Skip to main content

Class Imbalance in the Prediction of Dementia from Neuropsychological Data

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

Abstract

Class imbalance affects medical diagnosis, as the number of disease cases is often outnumbered. When it is severe, learning algorithms fail to retrieve the rarer classes and common assessment metrics become uninformative. In this work, class imbalance is approached using neuropsychological data, with the aim of differentiating Alzheimer’s Disease (AD) from Mild Cognitive Impairment (MCI) and predicting the conversion from MCI to AD. The effect of the imbalance on four learning algorithms is examined through the application of bagging, Bayes risk minimization and MetaCost. Plain decision trees were always outperformed, indicating susceptibility to the imbalance. The naïve Bayes classifier was robust but suffered a bias that was adjusted through risk minimization. This strategy outperformed all other combinations of classifiers and meta-learning/ensemble methods. The tree-augmented naïve Bayes classifier also benefited from an adjustment of the decision threshold. In the nearly balanced datasets, it was improved by bagging, suggesting that the tree structure was too strong for the attribute dependencies. Support vector machines were robust, as their plain version achieved good results and was never outperformed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dementia the Journal of the Alzheimers Association 3(3), 186–191 (2007)

    Article  Google Scholar 

  2. Alzheimer’s Association: Alzheimer’s Disease Facts and Figures. Technical report, Alzheimer’s Association (2012)

    Google Scholar 

  3. Yesavage, J.A., O’Hara, R., Kraemer, H., Noda, A., Taylor, J.L., Rosen, A., Friedman, L., Sheikh, J., Derouesné, C.: Modeling the prevalence and incidence of Alzheimers disease and mild cognitive impairment. Journal of Psychiatric Research 36, 281–286 (2002)

    Article  Google Scholar 

  4. Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., Mendonça, A.D.: Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Research Notes 4:299 (2011)

    Google Scholar 

  5. Lemos, L.: A data mining approach to predict conversion from mild cognitive impairment to Alzheimers Disease. Master’s thesis, IST (2012)

    Google Scholar 

  6. Breiman, L.E.O.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery 41(1), 67–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. Training, 179–186 (1997)

    Google Scholar 

  9. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Int. Joint Conf. on Artificial Intelligence, vol. 17(1), pp. 973–978 (2001)

    Google Scholar 

  10. Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of Imbalanced Data: a Review. Int. Journ. of Pattern Recognition and Artificial Intelligence 23(04), 687–719 (2009)

    Article  Google Scholar 

  11. Akbani, R., Kwek, S.S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Wu, G., Chang, E.Y.: Class-Boundary Alignment for Imbalanced Dataset Learning. In: ICML 2003 Workshop on Learning from Imbalanced Data Sets (2003)

    Google Scholar 

  13. Tao, D., Tang, X.: Assymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1088–1099 (2006)

    Article  Google Scholar 

  14. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40, 3358–3378 (2007)

    Article  MATH  Google Scholar 

  15. Japkowicz, N.: The Class Imbalance Problem: Significance and Strategies. Complexity 1, 111–117 (2000)

    Google Scholar 

  16. McCarthy, K., Zabar, B., Weiss, G.: Does cost-sensitive learning beat sampling for classifying rare classes? In: Proceedings of the 1st Int. Work. on Utilitybased Data Mining, pp. 69–77. ACM Press, New York (2005)

    Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16(1), 321–357 (2002)

    MATH  Google Scholar 

  18. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Garcia, E.A.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE Int. Joint Conf. on Neural Networks (IEEE World Congress on Computational Intelligence), vol. (3), pp. 1322–1328 (June 2008)

    Google Scholar 

  20. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explorations Newsletter 6(1), 40–49 (2004)

    Article  MathSciNet  Google Scholar 

  21. Maloof, M.A.: Learning When Data Sets are Imbalanced and When Costs are Unequal and Unknown. Analysis 21(9), 1263–1284 (2003)

    Google Scholar 

  22. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regression Trees (1984)

    Google Scholar 

  23. Zadrozny, B., Langford, J., Abe, N.: Cost-Sensitive Learning by Cost-Proportionate Example Weighting. In: Third IEEE Int. Conf. on Data Mining, pp. 435–442 (2003)

    Google Scholar 

  24. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees (2002)

    Google Scholar 

  25. Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the Sensitivity of Support Vector Machines. Heart Disease, 55–60 (1999)

    Google Scholar 

  26. Bishop, C.M.: Pattern Recognition and Machine Learning. Information science and statistics, vol. 4. Springer (2006)

    Google Scholar 

  27. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-Sensitive. In: Proceedings of the Fifth Int. Conf. on Knowledge Discovery, pp. 155–164 (1999)

    Google Scholar 

  28. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)

    Google Scholar 

  29. Thai-nghe, N., Gantner, Z., Schmidt-thieme, L.: Cost-Sensitive Learning Methods for Imbalanced Data. In: The 2010 Int. Joint Conf. on Neural Networks, pp. 1–8 (2010)

    Google Scholar 

  30. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior class probabilities. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 299–314. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  31. Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30, 195–215 (1998)

    Article  Google Scholar 

  32. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240 (2006)

    Google Scholar 

  33. Silva, D., Guerreiro, M., Maroco, J.A., Santana, I., Rodrigues, A., Bravo Marques, J., de Mendonça, A.: Comparison of Four Verbal Memory Tests for the Diagnosis and Predictive Value of Mild Cognitive Impairment. Dementia and Geriatric Cognitive Disorders Extra 2(1), 120–131 (2012)

    Article  Google Scholar 

  34. Garcia, C.: A Doença de Alzheimer, problemas do diagnóstico clínico. Phd, Universidade de Medicina de Lisboa (1984)

    Google Scholar 

  35. Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Methodology 21i195-i20, 1–5 (1999)

    Google Scholar 

  36. Honghai, F., Guoshun, C., Cheng, Y., Bingru, Y., Yumei, C.: A SVM Regression Based Approach to Filling in Missing Values. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3683, pp. 581–587. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  37. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29(1), 131–163 (1997)

    Article  MATH  Google Scholar 

  38. Bradford, J., Kunz, C., Kohavi, R., Brunk, C.: Pruning Decision Trees with Misclassification Costs. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 131–136. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  39. Provost, F., Domingos, P.: Well-Trained PETs: Improving Probability Estimation Trees (2000)

    Google Scholar 

  40. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  41. Demsar, J.: Statistical Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7(7), 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  42. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, vol. 51. CRC Press (1997)

    Google Scholar 

  43. Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Machine Learning 29(2/3), 105–112 (1997)

    Article  Google Scholar 

  44. Thai-nghe, N., Schmidt-thieme, L., Techniques, A.M.: Learning Optimal Threshold on Resampling Data to Deal with Class Imbalance. In: 8th IEEE Int. Conf. on Computing and Communication Technologies: Research, Innovation, and Vision for the Future (2010)

    Google Scholar 

  45. Quinn, C.J., Coleman, T.P., Kiyavash, N.: Approximating discrete probability distributions with causal dependence trees (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nunes, C., Silva, D., Guerreiro, M., de Mendonça, A., Carvalho, A.M., Madeira, S.C. (2013). Class Imbalance in the Prediction of Dementia from Neuropsychological Data. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics