
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{strauch, andrikopoulos, gomez-saez, leymann}@iaas.uni-stuttgart.de

Implementation and Evaluation of a
Multi-tenant Open-Source ESB

Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez, Frank Leymann

@inproceedings{StrauchAGSL,
 author = {Steve Strauch and Vasilios Andrikopoulos and Santiago Gómez Saéz
 and Frank Leymann},
 title = {Implementation and Evaluation of a Multi-tenant Open-Source
 ESB},
 booktitle = {Proceedings of the European Conference on Service-Oriented and
 Cloud Computing, ESOCC’13, 2013},
 year = {2013},
 pages = {79--93},
 doi = {10.1007/978-3-642-40651-5_7},
 series = {Lecture Notes in Computer Science (LNCS)},
 volume = {8135},
 publisher = {Springer Berlin Heidelberg}
}

:

Institute of Architecture of Application Systems

© 2013 Springer-Verlag Berlin Heidelberg.
The original publication is available at www.springerlink.com
See also LNCS-Homepage: http://www.springeronline.com/lncs

http://www.springerlink.com/
http://www.springeronline.com/lncs

Implementation and Evaluation
of a Multi-tenant Open-Source ESB

Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez,
and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract Offering applications as a service in the Cloud builds on the
notion of application multi-tenancy. Multi-tenancy, the sharing of ap-
plication instances and their underlying resources between users from
different organizational domains, allows service providers to maximize
resource utilization and reduce servicing costs per user. Realizing ap-
plication multi-tenancy however requires suitable enabling mechanisms
offered by their supporting middleware. Furthermore, the middleware it-
self can be multi-tenant in a similar fashion. In this work we focus on
enabling multi-tenancy for one of the most important components in
service-oriented middleware, the Enterprise Service Bus (ESB). In par-
ticular, we discuss the prototype realization of a multi-tenant aware ESB,
using an open source solution as the basis. We then evaluate the perfor-
mance of our proposed solution by an ESB-specific benchmark that we
extended for multi-tenancy purposes.

Keywords: Multi-tenancy, Enterprise Service Bus (ESB), ESB bench-
marking, JBI specification, Platform as a Service.

1 Introduction

The Enterprise Service Bus (ESB) technology addresses the fundamental need
for application integration by acting as the messaging hub between applications.
As such, in the last years it has become ubiquitous in service-oriented enterprise
computing environments. ESBs control the message handling during service in-
vocations and are at the core of each Service-Oriented Architecture (SOA) [12].
Given the fact that the Cloud computing paradigm [16] is discussed in terms
of the creation, delivery and consumption of services [5], it is therefore essential
to investigate into how the ESB technology can be used efficiently in a Cloud-
oriented environment.

For this purpose, in our previous work we focused on investigating how to
make ESBs multi-tenant aware [21]. In this context, making an ESB multi-
tenant aware means that the ESB is able to manage and identify multiple tenants
(groups like companies, organizations or departments sharing the application)
and their users, providing tenant-based identification and hierarchical access

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 79–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

80 S. Strauch et al.

control to them. In other words, the ESB should provide the appropriate mecha-
nisms that allow (multi-)tenant applications to seamlessly interact with it while
sharing one (logical) instance of the ESB. Given the role of the ESB middleware
in the technological stack, there are two fundamental aspects of multi-tenancy
awareness: communication (i.e. supporting message exchanges isolated per ten-
ant and application), and administration and management (i.e. allowing each
tenant to configure and manage individually their communication endpoints at
the ESB).

Multi-tenancy has been previously defined in different ways in the literature
for SOA and middleware, see for example [10], [17], [14], [23]. Such definitions
however do not address the whole technological stack behind the different Cloud
service models as defined in [16] (i. e. IaaS — Infrastructure as a Service, PaaS
— Platform as a Service, SaaS — Software as a Service). For these reasons
in [21] we define multi-tenancy as the sharing of the whole technological stack
(hardware, operating system, middleware and application instances) at the same
time by different tenants and their users.

Multi-tenancy is one of the key enablers that allow Cloud computing solu-
tions to serve multiple customers from a single system instance (the other being
virtualization of the application stack). Using these techniques, Cloud service
providers maximize the utilization of their infrastructure, and therefore increase
their return on infrastructure investment, while reducing the costs of servicing
each customer. On the Cloud service consumer side, the fundamental assump-
tion in using multi-tenant applications is that tenants are well isolated from each
other, both in terms of data and computational resources. This ensures that the
operation of one tenant does not have any discernible effect on the efficacy and
efficiency of the operation of the other tenants. Ensuring tenant isolation in
Cloud solutions however is a notoriously difficult problem and remains largely
an open research question, see for example [10] and [14].

Towards this direction, in this work we investigate the performance of a multi-
tenant aware ESB implementation from both perspectives, i.e. service providers
and consumers. For this purpose we first present in detail the realization of
the ESBMT architectural framework [21] based on the Java Business Integration
(JBI) specification [11] into a multi-tenant aware ESB solution. We then eval-
uate the performance of our solution in terms of response time as experienced
by the service consumer (i.e. the application tenant), and CPU and memory
utilization (that are of particular interest to the service provider). For this pur-
pose we extend and modify an industry benchmark for ESBs in order to make it
suitable for driving multi-tenant, in addition to non multi-tenant, interactions.
Our contributions can be summarized as follows:

– A detailed presentation of the realization of a multi-tenant aware ESB solu-
tion implementing the ESBMT framework [21] by extending the open source
Apache ServiceMix solution [3].

– The creation of an ESB benchmark which allows evaluating the performance
and utilization of multi-tenant aware solutions by extending an existing
benchmark [2].

Implementation and Evaluation of a Multi-tenant Open-Source ESB 81

– An analysis of the performance and utilization characteristics of our proposed
implementation compared against a baseline, non multi-tenant aware ESB
solution (Apache ServiceMix).

The remaining of the paper is structured as follows: Section 2 briefly summa-
rizes the JBI specification and the ESBMT framework which is based on JBI.
Section 3 discusses the realization of this framework using Apache ServiceMix
as a proof-of-concept implementation for our proposal, together with the tech-
nologies involved. Section 4 introduces the benchmarking tool that we developed
as part of this work, discusses the benchmarking environment, and presents the
results of this evaluation. Section 5 discusses the key findings of our evaluation.
The paper closes with Section 6 and Section 7 summarizing related work, and
concluding with some future work, respectively.

2 Background

Java Business Integration Environment. The Java Business Integration
(JBI) specification defines a standards-based environment for integration solu-
tions by specifying the interaction of JBI components installed in a JBI con-
tainer [11]. A number of middleware technologies like ESBs (e.g. Open ESB1,
Apache ServiceMix [3]) and application servers (like GlassFish2) implement the
JBI specification. By basing our approach on the JBI specification we therefore
ensure that we produce a generic and reusable solution that can be replicated
across different ESB solutions (and other technologies that implement the JBI
specification).

Figure 1 provides an overview of the JBI environment, based on [11]. JBI-
compliant components are deployed in the container and interact through a Nor-
malized Message Router (NMR). The components consume or provide services
described in WSDL 2.0 3. Two types of JBI components are specified: Binding
Components (BCs), providing connectivity to external services and mediating
between external protocols and the NMR, and Service Engines (SEs), offering
business logic and message transformation services inside the JBI container.
Configuration of the components is achieved by a management framework based
on Java Management Extensions (JMX). The framework allows the installation
of JBI components, deployment and configuration of service artifacts called Ser-
vice Units (SUs), and controlling the state of both individual SUs and the JBI
container. Different SUs are usually packaged in Service Assemblies (SAs), as
shown in Fig. 1, in order to solve larger integration problems.

ESBMT: A Multi-tenant ESB Architecture. In our previous work [21]
we identified the requirements for enabling multi-tenancy in ESB solutions and
categorized them into functional and non-functional requirements. Functional
1 Open ESB: http://openesb-dev.org
2 GlassFish: http://glassfish.java.net
3 WSDL 2.0 Specification: http://www.w3.org/TR/wsdl20/

82 S. Strauch et al.

Legend

Internal Invocation
External Invocation
Container
Binding Component BC
Service Engine SE
Service Unit SU
Service Assembly SA

a

JVM

JBI Environment

M
anagem

entFram
ew

ork
Normalized Message

Router (NMR)

SU1

SA1

BC1 BC2

SE1

SU2 SU3

SU4 SU5

SA2

SE2

SU6

Com
ponentFram

ew
ork

External Service
Provider

External Service
Consumer

M
anagem

ent
Client

Fig. 1. Overview of the JBI environment

requirements can be further classified as tenant-related and integration-related.
Tenant-related requirements ensure the fine-grained management of both tenants
and their corresponding users. In addition, the functionality of the ESB should
be provided for each tenant in a transparent manner, without integration ef-
fort on behalf of the tenants. Integration-related requirements ensure that other
PaaS components or external applications that might not be multi-tenant can
also interact with the system in order to share, e.g. the tenant or service registry
maintained by the ESB. Non-functional requirements ensure tenant isolation
and security as well reusability and extensibility. Tenant isolation requirements
include data (preventing tenants to access data belonging to other tenants) and
performance isolation (ensuring tenants have access only to their assigned com-
putational resources). Security requirements describe the need for appropriate
mechanisms for authorization, authentication, integrity, and confidentiality to be
in place. Finally, reusability and extensibility requirements define the technology-
and solution-independence of the proposed architecture.

Based on these requirements, in [21] we proposed ESBMT, a JBI-based ESB
architecture that satisfies these requirements. Figure 2 provides an overview of
ESBMT. The three layer architecture consists of a Presentation layer, a Business
Logic layer, and a Resources layer. The purpose, contents, and implementation
of each layer is discussed in the following.

3 Implementation

For purposes of implementing ESBMT we extended the open source ESB Apache
ServiceMix version 4.3.0 [3], hereafter referred to simply as ServiceMix. All ar-
tifacts required to install and setup the ESBMT realization including a manual
are publicly available at http://tiny.cc/ESB-MT-install. The presentation

Implementation and Evaluation of a Multi-tenant Open-Source ESB 83

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry
Database Cluster

Configuration
Registry Database

JBI Container
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Fig. 2. Overview of ESBMT

of the implementation follows the ESBMT architecture as illustrated in Fig. 2.
More specifically:

Resources Layer. The Resources layer consists of a JBI Container Instance
Cluster and a set of registries. The JBI Container Instance Cluster bundles
together multiple JBI containers (in the sense of Fig. 1). Each one of these in-
stances performs the tasks usually associated with traditional ESB solutions,
that is, message routing and transformation. For purposes of performance, in-
stances are organized in clusters, using an appropriate mechanism like the one
offered by ServiceMix. Realizing multi-tenancy on this level means that both
BCs and SEs are able to:

– handle service units and service assemblies containing tenant and user spe-
cific configuration information, and

– process such deployment artifacts accordingly in a multi-tenant manner. For
example, a new tenant-specific endpoint has to be created whenever a service
assembly is deployed to this JBI component in order to ensure data isolation
between tenants.

The installation/uninstallation and configuration of BCs and SEs in a JBI Con-
tainer Instance is performed through a set of standardized interfaces that also
allow for backward compatibility with non multi-tenant aware components.

In terms of implementation technologies, ServiceMix is based on the OSGi
Framework4. OSGi bundles realize the ESB functionality complying to the JBI
specification. The original ServiceMix BC for HTTP version 2011.01 and the
original Apache Camel SE version 2011.01 are extended in our prototype in order
to support multi-tenant aware messaging. These components are able to marshal,
4 OSGi Version 4.3: http://www.osgi.org/Download/Release4V43/

84 S. Strauch et al.

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry
Database Cluster

Configuration
Registry Database

JBI Container
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Runtime Environment

Standardized Interfaces for Service Engines

Standardized Interfaces for Binding Components

Normalized Message Router

Service
Engine

Binding
Component

Binding
Component

Binding
Component

Binding
Component

Service
Engine

Service
Engine

Service
Engine

External
Service
Providers

External
Service

Consumers

Fig. 3. Architecture of an ESB Instance

demarshal, and process messages with the tenantID and userID included as part
of their SOAP header. Our ServiceMix extension also implements an OSGi-based
management service which listens to a JMS topic for incoming management
messages sent by the Web application.

The Resources layer also contains three different types of registries (Fig. 2):
the Service Registry stores the services registered with the JBI environment, as
well as the service assemblies required for the configuration of the BCs and SEs
installed in each JBI Container Instance in the JBI Container Instance Cluster in
a tenant-isolated manner [7]; the Tenant Registry records the set of users for each
tenant, the corresponding unique identifiers to identify them, as well all neces-
sary information to authenticate them; finally, the Configuration Registry stores
all configuration data created by tenants and the corresponding users, except
from the service registrations and configurations that are stored in the Service
Registry. Due to the fact that tenant or user actions affect more than one reg-
istries at the time, all operations and modifications on the underlying resources
are implemented as distributed transactions based on a two-phase commit pro-
tocol [9] to ensure consistency. The ServiceRegistry, TenantRegistry, and Config-
urationRegistry components are realized based on PostgreSQL version 9.1.1 [19].
Figure 4 shows the entity-relationship diagram of the information stored in the
Configuration Registry.

Business Logic Layer. The Business Logic layer contains an Access Layer
component, which acts as a multi-tenancy enablement layer [10] based on role-
based access control [20]. Different categories of roles can be defined based on
their interaction with the system: system-level roles like administrators, and
tenant-level roles like operators. The system administrator configures the whole

Implementation and Evaluation of a Multi-tenant Open-Source ESB 85

Fig. 4. ER diagram of JBI components in the Configuration Registry using (Min,Max)
notation

system and assigns quotas of resource usage. The tenant users consume the quo-
tas of resource usage to deploy service assemblies or to register services. This
information is stored in the Configuration Registry (see quota and contingent
entities in Fig. 4). A tenant administrator can partition the quota of resource
usage obtained from the system administrator. It is important that the system
administrator assigns a default tenant administrator role to at least one tenant
user to enable the corresponding tenant to perform actions. This default tenant
administrator can then appoint other tenant administrators or assign tenant op-
erator roles to tenant users. The tenants and their corresponding users have to
be identified and authenticated once when the interaction with the JBI environ-
ment is initiated. Afterwards, the authorized access is managed by the Access
Layer transparently. The identification of tenants and users is performed based
on unique tenantID and userID keys assigned to them by the Access Layer.

The various Managers in this layer (Fig. 2) encapsulate the business logic re-
quired to manage and interact with the underlying components in the Resources
layer: Tenant Registry, Configuration Registry, and Service Registry Managers
for the corresponding registries, JBI Container Manager to install and uninstall
BCs and SEs in JBI Containers in the cluster, and Service Assembly Manager
for their configuration through deploying and undeploying appropriate service
artifacts.

The Business Logic layer of the proposed architecture is implemented as a
Web application. In order to ensure consistency, the application is running in
the Java EE 5 application server JOnAS version 5.2.2 [18], which can manage
distributed transactions. As the management components of the underlying re-
sources are implemented as EJB components, we use container-managed transac-
tion demarcation, which allows the definition of transaction attributes for whole
business methods, including all resource changes.

86 S. Strauch et al.

Presentation Layer. The Presentation layer contains the Web UI and the Web
service API components which allow the customization, administration, man-
agement, and interaction with the other layers. The Web UI offers a customizable
interface for human and application interaction with the system, allowing for the
administration and management of tenants and users. The Web service API of-
fers the same functionality as the Web UI, but also enables the integration and
communication of external components and applications. It is realized based on
the JAX-WS version 2.0 5. For both interface mechanisms, security aspects such
as integrity and confidentiality of incoming messages must be ensured by ap-
propriate mechanisms, e.g. Secure HTTP connections and WS-Security6. As a
result, signing and encryption of SOAP messages is supported by the implemen-
tation. Furthermore, authentication is implemented by using a custom SOAP
header element named TenantContext. The Tenant Context contains the ten-
antID and userID both represented as UUIDs, and the password of the user.
This header element is encrypted and signed. Thus, users of other tenants are
prevented to act on behalf of the sending user.

4 Evaluation

As discussed in the opening of this paper, multi-tenancy of Cloud solutions can
be decomposed into two perspectives: performance, as experienced by the ESB
users, and resource utilization, of primary concern to the ESB provider. These
two perspectives are the focus of our evaluation of the ESBMT implementation.
In order to provide a baseline against which we evaluate our proposal we use the
backward compatibility feature of ESBMT as non multi-tenant aware version of
the ESB, because the functionality in this case is the same as of the original non
multi-tenant ServiceMix that we based our implementation on. The following
sections discuss the method, workload, experimental setup and results towards
this goal.

4.1 Method

Our investigation showed that there is no commonly agreed benchmark for ESBs,
see for example [23]. For this reason we chose to use the industrial ESB bench-
mark by AdroitLogic [2] as a basis. This benchmark has been in development
since 2007, and a number of open source ESB solutions have been evaluated in
six rounds, with the latest round results coming out in August 2012. All infor-
mation about the benchmark, as well as the results of each evaluation round are
publicly available at [2].

We had to deal with two major obstacles in adopting this benchmark. Firstly,
ServiceMix version 4.3.0 failed to pass smoke testing by AdroitLogic for one of
the benchmarking scenarios and as a result ServiceMix has not been included
in their evaluation. By using one of the other benchmarking scenarios, however,
5 http://jcp.org/aboutJava/communityprocess/final/jsr224/
6 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Implementation and Evaluation of a Multi-tenant Open-Source ESB 87

we were able to execute the benchmark normally. Secondly, this benchmark was
not designed for multi-tenancy, using only one communication endpoint with
multiple users of the same tenant sending concurrent requests. Thus, we had
to adapt the AdroitLogic Benchmark Driver accordingly, as described in the
following sections.

4.2 Workload

For purposes of evaluation we derived three test scenarios from the Direct Proxy
Service scenario in AdroitLogic’s benchmark [2]. The Direct Proxy Service sce-
nario demonstrates the ability of an ESB to act as a virtualization layer for
back-end Web services, operating as a proxy between a client (the AdroitLogic
Benchmark Driver) and a simple echo service on the provider side. Starting from
this point, we defined the following scenarios:

1. a non multi-tenant ESB deployment (backward compatibility feature of
ESBMT) on one Virtual Machine (VM) image, acting as the baseline for
comparisons;

2. the same non multi-tenant ESB deployed across 2 VMs, in order to simulate
the effect of horizontal scaling [22], i.e. adding another application VM when
more computational resources are required; and,

3. our ESBMT implementation deployed on 1 VM.

Following the test parameters set by the benchmark we configured in each
ESB deployment with 1, 2, 4, and 10 endpoints per scenario. The message size
used by the Benchmark Driver is fixed to 1KB, composed out of random charac-
ters. The original Benchmark Driver steadily increases the number of concurrent
users of the ESB (2000, 4000, 8000, 16000, 64000, and 128.000) and sends a fixed
number of requests per user for each round of the benchmark. Since in our case
we have multiple endpoints and tenants, we distribute these requests between
the different endpoints (or tenants in the third scenario) and we send them con-
currently across each endpoint. In the first round of the benchmark for example,
and for 4 endpoints/tenants, we send 2000/4 = 500 requests per endpoint or
tenant for a total of 2000 requests; in the next round we send 4000/4 = 1000
requests, and so on. Each endpoint or tenant receives in any case 10K messages
as a warm-up before any measurements.

4.3 Experimental Setup

Figure 5 provides an overview of the experimental setup realizing our adapta-
tion of the Direct Proxy Service Scenario including message flow, control, and
measurement points. The test cases were run on Flexiscale7 and three Virtual
Machines: VM0 (6GB RAM, 3 CPUs), VM1 (4GB RAM, 2 CPUs), and VM2
(4GB RAM, 2 CPUs). All three VMs run Ubuntu 10.04 Linux OS and every
CPU is an AMD Opteron Processor with 2GHz and 512KB cache. In VM0,
7 Flexiant Flexiscale: http://www.flexiscale.com/

88 S. Strauch et al.

VM0Apache
Tomcat
Echo Web
Service

Wireshark
AdroitLogic
Benchmark
Driver +

s

VM1

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

(2) (3)

s

VM2

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

Legend

Message Flow
Control Point
Received Messages
Measurement Point
Response Time
Measurement Points
CPU Utilization and
Heap Memory Use

(1) (4)

Fig. 5. Overview of the Experimental Setup

an Apache Tomcat 7.0.23 instance was deployed with the Echo Web service,
the adapted AdroitLogic Benchmark Driver, and Wireshark 1.2.7 for monitoring
HTTP requests and responses. In VM1 and VM2, the ESBMT implementation
is deployed, which required also the deployment of PostgreSQL 9.1.1 database
(for the registries), and Jonas 5.2.2 server for the Web application implement-
ing the Business Logic layer. The endpoints deployed in ServiceMix are using
HTTP-SOAP, see Fig. 5. Scenarios 1 and 2 are using the backward compatibility
feature of ESBMT for non multi-tenant operation.

The total time in receiving the receipt acknowledgment by the Echo Web
service for each message was measured at the AdroitLogic Benchmark Driver,
in order to calculate latency. The CPU utilization for the ServiceMix process
and the Java Virtual Machine (JVM) heap memory use was measured directly
in VM1 and VM2. The maximum JVM heap memory size was set to 512MB
before the warm-up phase for both VM1 and VM2.

4.4 Experimental Results

Performance: Figure 6 summarizes and presents the latency recorded for all sce-
narios and work loads. The baseline for the presentation is the non multi-tenant
aware implementation of the ESB on one VM (1VM-NonMT-* Endpoints in Fig. 6).
As shown in the figure, our proposed multi-tenant aware implementation of the
ESB exhibits a performance decline of around 30% across the different cases when
comparing the same number of endpoints and tenants in the other scenarios. The
same load across 2 tenants instead of 2 endpoints, for example, results in 23, 57%
more latency on average (Fig. 6b), 24, 68% more for 4 tenants/endpoints (Fig. 6c)
and 39, 44% increase for 10 tenants/endpoints (Fig. 6d).

When comparing 1 tenant against 1 endpoint (Fig. 6a) an 50% reduction of
response time is observed, showing that the performance decrease is actually

Implementation and Evaluation of a Multi-tenant Open-Source ESB 89

(a) 1 Endpoint vs. 1 Tenant (b) 2 Endpoints vs. 2 Tenants

(c) 4 Endpoints vs. 4 Tenants (d) 10 Endpoints vs. 10 Tenants

Fig. 6. Average response time (latency) for 1KB size messages

ameliorated when more tenants/endpoints are added. Also of particular interest
is the fact that adding a VM and distributing the requests between those VMs —
essentially reducing the number of active endpoints by half — improves response
time by 50% only for 2 endpoints (53, 07%), degrading from there with the
number of endpoints (48, 10% for 4, and 42% for 10).

Utilization: The measurements for CPU and memory utilization for the same
loads are summarized by Table 1. The reported CPU utilization is normal-
ized over the number of CPUs of the VMs containing the ESB implementation
(Fig. 5). Memory utilization is presented as a percentage of the maximum heap
size for the JVM containing the ESB (approximately 455MB). In both cases, the
figures for the 2VMs scenario are calculated as the average of the utilization of
each VM.

As shown in Table 1, the overall utilization of system resources increases with
the introduction of multi-tenancy. The additional computation required for pro-
cessing the tenant and user information, and routing the messages accordingly,
translates into more than 300% increase in CPU utilization compared to the
baseline, non multi-tenant aware implementation. With respect to the same sce-
nario, standard deviation σ is increasing with the number of tenants introduced.
However, given the proximity of the average and median values to the maximum
CPU utilization in all cases, this can be interpreted as a distribution heavily
concentrated towards the maximum utilization. With respect to memory uti-
lization, Table 1 shows also an overall increase of around 100% across the three
cases of ESBMT (2, 4 and 10 tenants). The low standard deviation, and the small

90 S. Strauch et al.

Table 1. CPU and Memory utilization

1/2E 2/2E 1/2T 1/4E 2/4E 1/4T 1/10E 2/10E 1/10T

CPU (%)

Average 10,77 8,55 47,01 11,71 8,46 54,42 14,99 9,69 66,33
Median 11,00 9,42 50,00 12,00 10,00 58,33 16,33 11,83 76,00
Max 12,00 16,33 51,67 13,00 10,67 60,33 19,00 12,67 78,33
σ 1,63 3,21 9,03 2,07 3,14 11,38 3,72 4,09 21,39

Memory (%)

Average 18,47 15,99 37,67 23,90 15,22 42,93 20,54 13,26 47,06
Median 17,71 15,66 36,09 23,37 15,47 43,57 20,70 13,36 46,51
Max 35,43 22,98 67,31 36,09 20,00 70,50 29,06 18,34 80,78
σ 0,05 0,05 0,13 0,05 0,02 0,14 0,04 0,02 0,15

1/iE: 1 VM, non multi-tenant, i endpoints;
Legend: 2/jE: 2 VMs, non multi-tenant, j endpoints in total;

1/kT : 1 VM, multi-tenant aware, k tenants

differences between average and median values show that memory consumption
is relatively steady over all work loads. Similar behavior is observed also for the
other two (non multi-tenant) scenarios.

5 Discussion

The results presented in the previous section show that performance reduction in
our implementation is significant (one third of the baseline performance) w.r.t.
to system latency. However, it has to be noted that we have not introduced any
optimization techniques in our multi-tenant aware ESB solution, or tried to im-
plement performance isolation between tenants. As such, there is much space for
improvement in this respect. CPU utilization on the other hand increases more
than threefold and remains high for the most part of the benchmark, while mem-
ory utilization doubles but remains well below the 50% of the maximum allowed
size on average. Our ESBMT therefore has a relatively small impact on memory
requirements, but incurs high computation resource demands. Computational
resources are relatively cheap (compared, e.g., to storage space) and continue to
grow cheaper over time [4]. The actual cost of using our approach must therefore
be evaluated against the possibilities opened by the fine granularity of adminis-
tration and management on the level of both tenants and users.

Horizontal scaling the ESB produces the desired results, i.e. 50% improvement
for adding one VM, only for 2 endpoints distributed between the 2 VMs. Adding
another VM produces diminishing returns as the number of endpoints (represent-
ing applications using the same ESB) increases. This needs to be weighed against
the cost of deploying and operating multiple VMs. Furthermore, the measure-
ments presented in Section 4 for the horizontal scaling scenario assume that the
requests are evenly distributed between the two VMs, emulating the effect of a
load balancer operating on the front end of the ESB. Actually implementing such
a solution will incur additional development and operating costs that need to
be considered. In principle therefore we can conclude that the realization of our

Implementation and Evaluation of a Multi-tenant Open-Source ESB 91

proposal achieves its envisioned goal as far as service providers are concerned,
i.e. increasing CPU utilization, while imposing a relatively small memory foot-
print. Performance on the service consumer side however is impacted negatively
and further work towards the direction of ameliorating this effect is necessary.

6 Related Work

Existing approaches on enabling multi-tenancy for middleware typically focus
on different types of isolation in multi-tenant applications for the SaaS delivery
model, see for example [10]. As discussed also in [23] however, only few PaaS
solutions offer multi-tenancy awareness allowing for the development of multi-
tenant applications on top of them. The work of Walraven et al. [23] follows a
similar approach to ours; our work however proposes a more generic approach
built around any ESB technology that complies with the JBI specification, and
does not require the implementation of a dedicated support layer for these
purposes.

Focusing on ESB solutions, in [1] we surveyed a number of existing ESB
solutions and evaluated their multi-tenancy readiness. Our investigation showed
that the surveyed solutions in general lack in support of multi-tenancy. Even
in the case of products like IBM WebSphere ESB8 and WSO2 ESB9 where
multi-tenancy is part of their offerings, multi-tenancy support is implemented
either based on proprietary technologies like the Tivoli Access Manager (in the
former case), or by mitigating the tenant communication and administration
on the level of the message container (Apache Axis 2 10 in the latter case). In
either case, the used method can not be applied to other ESB solutions and as
a result no direct comparison of the applied multi-tenancy enabling mechanisms
can be performed. The presented approach differs from existing approaches by
integrating multi-tenancy independently from the implementation specifics of
the ESB.

The different benchmarks and metrics developed in the domain of Cloud com-
puting in the recent years focus on a particular type of Cloud services such as
databases [8], on Cloud-related features such as elasticity [6] and performance
isolation [13], or on virtualization technology [15]. To the extent of our knowl-
edge, there is no commonly agreed approach and benchmark for the evaluation of
the performance of multi-tenant PaaS middleware components such as an ESB.
AdroitLogic completed in August 2012 [2] the 6th round of public ESB perfor-
mance benchmarking since June 2007. This round included eight free and open
source ESBs including Apache ServiceMix version 4.3.0 — for which however
they were not able to execute for all defined scenarios. Our ESB performance
evaluation approach reuses, but adapts and extends, the AdroitLogic Benchmark
Driver and our test scenarios are derived from the Direct Proxy scenario, but
extended in order to consider multi-tenancy.
8 IBM WebSphere ESB: http://tiny.cc/IBMWebSphereESB
9 WSO2 ESB: http://wso2.com/products/enterprise-service-bus/

10 Apache Axis: http://axis.apache.org/axis2/java/core/

92 S. Strauch et al.

7 Conclusions and Future Work

Multi-tenancy allows Cloud providers to serve multiple consumers from a sin-
gle system instance, reducing costs and increasing their return of investment by
maximizing system utilization. Making therefore ESB solutions, a critical piece of
middleware for the service-oriented enterprise environment, multi-tenant aware
is essential. Multi-tenancy awareness manifests as the ability to manage and
identify multiple tenants (organizational domains) and their users, and allow
their applications to interact seamlessly with the ESB. Allowing multiple ten-
ants however to use the same ESB instance requires to ensure that they are
isolated from each other. There is therefore a trade-off between the benefits for
the ESB provider in terms of utilization and their impact on the performance of
applications using the ESB that needs to be investigated.

Toward this goal, in the previous sections we present the realization of our
proposal for a generic ESB architecture that enables multi-tenancy awareness
based on the JBI specification. We first provide the necessary background and
explain our proposed architecture across three layers based on previous work.
We then discuss in detail the realization of this architecture by extending the
open source Apache ServiceMix ESB solution. In the next step we adapt the ESB
benchmark developed by AdroitLogic to accommodate multi-tenancy and we use
it to measure the performance and resource utilization of our ESB solution.

Our analysis shows that our current, not optimized in any manner implemen-
tation of a multi-tenant aware ESB solution succeeds in increasing the CPU
utilization while having a relatively small impact on the memory footprint. In
this sense it succeeds as far as the ESB provider is concerned. On the other
hand, there is a significant reduction in performance experienced by the ESB
consumers which needs to be ameliorated by re-engineering and fine-tuning our
implementation accordingly. Techniques for performance isolation have also to
be brought into play [14]. In the scope of this work, this is a direction that
we want to investigate in the future. We also plan to take advantage of using
the JBI specification as the basis of our architectural framework and apply the
same techniques and architectural solutions to other ESB solutions, as well as
non-ESB solutions, like for example application servers, that comply with this
specification.

Acknowledgments. The research leading to these results has received fund-
ing from projects 4CaaSt (grant agreement no. 258862) and Allow Ensembles
(grant agreement no. 600792) part of the European Union’s Seventh Framework
Programme (FP7/2007-2013).

References
1. 4CaaSt Consortium: D7.1.1 – Immigrant PaaS Technologies: Scientific and

Technical Report. Deliverable (July 2011), http://www.4caast.eu/wp-content/
uploads/2011/09/4CaaSt D7.1.1 Scientific and Technical Report.pdf

2. AdroitLogic Private Ltd.: Performance Framework and ESB Performance Bench-
marking, http://www.esbperformance.org

Implementation and Evaluation of a Multi-tenant Open-Source ESB 93

3. Apache Software Foundation: Apache ServiceMix,
http://servicemix.apache.org

4. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Comput-
ing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (2009)

5. Behrendt, M., et al.: Introduction and Architecture Overview IBM Cloud Com-
puting Reference Architecture 2.0 (February 2011), http://www.opengroup.
org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc

6. Brebner, P.: Is your Cloud Elastic Enough?: Performance Modelling the Elasticity
of Infrastructure as a Service (IaaS) Cloud Applications. In: Proceedings of ICPE
2012, pp. 263–266 (2012)

7. Chong, F., Carraro, G., Wolter, R.: Multi-Tenant Data Architecture. MSDN
(2006), http://msdn.microsoft.com/en-us/library/aa479086.aspx

8. Cooper, B.F., et al.: Benchmarking Cloud Serving Systems with YCSB. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154. ACM
(2010)

9. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and
Design. Addison Wesley (June 2005)

10. Guo, C., et al.: A Framework for Native Multi-Tenancy Application Development
and Management. In: Proceedings of CEC/EEE 2007, pp. 551–558. IEEE (2007)

11. Java Community Process: Java Business Integration (JBI) 1.0, Final Release
(2005), http://jcp.org/aboutJava/communityprocess/final/jsr208/

12. Josuttis, N.: SOA in Practice. O’Reilly Media, Inc. (2007)
13. Krebs, R., Momm, C., Kounev, S.: Metrics and Techniques for Quantifying Perfor-

mance Isolation in Cloud Environments. In: Proceedings of the 8th International
ACM SIGSOFT Conference on Quality of Software Architectures, pp. 91–100.
ACM (2012)

14. Krebs, R., Momm, C., Kounev, S.: Architectural Concerns in Multi-Tenant SaaS
Applications. In: Proceedings of CLOSER 2012. SciTePress (2012)

15. Makhija, V., et al.: VMmark: A Scalable Benchmark for Virtualized Systems. Tech.
Rep. VMware-TR-2006-002, VMware, Inc. (2006)

16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (September 2011),
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616

17. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining Different Multi-
Tenancy Patterns in Service-Oriented Applications. In: Proceedings of EDOC 2009,
pp. 131–140. IEEE (2009)

18. OW2 Consortium: JOnAS: Java Open Application Server,
http://wiki.jonas.ow2.org

19. PostgreSQL Gobal Development Group: PostgreSQL,
http://www.postgresql.org

20. Sandhu, R.S., et al.: Role-based Access Control Models. Computer 29, 38–47 (1996)
21. Strauch, S., Andrikopoulos, V., Leymann, F., Muhler, D.: ESBMT: Enabling Multi-

Tenancy in Enterprise Service Buses. In: Proceedings of CloudCom 2012, pp. 456–
463. IEEE (2012)

22. Vaquero, L., Rodero-Merino, L., Buyya, R.: Dynamically Scaling Applications
in the Cloud. ACM SIGCOMM Computer Communication Review 41(1), 45–52
(2011)

23. Walraven, S., Truyen, E., Joosen, W.: A Middleware Layer for Flexible and Cost-
Efficient Multi-Tenant Applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011)

	cover-Springer
	Foliennummer 1

	Implementation and Evaluation of a Multi-tenant Open-Source ESB - springer copy

