
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Matcher Composition Methods for
Automatic Schema Matching

Nikovski, D.; Esenther, A.; Ye, X.; Shiba, M.; Takayama, S.

TR2013-103 December 2013

Abstract

We address the problem of automating the process of deciding whether two data schema ele-
ments match (that is, refer to the same actual object or concept), and propose several methods for
combining evidence computed by multiple basic matchers. One class of methods uses Bayesian
networks to account for the conditional dependency between the similarity values produced by
individual matchers that use the same or similar information, so as to avoid overconfidence in
match probability estimates and improve the accuracy of matching. Another class of methods
relies on optimization switches that mitigate this dependency in a domain-independent manner.
Experimental results under several testing protocols suggest that the matching accuracy of the
Bayesian composite matchers can significantly exceed that of the individual component match-
ers, and the careful selection of optimization switches can improve matching accuracy even
further.

Springer Link

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Matcher Composition Methods for Automatic

Schema Matching

Daniel Nikovski1, Alan Esenther1, Xiang Ye1, Mitsuteru Shiba2, and
Shigenobu Takayama3

1 Mitsubishi Electric Research Laboratories,
201 Broadway, Cambridge, MA 02139, USA

2 Mitsubishi Electric Corporation,
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

3 Mitsubishi Electric Information Systems Corporation,
325 Kamimachiya, Kamakura, Kanagawa 247-0065, Japan

Abstract. We address the problem of automating the process of decid-
ing whether two data schema elements match (that is, refer to the same
actual object or concept), and propose several methods for combining ev-
idence computed by multiple basic matchers. One class of methods uses
Bayesian networks to account for the conditional dependency between
the similarity values produced by individual matchers that use the same
or similar information, so as to avoid overconfidence in match probability
estimates and improve the accuracy of matching. Another class of meth-
ods relies on optimization switches that mitigate this dependency in a
domain-independent manner. Experimental results under several testing
protocols suggest that the matching accuracy of the Bayesian compos-
ite matchers can significantly exceed that of the individual component
matchers, and the careful selection of optimization switches can improve
matching accuracy even further.

Key words: Data integration; virtual databases; uncertain schema
matching

1 Introduction

It is often necessary to establish a correspondence (matching) between the
schemas of two or more databases, that is, determine which schema elements
refer to the same concept or physical object in the problem domain. This need
arises in multiple tasks in the area of data management, such as data integration,
data migration, and also the creation of virtual databases that expose the same
unfiying data model while retrieving data from multiple physical databases. As
a result, there has been significant research into automated and semi-automated
methods for schema matching [1].

It is widely acknoledged that the automatic schema matching (ASM) prob-
lem is very difficult, because when database designers create database schemas,
they rarely provide full and unambiguous information about what individual
schema elements represent, and if any such information exists, it is usually not



2 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

meant for computer processing. Rather, database designers usually choose suit-
able words or abbreviations for the names of data elements, so as to facilitate
future maintenance of the data schemas by themselves or other humans. Lexical
analysis of the names of data elements, then, is an important approach to ASM.
For example, the names “Street”, “Str”, and “StreetName” can be recognized to
refer to a street, possibly in an address, and lexical analysis by string matching
can reveal this similarity. A different type of information that might be useful for
ASM is the structure of the data schemas, if present. In many cases, schemas are
not represented by a flat list of element names, but the elements are organized in
a hierarchy. For example, the element “CustomerName” might have three sub-
elements, “FirstName”, “MiddleInitial”, and “FamilyName”. Using such struc-
tural information is another approach to ASM. Many more approaches exist,
too. For example, when the actual values of two database fields come from the
same statistical distribution (e.g., over names, numbers, etc.), this can serve as
evidence that the corresponding schema elements match. Dictionaries, thesauri,
and other auxiliary data sources have been used for ASM purposes, too [1].

Due to the difficulty of the problem, no single method has been shown to
perform best on all ASM tasks. This has led to the idea that multiple basic
matchers of the types described above can be used together in a composite
matcher [2, 10]. The purpose of the composite matcher is to combine the output
of the individual matchers and arrive at a more accurate set of likely matches.
In most cases, the output of an individual matcher k for a given pair of elements
S1.Ei and S2.Ej is a similarity value vk in the interval [0, 1], where vk = 0 means
no similarity, and vk = 1 means full confidence that the two elements match.
When given a library of K different individual matchers, the objective, then,
is to find a composite similarity measure v that is a function of the individual
outputs vk, k = 1,K.

Several methods for combining similarity values have been proposed. The
LSD system [4] uses machine learning techniques to estimate weighting coeffi-
cients wk such that the final similarity measure v is a weighted average of the
individual similarity measures: v =

∑K

k=1
wkvk. The COMA system [2] extends

this approach with the minimum and maximum operators: vmin = mink wkvk
and vmax = maxk wkvk.

Although experimental results suggest that these methods for combining sim-
ilarity values lead to matching accuracy that is higher than that of the accuracy
of the individual matchers, it can be recognized that they are specific approaches
to the fundamental problem of combining evidence from multiple sources (in this
case, multiple individual matchers), and make very specific assumptions about
the statistical structure of the evidence that might or might not be warranted
in practice. In Section 2, we propose a general method for correct modeling of
any kind of statistical structure in the evidence, based on Bayesian networks
and probabilistic reasoning, and a statistically grounded method for composing
matcher evidence using these Bayesian networks, and in Section 3, we describe
the performance of the composite matcher on benchmark problems.



Matcher Composition Methods for Automatic Schema Matching 3

We also investigated the limits on the accuracy obtainable by means of
matcher composition by analyzing the type of mistakes made by the basic match-
ers, and tailoring the combination methods to the kind of elements that were
being matched. For example, we discovered that very different matchers were
useful for matching leaf nodes and internal nodes in the schemas. Based on
this analysis, we devised new composite matchers that were able to increase the
matching accuracy even further, compared to the Bayesian approach, although
it remains to be seen how these matchers would peform in new domains. These
additional matchers are described in Section 4.

2 Bayesian Networks for Combining Outputs of Multiple

Schema Matchers

When combining evidence from multiple sources, one of the major problems
and causes for errors is the improper modeling of correlation and other forms of
statistical dependence between variables in the problem domain. For example,
when two very similar matchers k and l are applied to an ASM problem, their
outputs vk and vl will be highly correlated — when vk is high, then vl will be high,
too, and vice versa. For example, a lexical matcher based on edit (Levenshtein)
distance would assign a medium-level similarity to the pair of element names
“Street” and “State”; similarly, a lexical matcher based on the Jaccard distance
between the sets of letters in the two elements would assign such similarity to
the pair. For another pair of elements, for example “Street” and “Address1”,
both lexical matchers would compute low similarity. In either case, not only is
the computed similarity misleading as regards to the correct match, but both
matchers provide the same kind of evidence (both positive or both negative), so
its (in this case, harmful) influence is reinforced. If a weighted sum of the two
similarity values is used, the same evidence will be counted twice, in practice,
which will result in a phenomenon known as over-confidence. One of the matchers
is almost redundant, and including it in the composition process might actually
decrease the accuracy of matching. This effect has been observed in other fields
where evidence has to be combined, such as medical diagnosis, and one possible
tool for handling it has been belief reasoning in Bayesian networks. Our method
for combining matcher output is based on such a network.

2.1 Representation

A Bayesian network (BN) is a probabilistic graphical model that represents
a set of random variables and their conditional dependencies by means of a
directed acyclic graph (DAG). An edge in the DAG between two nodes signifies
that the variable Y corresponding to the child node is statistically conditionally
dependent on the variable X corresponding to the parent node. This dependence
is expressed in a conditional probability table (CPT) stored in the child node
for Y . If X ∈ Par(Y ), where Par(Y ) is the set of parent nodes of Y , this



4 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

table contains probability entries Pr(Y = y|Par(Y ) = z) for every possible
combination of values x that X can take on and configurations (sets of values)
z that the variables in Par(X) can take on. Likewise, when there is no direct
edge between two nodes, they are assumed to be conditionally independent given
their parents. In particular, when two nodes have a common parent, but no edge
between them, they are assumed to be conditionally independent given the value
of their parent. The presence (or absence) of edges in the DAG of a Bayesian
network is a way to express the statistical dependence (correlation) between
variables.

A Bayesian network to be used for combining outputs of individual matchers
in an ASM task is shown in Figure 1. Its DAG is a tree of depth four, with
some additional edges between some of the nodes. The meaning of the nodes is
as follows:

1. At the first (top) level, the root node corresponds to a Boolean variable
signifying whether two schema elements match. This is the final hypothesis
that has to be evaluated.

2. The nodes at the second level of the trees represent independent ways in
which the two element names can match (lexical, structural, instance-based,
etc.). It is expected that these variables are largely uncorrelated, because
they use different information to test for possible matches. They also each
correspond to clusters of individual matchers whose output is correlated. In
Figure 1, one cluster represents the hypothesis that the two elements match
lexically, and the other cluster represents the hypothesis that the instances
(values) of the two elements in their respective databases match.

3. The nodes at the third level of the tree are also Boolean and represent the
individual hypothesis that the two elements match, according to a single
matcher. In Figure 1, these include two lexical matchers LM1 and LM2, one
structural matcher, one synonym matcher, and two instance matchers IM1
and IM2.

4. The leaves of the tree, at the fourth level, represent the similarity values Vk,
k = 1,K of the individual matchers whose outputs have to be combined (in
this case, for illustration, K = 6). These variables are continuous, and their
possible values are the real numbers vk.

The overall structure of the BN expresses the understanding that when two
elements match (or don’t), the outputs of the structural matcher, synonym
matcher, the lexical match variable, and the instance match variable will be
statistically independent. This is what is to be expected on a matching task,
because these matchers all use different information from the two data schemas
in order to make an estimate about whether the elements match. However, the
outputs of the two lexical matchers LM1 and LM2 would be correlated, as ex-
pected if they use the same information (the names of the two elements). That
is why there exists an edge between nodes LM1 and LM2. Similarly, the output
of the two instance matchers would be correlated, too, because they would both
use the same information to base their estimates on (namely, the contents of the
two corresponding database fields). Accordingly, an edge between nodes IM1



Matcher Composition Methods for Automatic Schema Matching 5

����������	
�

��


����
��

��	
�

�	��
	����

��	
���
�������

��	
���

���	��
�

��	
�

��� ��� ��


�� � � � �
� 
 � � � �

Fig. 1. A Bayesian network for combining the output of multiple individual matchers.

and IM2 reflects this dependency. This structure of the BN, then, corresponds
to our understanding of which matchers produce highly correlated outputs, and
which ones are statistically independent.

2.2 Parameter Estimation

In addition to the graph of the BN, if the network is to be used for inference,
the parameters in its CPTs have to be specified, too. This can be done by means
of labeled cases, where pairs el = (S1.Ei, S2Ej) of elements S1.Ei and S2.Ej ,
l = 1, . . . , N have been run through allK matchers, to produce the corresponding
similarity values vl,k, l = 1, . . . , N , k = 1, . . . ,K, and the correct labeling for
some or all of the remaining Boolean variables has been supplied, too.

If labels for all Boolean variables have been supplied, then the estimation of
the probabilities in the CPTs of the Boolean nodes could be reduced to frequency
counting. That is, the entry Pr(Y = y|Par(Y ) = z) is equal to the ratio of the
number of cases when Y had a specific value y (either True or False) and the
parents of Y were in configuration z, and the number of times the parents of Y
were in configuration z (regardless of the value of Y ). For the continuous nodes
Vk, a suitable parametric model for the similarity values must be chosen. One
possible model is a normal (Gaussian) distribution with mean µand variance σ2.
Then, two separate normal distributions N(µk,+, σ

2
k,+) and N(µk,−, σ

2
k,−) are

estimated for positive (matching) and negative (non-matching) cases (pairs of



6 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

elements), respectively. The mean µk,+ is the average of the similarity values vk,i
of all data cases where the parent node Xk of Vk has been labeled with value
True. The parameter σk,+ is the sampled standard deviation of these cases.
Analogously, the parameters µk,− and σk,− are the sample mean and standard
deviation of vk,i over all cases when the parent node Xk has been labeled with
the value False.

It is also possible to estimate the parameters in the CPTs when only some of
the nodes have been labeled. A typical situation arises when a human designer
has provided feedback about whether the two elements match (that is, has as-
signed a Boolean value to the root node of the BN), but has not explained why
they match (that is, whether the match is lexical, instance-based, structural,
based on a dictionary, etc.) This situation is more challenging, but as long as
the graph of the network is known and fixed, it is still possible to estimate the
most likely values of the parameters in its CPT. This problem is known as pa-
rameter learning with partially observed data in Bayesian networks, and can be
solved by means of gradient ascent in the likelihood function or the Expectation
Maximization algorithm, among other methods [9, 11].

Assuming there is a data set Σ of N independent training cases, the log-
likelihood scoring function is

log L(Θ|Σ) =
1

N

M∑

i=1

N∑

l=1

log P (Xil|Pa(Xi), θi),

where Σ denotes the training data set, Pa(Xi) denotes the parents of the node
Xi, i = 1, . . . , M , and Θ is the parameter vector Θ = {θ1, . . . , θM}.

However, we only have partial observations, which means that there are sev-
eral hidden nodes with no labels. For each training case, one pair of elements
S1.Ei and S2.Ej is run through all K individual matchers to produce the cor-
responding similarity values vi,j,k, and a true label of two elements matching or
not for the root node OverallMatch is provided by the human designer. With
known structure and partial observation, we can use the EM (expectation max-
imization) algorithm to find a locally optimal maximum-likelihood estimate of
the parameters. After learning parameters from training data set, each discrete
node has a conditional probability table (CPT) specifying the probability of each
state of the node given each possible combination of parents’ states.

2.3 Inference

Given the individual similarity values Vk = vk, k = 1,K that have been reported
by all individual matchers, and a full Bayesian network with CPTs estimated
from data, we can evaluate the probability that the two elements match on the
basis of all evidence, by means of a standard computational process known as
belief updating. One possible method to perform belief updating is to construct
the join tree of the Bayesian network, and use if for inference. This can be done
by means of a number of commercial and freely available reasoning engines.



Matcher Composition Methods for Automatic Schema Matching 7

The continuous variables Vk, under the chosen Gaussian parametrization, can be
incorporated into the process of belief updating in the form of virtual (uncertain)
evidence [12]. To supply virtual evidence to a belief updating engine, all that is
needed is the likelihood ratio of the observed values vk for the similarity value
variables Vk:

L(Vk = vk|Xk)
.
=

Pr(Vk = vk|Xk = T )

Pr(Vk = vk|Xk = F )
=

N(vk|µk,+, σ
2
k,+)

N(vk|µk,−, σ2
k,−)

,

where N(v|µ, σ2) is the probability that measurement v comes from normal
distribution with mean µ and variance σ2, and Xk is the parent node of Vk in
the BN.

After the process of belief updating concludes, all Boolean nodes in the net-
work will be assigned probability values according to the observed evidence (val-
ues) vk for the similarity value variables Vk. The probability of the root node is
the final estimate that the two elements match, given the combined evidence of
the individual matchers.

3 Experimental Results

In order to evaluate the match accuracy of any matcher described below, we
used five XML schemas for purchase orders, CIDX, Excel, Noris, Paragon and
Apertum, kindly provided to us by the University of Leipzig. The figure of merit
for evaluation of the accuracy of matching was the popular f-measure, defined as
the harmonic mean of precision and recall, as used in the information retrieval
community. If the number of true matches identified by the matching system as
such (hits) is A, the number of true matches not identified as such (misses) is B,
and the number of cases when two elements do not match, but the matcher incor-
rectly declares a match (false positives) is C, the f-measure F can be computed
as F = 2A/(2A+B + C).

We developed 13 basic schema matchers and evaluated the ability of the
proposed Bayesian method to combine their outputs so as to improve the accu-
racy of matching. Of these, 11 were lexical matchers: CosineSimilarity, Ham-
mingDistance, JaroMeasure, LevenshteinString, BigramDistance, TrigramDis-
tance, QuadgramDistance, PrefixName, SuffixName, AffixName, SubstringDis-
tance. One matcher, PathName, was structural, comparing the entire paths of
the two elements in their respective XML schemas. The last basic matcher was
neither lexical nor structural: the Synonym matcher declared a match if and
only if the two tested elements were found in a list of synonyms relevant to the
domain of purchase orders. Based on their method of operation, the similarity
values computed by the 11 lexical matchers can be expected to be highly cor-
related and statistically dependent; in contrast, the synonym matcher could be
expected to produce output that is largely independent of the lexical matchers.
Experimental evaluation of their pairwise dependence confirms this intuition:



8 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

Figure 2 shows the pairwise correlation between all 13 pairs of matchers, eval-
uated from all pairs of elements in all ten pairs of schemas. Clearly, all 11 lexi-
cal matchers are highly correlated, whereas their correlation with the Synonym
matcher is minimal. Somewhat surprisingly, the structural matcher, PathName,
is the least correlated with any other matcher.

Fig. 2. Pair-wise correlations between all pairs of basic matchers, numbered as follows:
1: Edit Distance; 2: Sub-string Distance; 3: Bi-Gram Distance; 4: Tri-Gram Distance;
5: Quad-Gram Distance; 6: Cosine Similarity; 7: Hamming Distance; 8: Jaro Measure;
9: Affix Name; 10: Prefix Name; 11: Suffix Name; 12: Path Name; 13: Synonym.

The kind of major correlation that exists between lexical matchers is illus-
trated in Figure 3 that shows a scatter plot of the similarity values computed by
the Edit (Levenshtein) Distance matcher and the Sub-string Distance matcher.
Their high correlation (0.9892) makes one of them almost redundant, if the other
one is present.

Regarding the experimental evaluation of matching accuracy, as with any
machine learning method, care should be given to the training and testing eval-
uation protocol, that is, which data are used for training and which data are
used for testing. We used three evaluation protocols, as described below.

3.1 Testing on Training Data set

This is the simplest evaluation protocol, where we use the same data set for
testing and training. Its purpose is to evaluate how well we can fit the training
data. Under this protocol, we define ten matching tasks that correspond to all



Matcher Composition Methods for Automatic Schema Matching 9

Fig. 3. Scatter plot of similarity values computed by the Edit Distance and Sub-
string Distance matchers. Their output is clearly correlated, resulting in a correlation
coefficient of 0.9892.

possible pairs of the five XML schemas. For each matching task (pair of schemas),
we build a dedicated Bayesian composite matcher that is specific for this task.
The same data set, then, is used as evidence to predict the belief for every
pair of elements. This is the most lenient evaluation protocol, since the learning
algorithm has seen during training the data that will be used for testing.

After a similarity matrix is computed for all pairs of elements of two database
schemas, an additional global matching step called Max1/Delta is performed to
produce the final match decisions, based on the understanding that most often
(but not always) mappings between database elements are one-to-one [2]. Since
this procedure is sensitive to the exact value of the Delta parameter, we present
below results as a function of it. After global match decisions have been obtained,
they are compared with the ground truth, and the f-measure for this pair of
schemas is computed. These f-measures are averaged over all pairs of tasks in
the testing data set (in this case, ten pairs of tasks), in order to arrive at the
final overall f-measure.

Figure 4 shows a comparison between all 13 basic matchers and the Bayesian
Composite Matcher (BCM). The accuracy of the BCM reaches 0.819 and is sig-
nificantly higher than that of any other matcher. It is also practically constant for
a wide range of the parameter Delta. The performance of Path Name matcher is
better than other individual matchers, because it is a hybrid matcher combining
two basic match techniques.



10 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

Fig. 4. Comparison of average f-measure between the Bayesian Composite Matcher
and all other matchers.

3.2 Leave-One-Out Cross Validation (LOOCV)

A more realistic testing protocol is under the leave-one-out cross validation
(LOOCV) method, where training and testing data are clearly separated. Each
of the ten pairs of schemas is used for testing, using a BCM that was learned
using the other nine pairs of schemas. The results are averaged over the ten
pairs, as follows:

1. Build training and testing data sets for 10 test tasks. For instance, if the
similarity matrix of Excel ↔ Noris is used as testing set, the training data
set for this test task is a collection of similarity matrices of the remaining 9
schema pairs.

2. Learn one Bayesian composite matcher for each task based on its training
data.

3. Implement Max1/Delta selection approach on the composite similarity ma-
trix generated by each Bayesian Composite Matcher.

3.3 Exclusive Leave-One-Out Cross Validation (ExclLOOCV)

The second protocol described above still allowed the training algorithm to see
data from the pair of schemas that would be used for testing, but not the ground
truth for their direct match. To eliminate any exposure of the training algorithm
to data that would be used for testing, we modified the LOOCV procedure as
follows. For each task, if the test pair is A ↔ B, the training examples only come
from the three remaining schemas not involving either A nor B. For example,
if one test set is Excel ↔ Noris, it will be tested with the Bayesian composite
matcher that has used only the following three pairs of schemas for training:



Matcher Composition Methods for Automatic Schema Matching 11

CIDX ↔ Apertum, CIDX ↔ Paragon, and Apertum ↔ Paragon. This is
the maximally realistic testing protocol.

Figure 5 shows a comparison between the two variants of the LOOCV eval-
uation protocol for the Bayesian Composite Matcher. It can be seen that the
accuracy drops to 0.76 under usual LOOCV and 0.73 under exclusive LOOCV.

Fig. 5. Comparison of Bayesian composite matcher performance under LOOCV and
exclusive LOOCV testing protocols.

4 Non-Bayesian Matcher Composition Optimizations

Based on familiarity with the domain acquired during the Bayesian Networks
approach, we further explored non-Bayesian matcher composition approaches.
A series of optimizations proved promising and are described here.

Typically, datasets have element names with strong lexical components, so it
was critical to develop a sound fundamental lexical (name) matcher that could
be heavily used as a component in higher-level composite matchers. The re-
sulting Name matcher was a combination of fundamental matchers described in
Section 3, using token processing and largely COMA-style techniques [2] on the
element name tokens. Incorporation of abbreviation and synonym information
was an integral part of this process, too. As an example, averaged across all
10 schema pairs in the COMA dataset, we only achieve an f-measure of 0.433
using a simple prefix name matcher, which looks for identical prefixes in column
names. A synonym matcher, utilizing a lookup table is also an important com-
ponent, but only achieved an f-measure of 0.461 by itself. Through experimen-
tal analysis, we found that combining lexical matchers into a Name Composite



12 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

matcher achieved a marginal increase to 0.494, but that the resulting matcher
was a critical component of higher-level matchers. A PathName matcher, which
compares the full paths to each element in their XML schemas, based on this
Name matcher boosted the f-measure to 0.820. Note that these matchers incor-
porated additional optimizations that were applied in parallel, some of which
are described below.

The next step was to develop a Structure matcher which uses different strate-
gies based on the type of nodes (root, interior or leaf node) being compared [19].
The matchers that we found to produce the best overall f-measures are shown
in the table.

Table 1. Best matchers for various combinations of node types.

XML Schema node type Matcher applied

LEAF-LEAF PathName

ROOT-ROOT LeafPath

INTERIOR-INTERIOR ChildPath, SiblingPath

INTERIOR-ROOT ChildPath

INTERIOR-LEAF LeafPath

ROOT-LEAF LeafPath

Here LeafPath is an application of the Name matcher to the paths to all
leaves of the element nodes being compared. Similarly, ChildPath is an applica-
tion of the Name matcher to the paths to all of the children of the nodes begin
compared, and SiblingPath is an application of the Name matcher to all of the
paths to the siblings of the nodes being compared. For the ten schema pairs in the
COMA dataset, the Structure matcher achieved an average f-measure of 0.871.
In addition to combining matchers, it was often found to be useful to ”pre-filter”
candidate element pairs by simply eliminating those for which the Name similar-
ity was less than 50% This REQUIRE ELEMENT NAMES TO BE SIMILAR
optimization was originally created as an optimization to improve compute time,
but actually had a noticeable positive effect on overall results.

We next developed a LinearComposite matcher which allows one to manually
specify weights for component matchers. While this technique itself is by no
means automatic, there were some interesting findings in this work. The matcher
was initially developed as a mechanism to strengthen effects of the Name and
SiblingPath matchers, which the StructureMatcher seemed to diminish in some
cases. The LinearComposite matcher was enhanced to consider the types of the
XML Schema nodes being compared, as well. For example, for INTERIOR-
INTERIOR node comparisons, it just uses StructureMatcher, but for LEAF-
LEAF comparisons it uses additional information such as SiblingName and data
type. The improved results suggest, perhaps somewhat intuitively, that interior
nodes are more sensitive to where they appear in the XML hierarchy, but that



Matcher Composition Methods for Automatic Schema Matching 13

leaf nodes are more sensitive to their siblings. The LinearComposite matcher,
including various optimizations, achieved an average f-measure of 0.901 across
all 10 schema pairs.

Fig. 6. CIDXPOSCHEMA and Paragon element similarity scatterplots. The match-
ers and f-measures achieved were (top row, left-to-right) PrefixName 0.268, Synonym
0.548, Name 0.557, (bottom row, left-to-right) PathName 0.854, Structure 0.866, Lin-
earComposite 0.903. Green=true positive, Red=false positive, Yellow=false negative.

Two other optimizations involved re-evaluating neighbor similarities. In
the first, MULTIMATCH OPTIMIZATION, if a schema element had multiple
matches, we would re-consider all of its similarities with a slightly less stringent
threshold. The other, SIBLING MULTIMATCH OPTIMIZATION, was that if
a leaf element pair had multiple siblings that were matches, then we would re-
compare all siblings of each, primarily with a less stringent threshold. This could
catch cases where the leaf nodes were representing the parts of an address, for
example. In this case one would expect multiple siblings to match their coun-
terparts in the set of address leaf nodes in the other schema. Finally, there are
simple heuristics which can be applied such as eliminating unlikely node combi-
nations with the ELIMINATE BAD DATATYPE MATCHES optimization. For
example, ROOT nodes never matched LEAF nodes.

In general, our approach when investigating such optimizations and matcher
combination alternatives was to expose the enhancements as parameters so that
a human operator could experiment with them via a GUI. As can be seen in the
table, individual optimizations can have different effects on matchers, though
we highlight those that help most with the higher level combination matchers
(Structure and LinearComposite).



14 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

Table 2. Effect of turning off some of the individual optimizations on average f-
measures for various matchers.

Optimization Turned OFF:
Matcher:

PrefixName Synonym Name PathName Structure LinComp

NONE 0.433 0.461 0.494 0.820 0.871 0.901

REQUIRE ELEMENT NAMES TO BE SIMILAR 0.433 0.461 0.496 0.748 0.715 0.792

MULTIMATCH OPTIMIZATION 0.449 0.544 0.583 0.831 0.861 0.874

SIBLING MULTIMATCH OPTIMIZATION 0.433 0.459 0.492 0.821 0.869 0.898

ELIMINATE BAD DATATYPE MATCHES 0.405 0.456 0.490 0.786 0.868 0.897

5 Related Work

As mentioned in the first section, many methods for creating composite matchers
have been tried, and this section explains the difference between them and the
proposed approach. One major distinction between these methods is whether
they rely on manual tuning of the composition sttructure and parameters, or
such parameters are estimated from a training set and verified on an independent
test set. The composition methods developed in the COMA [2, 6] and GLUE
[14] systems are based on manual tuning of the composition parameters, so
comparison with learning methods for tuning parameters is not entirely correct;
a composite matcher that is manually tuned with a specific set of schemas in
mind can certainly be expected to be more accurate than a learning matcher
that is tested under a cross-validation protocol.

Among the learning methods for composing matchers, our approach is most
similar to the one proposed by Marie and Gal [13], who have approached the
problem from a Bayesian network perspective, too, arguing that a disciplined ap-
proach to handling match uncertainty has to be applied. However, their approach
is based on Naive Bayes networks, that is, two-level Bayesian networks with one
root node that corresponds to the matching event, and many leaf nodes that
are directly children to the root node. It can be shown that such a Naive Bayes
network has the same classification properties as a logistic regression model, and
the decision surface is linear, similar to the one used in the LSD and GLUE
systems [4, 14]. In contrast, a full (non-naive) Bayesian network like the one
proposed in this paper can model arbitrary correlations and decision surfaces.

Furthermore, the Bayesian network proposed in this paper is also different
from the Bayesian network classifiers used in the YAM system [16] in that our
network includes unobservable nodes corresponding to types of matchers; in
contrast, YAM employs the BayesNet classifier from the WEKA library that can
learn the structure of a fully observable network by adding and removing edges,
but cannot add unobservable nodes [17]. Unobservable nodes corresponding to a
type of matcher (e.g. lexical, dictionary-based, structural, etc.) present a natural
way of representing the conditional dependency between multiple matchers of the
same type, because they restrict the edges of the graph only to the nodes of the
same type. In contrast, a fully-connected BN without hidden nodes would require
an exponential number of CPT parameters to be estimated, which would make



Matcher Composition Methods for Automatic Schema Matching 15

it practically impossible to collect the data necessary for estimating them. This
problem is further compounded by the continuous values of the similarity values
produced by basic matchers — in fact, it is not immediately clear how YAM
would have been able to learn a fully connected BN with 13 continuous nodes
representing the similarity values of each basic matcher, from the few thousand
examples available from the PO dataset under the two LOOCV protocols.

On the other hand, non-linear classifiers such as decision trees [15] can in-
deed represent non-linear decision surfaces from a limited number of training
examples, but are not inherently probabilistic, and the binary decisions out-
put by them are not easy to use in the global assignment process that deter-
mines the entire mapping between two schemas from the pair-wise matches be-
tween their individual elements. Other probabilistic approaches to the automatic
schema matching problem include the use of an attribute dictionary in the AU-
TOMATCH system, where training examples of matching schemas are used to
compile the dictionary, and candidate elements from new schemas are compared
probabilistically to the dictionary. Although this approach does result in prob-
abilistic estimates of matches, the compilation of the dictionary requires many
training examples, and is best suited to domains where many pairs of schemas
have to be matched repeatedly.

6 Conclusions and Future Work

We have proposed a novel method for creating composite matchers for the pur-
pose of automatic schema matching. Its main advantage is the explicit modeling
of the conditional statistical dependence between the similarity values computed
by individual basic matchers. Experiments suggest that it combines successfully
the outputs of such matchers, and achieves matching accuracy significantly ex-
ceeding that of the individual matchers. Furthermore, its outputs are estimates
of the genuine probabilities of match, which allows the application of decision-
theoretic methods for optimal judgment whether elements match, or not. Further
work will focus on leveraging the clear semantics of the computed probabilities
for improving the accuracy of the global matching algorithm, as well as on im-
proving the computational properties of the proposed Bayesian method.

As a means of comparison and investigation into the limits on the accuracy
obtainable by means of matcher composition, we analyzed and identified several
typical matching mistakes made by the basic matchers, and devising composition
methods that could avoid them, without designing domain-specific matchers.
These matchers increased the matching accuracy even further, compared to the
Bayesian approach, although it remains to be seen in practice how these matchers
would peform in new domains.

References

1. E. Rahm, P. A. Bernstein, A Survey of Approaches to Automatic Schema Matching,
VLDB Journal, 10:4 2001.



16 D. Nikovski, A. Esenther, X. Ye, M. Shiba, and S. Takayama

2. H.H. Do, E. Rahm, COMA - A System for Flexible Combination of Schema Match-
ing Approaches, in Proceedings of the 28th International Conference on Very Large
Data Bases (VLDB), 2002.

3. W. Li, C. Clifton, A Tool for Identifying Attribute Correspondences in Heteroge-
neous Databases Using Neural Network, Journal of Data and Knowledge Engineer-
ing 33: 1, 49-84, 2000.

4. A. Doan, P. Domingos, and A. Halevy., Learning to Match the Schemas of
Databases: A Multistrategy Approach, Machine Learning Journal, no. 50, pp. 279–
301, 2003.

5. S. Bergamaschi, S. Castano, M. Vincini, D. Beneventano, Semantic Integration of
Heterogeneous Information Sources, Journal of Data and Knowledge Engineering
36: 3, 215-249, 2001.

6. H. H. Do, E. Rahm, Matching Large Schemas: Approaches and Evaluation, Journal
of Information Systems, Vol. 32, Issue 6, Sep. 2007.

7. A.H. Doan, P. Domingos, A. Halevy, Reconciling Schemas of Disparate Data
Sources: A Machine Learning Approach, SIGMOD 2001.

8. D.W. Embley, Multifaceted Exploitation of Metadata for Attribute Match Discovery
in Information Integration. WIIW 2001.

9. D. Heckerman, A Tutorial on Learning Bayesian Networks, Journal of Learning in
Graphical Models, pp. 301-354, 2001.

10. J. Tang, J. Z. Li, Using Bayesian Decision for Ontology Mapping, Journal of Web
Semantics, Vol. 4, Issue 4, Dec. 2006.

11. Thiesson, B., Accelerated Quantification of Bayesian Networks with Incomplete
Data, Proceedings of the Conference on Knowledge Discovery in Data, 1995, pp.
306-311.

12. Rong Pan, Yun Peng, Zhongli Ding, Belief Update in Bayesian Networks Using
Uncertain Evidence, 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), 2006, pp.441-444.

13. A. Marie and A. Gal. Managing Uncertainty in Schema Matcher Ensembles. Pro-
ceedings of the 1st International Conference on Scalable Uncertainty Management.
Washington, DC, October 2007, pp. 60-73.

14. A.H. Doan, J. Madhavan, R. Dhamankar, P. Domingos, A. Halevy, Learning to
Match Ontologies on the Semantic Web, The VLDB Journal 12 (4), 2003, pp. 303-
319.

15. F. Duchateau, Z. Bellahsene and R. Coletta, A Flexible Approach for Planning
Schema Matching Algorithms, OTM Conferences (CooPIS), 2008, pp. 249-264.

16. F. Duchateau, R. Coletta, Z. Bellahsene, R. J. Miller, Not Yet Another Matcher,
Proceedings of CIKM’09, Hong-Kong, China, November 2009, pp. 2079-2080.

17. Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition, Morgan Kaufmann, 2005.

18. Berlin, J. and A. Motro: Database Schema Matching Using Machine Learning with
Feature Selection. CAiSE 2002, pp.452-466.

19. A. Rajesh and S.K. Srivatsa, XML Schema Matching — Using Structural Infor-
mation. International Journal of Computer Applications, Vol. 8, No. 2, 34-41, 2010.


	Title Page
	Title Page
	page 2


	Matcher Composition Methods for Automatic Schema Matching
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16


