on Probabilistic Graphical Models (PGM 2012), pp. 211–218 (2012)

    Google Scholar 

  11. Romero, V., Rumí, R., Salmerón, A.: Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning 42, 54–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monti, S., Cooper, G.F.: Learning hybrid Bayesian networks from data (1998)

    Google Scholar 

  13. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011) ISBN 3-900051-07-0

    Google Scholar 

  14. Kalisch, M., Maechler, M., Colombo, D.: pcalg: Estimation of CPDAG/PAG and causal inference using the IDA algorithm (2011) R package version 1.1-4

    Google Scholar 

  15. Scutary, M.: Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software 35(3), 1–22 (2010)

    Google Scholar 

  16. Langseth, H., Nielsen, T., Pérez-Bernabé, I., Salmerón, A.: Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning (submitted)

    Google Scholar 

  17. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spirtes, P., Glymour, C., Scheines, R.: Causation, prediction and search. Lecture Notes in Statistics, vol. 81. Springer (1993)

    Google Scholar 

  19. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, A., Pérez-Bernabé, I., Salmerón, A. (2013). On Using the PC Algorithm for Learning Continuous Bayesian Networks: An Experimental Analysis. In: Bielza, C., et al. Advances in Artificial Intelligence. CAEPIA 2013. Lecture Notes in Computer Science(), vol 8109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40643-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40643-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40642-3

  • Online ISBN: 978-3-642-40643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics