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Johan P. Hansen

Department of Mathematics, Aarhus University⋆, matjph@imf.au.dk

Abstract. We present a general theory to obtain good linear network
codes utilizing the osculating nature of algebraic varieties. In particular,
we obtain from the osculating spaces of Veronese varieties explicit fami-
lies of equidimensional vector spaces, in which any pair of distinct vector
spaces intersect in the same dimension.
Linear network coding transmits information in terms of a basis of a vec-
tor space and the information is received as a basis of a possible altered
vector space. Ralf Koetter and Frank R. Kschischang [KK08] introduced
a metric on the set of vector spaces and showed that a minimal distance
decoder for this metric achieves correct decoding if the dimension of the
intersection of the transmitted and received vector space is sufficiently
large.
The proposed osculating spaces of Veronese varieties are equidistant in
the above metric. The parameters of the resulting linear network codes
are determined.

Notation

– Fq is the finite field with q elements of characteristic p.
– F = Fq is an algebraic closure of Fq.
– Rd = F[X0, . . . , Xn]d and Rd(Fq) = Fq[X0, . . . , Xn]d the homoge-

nous polynomials of degree d with coefficients in F and Fq.
– R = F[X0, . . . , Xn] = ⊕dRd and R(Fq) = Fq[X0, . . . , Xn] =

⊕dRd(Fq)
– AffCone(Y ) ⊆ F

M+1 denotes the affine cone of the subvariety
Y ⊆ P

M and AffCone(Y )(Fq) its Fq-rational points.
– Ok,X,P ⊆ P

M is the embedded k-osculating space of a variety
X ⊆ P

M at the point P ∈ X and Ok,X,P (Fq) its Fq-rational
points, see 2.

– V = σd(P
n) ⊆ P

M with M =
(

d+n

n

)

− 1 is the Veronese variety,
see 1.1.

For generalities on algebraic geometry we refer to [Har77].

⋆ Part of this work was done while visiting Institut de Mathématiques de Luminy,
MARSEILLE, France.
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1 Introduction

Algebraic varieties have in general an osculating structure. By Ter-
racini’s lemma [Ter11], their embedded tangent spaces tend to be in
general position. Specifically, the tangent space at a generic point
P ∈ Q1Q2 on the secant variety of points on some secant is spanned
by the tangent spaces at Q1 and Q2. In general, the secant variety
of points on some secant have the expected maximal dimension and
therefore the tangent spaces generically span a space of maximal
dimension, see [Zak93].

This paper suggests k-osculating spaces including tangent spaces
of algebraic varieties as a source for constructing linear subspaces
in general position of interest for linear network coding. The k-
osculating spaces are presented in 1.1.

In particular, we will present the k-osculating subspaces of Veronese
varieties and apply them to obtain linear network codes generalizing
the results in [Han12]. The Veronese varieties are presented in 2.

Definition 1 Let X ⊆ P
M be a smooth projective variety of dimen-

sion n defined over the finite field Fq with q elements. For each pos-
itive integer k we define the k-osculating linear network code Ck,X .
The elements of the code are the linear subspaces in F

M+1
q which

are the affine cones of the k-osculating subspaces Ok,X,P (Fq) at Fq-
rational points P on X, as defined in 1.1.

Specifically

Ck,X = {AffCone(Ok,X,P )(Fq) | P ∈ X(Fq)} .

The number of elements in Ck,X is by construction |X(Fq)|, the
number of Fq-rational points on X.

One should remark that the elements in Ck,X are not necessarily
equidimensional as linear vector spaces, however, their dimension is
at most

(

k+n

n

)

.

Applying the construction to the Veronese variety Xn,d presented
in 2, we obtain a linear network code Ck,Xn,d

and the following result,
which is proved in section 2.1.



Theorem 2 Let n, d be positive integers and consider the Veronese
variety Xn,d ⊆ P

M , with M =
(

d+n

n

)

− 1, defined over the finite field
Fq as in 2.

Let Ck,Xn,d
be the associated k-osculating linear network code, as

defined in Definition 1.
The packet length of the linear network code is

(

d+n

n

)

, the dimen-
sion of the ambient vector space. The number of vector spaces in the
linear network code Ck,Xn,d

is |Pn(Fq)| = 1 + q + q2 + · · · + qn, the
number of Fq-rational points on P

n.
The vector spaces V ∈ Ck,Xn,d

in the linear network code are

equidimensional of dimension
(

k+n

n

)

as linear subspaces of the ambi-

ent
(

d+n

n

)

-dimensional Fq-vector space.
The elements in the code are equidistant in the metric dist(V1, V2)

of (5) of Section 3. Specifically, we have the following results.
For vector spaces V1, V2 ∈ Ck,Xn,d

with V1 6= V2

i) if 2k ≥ d, then dimFq
(V1 ∩ V2) =

(

2k−d+n

n

)

and

dist(V1, V2) = 2

(

(

k + n

n

)

−

(

2k − d+ n

n

)

)

.

ii) if 2k ≤ d, then dimFq
(V1 ∩ V2) = 0 and

dist(V1, V2) = 2

(

k + n

n

)

.

1.1 Osculating spaces

Principal Parts. Let X be a smooth variety of dimension n defined
over the field K and let F be a locally free OX -module. The sheaves
of k-principal parts Pk

X(F) are locally free and if L is of rank 1, then
P
k
X(L) is a locally free sheaf of rank

(

k+n

n

)

.
There are the fundamental exact sequences

0 → SkΩX ⊗OX
F → P

k
X(F) → P

k−1
X (F) → 0 ,

where ΩX is the sheaf of differentials on X and SkΩX its kth sym-
metric power. These sequences can be used to give a local description
of the sheaf principal parts. Specifically, if L is of rank 1, then P

k
X(L)



is a locally free sheaf of rank
(

k+n

n

)

. Assume furthermore that X is
affine with coordinate ring A = K[x1, . . . , xn], then X and L can
be identified with A. Also SkΩX can be identified with the forms
of degree k in A[dx1, . . . , dxn] in the indeterminates dx1, . . . dxn and
Pk
X(L) with the polynomials of total degree ≤ k in the indetermi-

nates dx1, . . . dxn. For arbitraryX , the local picture is similar, taking
local coordinates x1, . . . , xn at the point in question replacing A by
the completion of the local ring at that point.

In general, for each k there is a canonical morphism

dk : F → P
k
X(F) .

For L of rank 1, using local coordinates as above, dk maps an element
in A to its truncated Taylor series

f = f(x1, . . . , xn) 7→
∑

|α|≤k

1

|α|!

∂|α|f

∂xα
,

where α = i1i2 . . . in and |α| = i1 + i2 + · · ·+ in.

Osculating Spaces. Let X be a smooth variety of dimension n

and let f : X → P
M be an immersion. For L = f ∗

OPn(1) let Pk
X(L)

denote the sheaf of principal parts of order k. Then Pk
X(L) is a locally

free sheaf of rank
(

k+n

n

)

and there are homomorphisms

ak : OM+1
X → P

k
X(L) .

For P ∈ X the morphism ak(P ) defines the k-osculating space Ok,X,P

to X at P as
Ok,X,P := P(Im(ak(P ))) ⊆ P

M (1)

of projective dimension at most
(

k+n

n

)

− 1, see [Pie77], [BPT92] and
[PT90]. For k = 1 the osculating space is the tangent space to X at
P .

2 The Veronese variety

Let R1 = F[X0, . . . , Xn]1 be the n + 1 dimensional vector space of
linear forms in X0, . . . , Xn and let P

n = P(R1) be the associated
projective n-space over F.



For each integer d ≥ 1, consider Rd the vector space of forms
of degree d. A basis consists of the

(

n+d

d

)

monomials Xd0
0 Xd1

1 . . .Xdn
n

with d0 + d1 + · · · + dn = d. Let P
M = P(Rd) be the associated

projective space of dimension M =
(

n+d

d

)

− 1.
The d-uple morphism of Pn = P(R1) to P

M = P(Rd) is the mor-
phism

σd : P
n = P(R1) → P

M = P(Rd)

L 7→ Ld

with image the Veronese variety

Xn,d = σd(P
n) = {Ld| L ∈ P(R1)} ⊆ P

M . (2)

2.1 Osculating subspaces of the Veronese variety

For the Veronese variety Xn,d of (2), the k-osculating subspaces of
(1) with 1 ≤ k < d, at the point P ∈ Xn,d corresponding to the
1-form L ∈ R1, can be described explicitly as

Ok,Xn,d,P = P({Ld−kF | F ∈ Rk}) = P(Rk) ⊆ P
M (3)

of projective dimension exactly
(

k+n

n

)

− 1, see [Seg46], [CGG02],
[BCGI07] and [BF03]. The osculating spaces constitute a flag of lin-
ear subspaces

O1,Xn,d,P ⊆ O2,Xn,d,P ⊆ · · · ⊆ Od−1,Xn,d,P .

This explicit description of the k-osculating spaces allows us to
establish the claims in Theorem 2.

The associated affine cone of the k-osculating space in (3) is

AffCone(Ok,Xn,d,P )(Fq) = {Ld−kF | F ∈ Rk} (4)

of dimension
(

k+n

n

)

, proving the claim on the dimension of the vector
spaces in the linear network code Ck,Xn,d

.
As there is one element in Ck,Xn,d

for each Fq-rational point on
P
n, it follows that the number of elements in Ck,Xn,d

is

|Ck,Xn,d
| = |Pn(Fq)| = 1 + q + q2 + · · ·+ qn .



Finally, let V1, V2 ∈ Ck,Xn,d
with V1 6= V2 and

Vi = {Ld−k
i Fi| Fi ∈ Rk}

If 2k ≥ d, we have

V1 ∩ V2 ={Ld−k
1 F1| F1 ∈ Rk} ∩ {Ld−k

2 F2| F2 ∈ Rk}

={Ld−k
1 Ld−k

2 G| G ∈ R2k−d} .

Otherwise the intersection is trivial, proving the claims on the di-
mension of the intersections and the derived distances.

3 Linear network coding

In linear network, coding transmission is obtained by transmitting
a number of packets into the network and each packet is regarded
as a vector of length N over a finite field Fq. The packets travel
the network through intermediate nodes, each forwarding Fq-linear
combinations of the packets it has available. Eventually the receiver
tries to infer the originally transmitted packages from the packets
that are received, see [CWJJ03] and [HMK+06].

All packets are vectors in F
N
q ; however, Ralf Koetter and Frank

R. Kschischang [KK08] describe a transmission model in terms of lin-
ear subspaces of FN

q spanned by the packets and they define a fixed
dimension code as a nonempty subset C ⊆ G(n,N)(Fq) of the Grass-
mannian of n-dimensional Fq-linear subspaces of F

N
q . They endowed

the Grassmannian G(n,N)(Fq) with the metric

dist(V1, V2) := dimFq
(V1 + V2)− dimFq

(V1 ∩ V2), (5)

where V1, V2 ∈ G(n,N)(Fq).
The size of the code C ⊆ G(n,N)(Fq) is denoted by |C|, the

minimal distance by

D(C) := min
V1,V2∈C,V1 6=V2

dist(V1, V2) (6)

and C is said to be of type [N, n, logq |C|, D(C)]. Its normalized weight

is λ = n

N
, its rate is R =

logq(|C|)

Nn
and its normalized minimal distance

is δ = D(C)
2n

.



They showed that a minimal distance decoder for this metric
achieves correct decoding if the dimension of the intersection of
the transmitted and received vector-space is sufficiently large. Also
they obtained Hamming, Gilbert-Varshamov and Singleton coding
bounds.
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