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Abstract

The field of Automatic Sentence Reduction has been an active research topic, with sev-

eral relevant approaches being recently proposed. However, in our view many milestones

still need to be reached in order to approach human-like quality sentence simplification.

In this work, we propose a new framework, which processes huge sets of web news stories

and learns sentence reduction rules in a fully automated and unsupervised way. This is

our main contribution. Our system is conceptually composed of several modules. In the

first one, the system automatically extracts paraphrases from on-line news stories, using

new lexically based functions that we have proposed. In our system's second module,

the extracted paraphrases are transformed into aligned paraphrases, meaning that the

two paraphrasic sentences get their words aligned through DNA-like sequence alignment

algorithms, that has been conveniently adapted for aligning sequences of words. These

alignments are then explored and specific text structures called bubbles are selected.

Afterwards, these structures are transformed into learning instances and used in the last

learning module that exploits techniques of Inductive Logic Programming. This module

learns the rules for sentence reduction. Results show that this is a good approach for

learning automatic sentence reduction, while some pertinent issues still need future in-

vestigation.

Keywords

Sentence reduction, sentence compression, sentence simplification, paraphrase extrac-

tion, paraphrase alignment, automatic text summarization, natural language processing,

inductive logic programing, machine learning, artificial intelligence.
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Resumo

A área da Redução Automática de Frases tem sido um tópico activo de investigação, tendo

sido propostas recentemente várias abordagens relevantes. Todavia, do nosso ponto de

vista, para que tenhamos uma simplificação de frases mais parecida com a que é feita

por humanos, é necessário ainda alcançar várias etapas importantes. Neste trabalho

propomos uma nova abordagem que aprende regras de redução de frases, de forma com-

pletamente automática e não supervisionada e a partir do processamento de um elevado

volume de texto de notícias da web. Esta é a nossa contribuição principal. O nosso sis-

tema é conceptualmente composto por vários módulos. No primeiro, o sistema extrai

automaticamente paráfrases de notícias web através de novas funções lexicais que pro-

pusemos. No segundo modulo do nosso sistema, as paráfrases extraídas são transformadas

em paráfrases alinhadas, significando isto que duas frases parafrásticas ficam com as suas

palavras alinhadas entre si, através de algoritmos alinhamento de sequências de ADN que

foram adaptados para o alinhamento de sequências de palavras. Posteriormente estes

alinhamentos são explorados para que determinadas estruturas relevantes, denominadas

de bolhas, sejam seleccionadas e transformadas em instâncias de aprendizagem. Estas,

por sua vez, serão utilizadas no último módulo do nosso sistema que através da Progra-

mação Lógica Indutiva aprende regras de redução de frases. Os resultados mostram que

esta é uma abordagem promissora para a redução automática de frases, sendo todavia

ainda necessário continuar a investigação nalgumas questões pertinentes deste domínio.

Palavras-chave

Redução de frases, compressão de frases, simplificação de frases, extracção de paráfrases,

alinhamento de paráfrases, sumarização automática de texto, processamento da lin-

guagem natural, programação lógica indutiva, aprendizagem automática, inteligência

artificial.
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Resumo Alargado
Em termos gerais, o trabalho consistiu na criação de um sistema com capacidade para "aprender"

regras de simplificação de frases, por redução de certas componentes menos relevantes, a partir

da "observação" de corpora. Trabalhando somente com textos de notícias relacionadas, extraídas

diariamente da Internet, o nosso sistema tem a capacidade de induzir estas regras de redução de

frases, através de técnicas de aprendizagem automática. O sistema desenvolvido é composto por

quatro componentes principais:

1. Extracção de paráfrases.

2. Alinhamento de termos em paráfrases.

3. Extracção de bolhas.

4. Indução de regras de redução.

A primeira componente consiste na extracção automática de paráfrases, que é realizada a partir de

textos de notícias relacionadas, obtidas diariamente a partir do "Google News"1. Um determinado

evento noticioso, como por exemplo um atentado terrorista, ou um discurso presidencial, contém no

mínimo cerca de 30 textos oriundos de diversas fontes noticiosas. São textos que veiculam a mesma

informação, no entanto escritos usando formas e estilos diferentes. Estas colecções constituem um

"terreno" propício à extracção de paráfrases. Assim, foram propostas várias funções, baseadas em

ligações lexicais entre frases, para a identificação de um tipo de paráfrases conveniente para o nosso

trabalho, isto é as paráfrases assimétricas, nas quais uma das frases do par contém mais informação

que a outra, tal como mostrado no exemplo que se segue:

O ministro, que referiu o problema do desemprego, anunciou a subida do IRC.
O ministro anunciou a subida do IRC.

A segunda componente do nosso trabalho consiste no alinhamento das palavras que compõe o par

de frases da paráfrase. Foram adaptados algoritmos de alinhamento de sequências de ADN para al-

inhar sequências de palavras. Também propusemos um novo método para escolher dinamicamente

o algoritmo de alinhamento (global ou local), em tempo de execução, consoante seja mais con-

veniente para o par considerado. Ainda neste módulo, propusemos uma nova função simulando a

"mutação genética" entre as palavras de uma paráfrase. Esta função tem como objectivo permitir

o alinhamento de termos lexicalmente próximos. Um exemplo de um alinhamento global, para a

paráfrase apresentada anteriormente é mostrado a seguir:

1URL: http://news.google.com [Novembro de 2010]
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O ministro, que referiu o problema do desemprego, anunciou a subida do IRC.
O ministro, ___ _______ _ ________ __ __________, anunciou a subida do IRC.

Portanto, as duas primeiras etapas do sistema tem a capacidade de gerar automaticamente um corpus

de paráfrases alinhadas com elevado número de casos (na ordem dos milhões de exemplos), a partir

de texto de notícias publicadas electronicamente. Este corpus constitui a matéria-prima utilizada

no processo de indução de regras de redução de frases.

Na terceira componente do sistema, partir de um corpus de paráfrases alinhadas, são extraídas

um conjunto de instâncias de aprendizagem, denominadas bolhas, com o objectivo de "alimentar"

um sistema indutor de regras de simplificação de frases. Pela "observação" de milhares de casos

são generalizadas regras que permitem cortar certas porções menos relevantes de frases. Uma bolha

consiste numa porção extraída de um alinhamento, no qual dois segmentos diferentes estão alinhados

e delimitados por pares de segmentos iguais, um à esquerda, denominado de contexto esquerdo e

outro à direita, denominado de contexto direito. Ao alinhamento heterogéneo central foi dado o

nome de "centro" (o centro da bolha). O exemplo apresentado anteriormente contem precisamente

um caso de uma bolha, tomando para contexto esquerdo "O ministro ,", para contexto direito a

sequência ", anunciou a subida do IRC ." e para o centro o par:

("que referiu o problema do desemprego" ---> "")

As duas sequências centrais, indicam uma possível transformação de uma expressão linguística de

tamanho m para uma outra de tamanho zero, mediante um contexto esquerdo e direito. Foram

investigadas e propostas condições para a extracção de bolhas, a partir de paráfrases alinhadas. A

função proposta garante que esta extracção só se concretiza se existirem contextos "fortes", i.e. com

um tamanho significativo em relação ao tamanho do centro.

Na quarta componente do nosso sistema, foram exploradas técnicas de Programação Lógica Indutiva,

em especial o sistema Aleph, para induzir regras de redução de frases. Estas são aprendidas através

de grandes colecções de bolhas extraídas automaticamente, como descrito anteriormente.

A abordagem que propusemos para este problema é completamente inovadora, tendo-nos possibil-

itado alcançar um conjunto significativo de publicações relevantes em importantes conferências e

revistas internacionais da especialidade.

xii
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Chapter 1

Introduction

"We can only see a short distance ahead, but we can see plenty there that needs to
be done."

Alan Turing

The advent of the so called Information Age, since the beginning of the 1990's and specially due

to the dawn and quick expansion of the World Wide Web (WWW), has produced a huge amount

of electronic on-line documentation of several types: text, image, video and audio. In the past,

knowledge was something very rare and only accessible to those belonging to a very restrict elite, like

rulers, clerics and naturally the narrowed academic community, which in most of the times was fused

with the clerics, as for example in the middle age. Hopefully, nowadays knowledge has benefited from

an admirable expansion through scientific, technological, philosophical, among others, remarkable

improvements and discoveries, and furthermore through electronic means it has become much more

democratized and widespread worldwide. Unlike to what happened in the past, people are now

facing a new difficulty which can be synthesized as the problem of information overload, the sense

of limitation that a present user feels whenever facing the huge amount of available information to

be "digested" in feasible time, especially information published in text format.

Considering this context and naturally the continued increasing computational power at our disposal,

during the last twenty years, several new information processing research fields have emerged and

developed during this time frame, such as Information Retrieval (IR), Information Extraction (IE)

and Automatic Text Summarization (ATS). All these three fields share the general common concern

of textual information selection/filtering from the huge whole of information available. In IR the

main goal is to select relevant documents related to a given subject, according to a specified user

query. In IE the goal is to select key-elements from text, for example name-entities, and in ATS the

main objective consists in producing more or less compressed summaries from given original texts,

without losing syntax, coherence, and the key semantic elements. In ATS one aims at generating the

minimum possible set of textual units from an original text maintaining the main original ideas, also

referred to as the gist (Jones, 1993; Mani, 2001; Nguyen et al., 2004) of the original text.

The field of Text Summarization is an old concern, studied even before the dawn of the Informa-
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1. INTRODUCTION

tion Age. Since the earlier 1960's that we have professional summarizers, working in many domains,

from journalism to technical documentation. The summarization of text documents, still remains

and even became a more crucial issue nowadays, with new electronic documents being published

every day. The best summarization is still produced by humans. However, it is costly to have suffi-

cient numbers of professional summarizers to tackle the full necessities for the present information

volumes. Therefore automatic text summarization mechanisms have been gaining relevance. The

ultimate goal in ATS is to approximate, as near as possible, its quality of performance to the one of

human beings. This is also the main reason explaining the increasing attention ATS given recently by

the research community, with many challenges ahead, waiting to be solved.

The next section provides a general overview of the Automatic Text Summarization research area as

an introductory background for the work we have been developing, which consists in automatically

learn sentence reduction rules that can be applied to simplify new texts.

1.1 Automatic Text Summarization

Among many possible Automatic Text Summarization (ATS) definitions, published in many scientific

articles and books throughout the years, we have selected the following three of different authors,

each one widely known and closely related to this research area.

A reductive transformation of source text to summary text through content conden-

sation by selection and/or generalization on what is important in the source.

Spärk Jones

A summary is a text that is produced from one or more texts, that contains a signif-

icant portion of the information in the original text(s), and that is no longer than half

of the original text(s).

Eduard Hovy

Text summarization is the process of distilling the most important information from

a source (or sources) to produce an abridged version for a particular user and task.

Mani and Maybury

Generally, ATS is mainly concerned with the simplification of text, keeping as much as possible their

original key information units. The main motivation is naturally applicational, aiming to ease the

user's work, by providing him with short versions of relatively long texts. The "user" here means any

2



1.1 Automatic Text Summarization

person working with electronic texts and aiming to have summarization capabilities in its system.

There are two opposite forces conditioning any ATS process, which may be stated as size and content.

In the limit ATS is an utopia, because beyond a certain horizon, the minimum text length containing

the maximum original information will simply become a pure mirage. There are clear boundaries

and the natural implication of text reduction will necessary result in information loss. Therefore the

key success of any ATS system relays on its ability to establish a trade-off between these two issues,

satisfying the particular user's needs at a given moment. Sometimes one may be more concerned

with time wishing to do fast reading, so a short overview serves well, while in other situations time

may be less relevant than losing original information details, and a less compressed version of the

original text may be appropriate.

1.1.1 Origins of Automatic Text Summarization

Historically ATS started approximately 50 years ago with the work of Hans Peter Luhn, an IBM scientist

which in 1958 published an article entitled "The Automatic Creation of Literature Abstracts" (Luhn,

1958). This was the first computational approach to the problem of text summarization. At that

time an IBM 704 computer was used to calculate word relevance statistics for a given set of scanned

documents, based on their frequency and distribution. Relevant words were chosen considering

their frequency range delimited by pre-defined upper (C) and lower (D) boundaries. Words having

frequency greater than C were considered not discriminatory, what nowadays are mentioned as stop-

words, and words with frequency smaller than D were considered as irrelevant for the domain being

processed, a kind of odd linguistic event produced by the author. A table with such relevant words,

obtained from the original Scientific American article is shown in Figure 1.1.

Sentence significance is calculated based on the number and position of relevant word occurrences

within the sentence, since positional proximity of relevant words will increase sentence significance.

Using this significance document sentences are ranked and the most relevant sentences are selected

to form a representative summary, which was called an automatic abstract in Luhn (1958). This is

nowadays referred to though an extractive summary.

A second early relevant milestone in ATS with many implications throughout the subsequent years,

was the work made by Edmundson (1969), which consists of a refinement and a substantial improve-

ment of Luhn's work, by introducing several new document features for extractive summarization.

Edmundson (1969) noticed that textual documentation contains several structural key features de-

noting content relevancy worth to be used for sentence identification and extraction, as for example

position of sentences in paragraphs, position of words in sentences, or words occurring in headings,

among others. The overall characteristics considered were divided into positive and negative de-

pending on whether they relate to selected or unselected sentences by human abstractors. Thus the

sentence numerical weight is computed based on a linear combination of four machine-recognizable

3
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Exhibit 1 

Source: The Scientific  American, Vol. 196, No.  2, 86-94, February, 1957 

Title:  Messengers of the  Nervous  System 

Author:  Amodeo S. Marrazzi 

Editor's  Sub-heading: The internal communication of the  body is mediated  by  chemicals as well as by  nerve  impulses. 

Study of their interaction has developed  important leads to  the  understanding and therapy of mental illness. 

Auto-Abstract* 

It  seems reasonable to  credit  the single-celled organisms also with  a  system of chemical  communication  by di'flusion of 

stimulating  substances  through  the  cell, and these  correspond  to  the  chemical  messengers  (e.g.,  hormones)  that carry 

stimuli  from cell to cell in  the  more  complex  organisms. (7.0)P 

Finally,  in  the  vertebrate  animals  there are  special glands  (e.g.,  the  adrenals)  for  producing  chemical  messengers, and 

the  nervous and chemical  communication  systems are intertwined:  for  instance, release of adrenalin by  the adrenal 

gland is subject to control  both  by  nerve  impulses and by  chemicals  brought  to  the gland by  the  blood. (6.4) 

The  experiments clearly demonstrated  that  acetylcholine  (and related substances) and adrenalin  (and  its  relatives)  exert 

opposing  actions  which  maintain  a balanced  regulation of the  transmission of nerve  impulses. (6.3) 

It is reasonable to  suppose  that  the  tranquilizing  drugs  counteract  the  inhibitory  effect of excessive adrenalin  or 

serotonin or some related inhibitor in the  human  nervous  system. (7.3) 

tSignificarlce  factor is given at  the end of each  sentence. 

*Sentences  selected by means of statistical analysis as hat  iog n degree  of  significance of 6 and over. 

Significant words in descending order of frequency (common words omitted). 
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. Total word  occurrences in the document: 

Different words in document: 

. . . . . . .  2326 

Total of different words . . . . . . . . . . . . . . . . . . .  741 

Less different common words . . . . . . . . . . . . . . . . .  170 

Different non-common words . . . . . . . . . . . . . . . .  571 

Ratio of all word occurrences to different non-common words . . . . . . . .  -4:l  

Non-common words having a frequency of occurrence of 5 and  over: 

_. 

Total occurrences . . . . . . . . . . . . . . . . . . . .  478 

Different words . . . . . . . . . . . . . . . . . . . . .  39 163 

IBM JOURNAL APRIL 1958 

Figure 1.1: A table from Luhn (1958) showing statistically significant words automatically selected from a sci-

entific article.

characteristics: number of cue words (C), key words (K), title words (T), and text location (L). For

a given sentence s, from a text document we have:

Weight(s) = α · C(s) + β · K(s) + γ · T(s) + δ · L(s) (1.1)

with α, β, γ, δ being the feature weighting factors. Cue words are non-functional words obtained

from a corpus according to predefined constraints based on statistics and also meeting certain lin-

guistic criteria. Three subclasses of cue words are obtained: bonus words which have frequency

values above an L-threshold, stigma words with frequency under a predefined U-threshold, and also

irrelevant words (residue), with frequency value within the [U, L] interval and having dispersion less

than another threshold. A total of 783 bonus, 73 stigma, and 139 residue words were obtained. Nat-

urally, bonus words will yield a positive effect while stigma words imply a negative effect in the final

calculation of C(s). Key words are thematic words, similar to cue words but restricted to the spe-

cific document being processed. The concept is similar to the one used by Luhn (1958), identifying

high-frequency relevant words in the document. Title words are obtained from document skeleton

key locations, as the title and headings, and they are considered as positively significant. Finally the

location method, also considers documental skeleton properties by looking at their ordinal positions

in the text, assuming for example that paragraphs occurring at the beginning and end of a document

will contain more key sentences as well as sentences starting and ending paragraphs.
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1.1.2 The "Renaissance" in Automatic Summarization

The main concerns of Automatic Text Summarization and subsequent research developments in the

1970's and 1980's were to refine the extractive methods proposed by the early original work, pre-

viously mentioned, mainly in what is known as the Edmundsonian extractive paradigm. In 1993 an

historical seminar took place in the Dagstuhl school, a German computer science research center,

which is known as the Dagsthul Seminar (Jones, 2007), marking the beginning of a new research phase

in ATS, a kind of renaissance in the area, envisioning new perspectives and goals, as multi-document

summarization and abstractive summarization. Also the 1997 ACL Workshop (ACL-97) on summa-

rization started a succession of workshops in this area, in the series of Document Understanding

Conferences (DUC)1 in the subsequent years, between 2000 and 2007. The driving force in each one

of these DUC conferences, was a competition where several summarization tasks were pre-defined

and competitors, usually summarization research groups, tried to implement a system able not only

to achieve the objectives but also get it done more effectively, ideally winning the competition.

British scientist Karen Spärk Jones was a quite important contributor and promotor of the ATS re-

search filed, in the last 20 year. She had a key role in the early Dagstuhl seminar, brought relevant

criticisms and insights into the field, generally pointing directions to what has to be done, in or-

der to turn automatic summarization closer to human performance. Spärk Jones defined automatic

summarization as a three-step process.

• interpretation - From the input raw text, obtain a structured internal representation of it.

• transformation - An operation on the original text representation yielding a simpler/reduced

structure which represents the summary structure to be generated.

• generation - From the simplified text structure obtained in the previous step, generate the

corresponding text summary.

In Jones (1999) it is shown that more effective summarizing systems require a detailed and explicit

consideration of what is named as the context factors. As it was explained, the performance of an

ATS system depends on these factors, and a fair evaluation of any of such systems cannot ignore them.

For example the purpose for which the system is supposed to satisfy can widely vary, from a mere

set of key information, words or phrases, a rough preview of the text content, to a richer content

summary preserving text grammaticality and connectivity. Three main summarization context factors

that should be considered in any ATS problem were identified in Jones (1999).

• Input factors - These are related with the conditions and features contained in the source text,

which fall into three classes: source form, subject type, and unit. The first one tackles the

1URL: http://duc.nist.gov/ [June 2010]
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1. INTRODUCTION

questions of text structure, scale (paragraph, article, book), medium and genre (a description,

or a narrative), while the second class handles the question of considering the purpose and

reader's knowledge about the text subject and the world. The third class distinguishes between

single and multiple input sources.

• Purpose factors - A summary is naturally intended to serve the purposes of a required type,

generally to ease user's work. Thus from the same source document several quite different

summaries might be produced for different target users. In many cases summarization is an

ambiguous process, and only the user's needs permit to define the source content to be high-

lighted. These factors were considered the most important in ATS and may also fall in three

categories: situation, the context in which the summary is to be used, audience, the class of

readers who are going to use the summary, and use, which specifies what the summary is going

to be used for.

• Output factors - These features define the format and content type to be included in the

summary, for example the extent to which the summary is intended to capture the whole

source content or just some key issues. It is also related with format, i.e: should it be a

normal running text or a list of headlines-like items. Another concern here is style, which may

include the following categories: informative (convey what the source text says), indicative

(identify the main topics present in the text), critical (commenting summary key ideas), and

aggregative (normally, when made from multiple sources).

Given the great difficulty involved in the evaluation of a summarization system, another issue stressed

and promoted by Spärck Jones was a correct automation of the evaluation of ATS systems (Jones,

1999, 2007). It was stated that any fair/correct evaluation process is closely tied with the context

factors mentioned previously and if they are not carefully observed then erroneous results will be

obtained in the comparative studies.

1.2 Motivation and Objectives

Automatic text summarization systems are classified in two main categories: extractive and abstrac-

tive (Hahn & Mani, 2000). This last one is much closer to the kind of summarization made by humans

and is naturally much more difficult to automate, since it requires a semantical and even pragmatical

understanding of the text and knowledge of the world. In abstractive summarization higher complex

linguistic issues are involved, like negation, anaphora resolution, paraphrasing, text rewriting and

even rhetorical discourse representation models (Jones, 1993), which nowadays are still be "hot"

research topics by themselves, and the solutions still need to be improved. On the other hand, so far

the majority of rich electronic linguistic resources are only available for the English language. Due

to such reasons, abstractive summarization has not yet been fully addressed by the research commu-
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nity, that naturally decided to start by a relatively simpler and at least implementable approach - the

extractive summarization. Whereas in abstractive summarization "deep" linguistic analytical knowl-

edge is involved, extractive summarization relies essentially in statistical and shallow techniques, as

these are simpler to implement. The extractive summarization category is confined to the question

of creating summaries solely by selecting the best textual units from an original text. The degree of

textual unit granularity may vary and include phrases, sentences, or even paragraphs. Yet the most

used minimum textual unit is the sentence. As in the Edmundsonian Paradigm (Edmundson, 1969;

Mani, 2001), the whole idea in an extractive system is to find a rank value of any textual unit, based

on several predefined features like key and title words, and then select the units having highest

rank value and generate the final summary by the concatenation of these. The important difficulties

revealed by this approach, include the lack of cohesion and coherence. Besides we can also identify

another important limitation, which served as a motivation to start our work, and which is based on

the fact that this method is unable to summarize beyond the minimum textual unit considered, in

our case the sentence. That is, it is not concerned with the issue of sentence simplification, though

many text sentences are worth of it, due to their natural complexity. The tests over corpora we

made for the English language, in particular for web news stories, provides evidence that the mean

sentence length is equal to 20 tokens. In fact, this gave rise to a new research subfield inside the

ATS area, known as Automatic Sentence Reduction, or Compression, as well as Automatic Sentence

Simplification. In our case, we use this first nomenclature since in this class sentences are simplified

through adequate content removal, while in the latter it is meant to be based on more complex

syntactical transformations. As an problem illustration we show below an example of a sentence

reduction operation.

"In Louisiana, the hurricane landed with wind speeds of about 120 miles per hour and

caused severe damage in small coastal centers such as Morgan City, Franklin and New

Iberia."

For this sentence one possible and quite good reduced sentence version can be:

"In Louisiana, the hurricane landed and caused severe damage."

As we can see, the reduced sentence preserves the most relevant information, while at the same

time maintains its grammaticality, and the final result is indeed a much simpler sentence. So this was

the challenge that started and drove our research work, which is going to be presented throughout

this thesis.

During the first decade of the 21st century, research in Automatic Text Summarization has been

continuing its objective to move from the traditional extractive methodology to a more abstrac-

tive resembling approach. In this context, sentence reduction has been an emerging field trying
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to contribute to this research direction, and as presented in the related work (Chapter 2) some

approaches have been experimented during this time period, based essentially on two main strate-

gies: knowledge-driven systems and supervised machine learning techniques. We think that despite

their individual virtues, both contain important drawbacks and practical limitations that were not

addressed. The former is hugely language-dependent, essentially depending on the availability of

rich linguistic knowledge resources, which are so far scarce for many non-english languages. Even

with linguistic resources at our disposal, knowledge-driven systems may always be incomplete and

require a huge human effort for creation of such resources. The latter strategy of using supervised

machine learning, requires a dataset of training examples that must have been manually crafted

by humans. So, both ways require considerable amounts of manual intervention, which is subject

to incompleteness and imperfection. Our approach aims at following a different strategy, by using

minimum linguistic resources and an unsupervised machine learning strategy. We intend to minimize

human inputs by automatically constructing training examples, just from the analysis of corpora.

1.3 Work Overview

In this work we propose a completely new approach within the Text Summarization research field,

for the specific task of Sentence Reduction, which follows an unsupervised learning methodology in

order to induce a set of relevant sentence compression rules, based on shallow linguistic processing.

We designed a system for learning sentence simplification rules in a completely autonomous manner

which is composed of five main modules, organized in a pipeline scheme as shown in Figure 1.2. The

first three are responsible for data extraction and preparation and in the fourth one the induction

process involves, giving as a result a set of rules, which might be applied (and evaluated) in other

web news, simplifying its sentences, which corresponds to the last module.

Let us analyze this process in more detail. In the first step, web news stories are gathered from

related news events, collected on a daily basis. For a given event, for example a terrorist attack,

several news stories are collected from different web news sources and their sentences joined in order

to discover paraphrases. Existing mathematical functions are explored and new ones are proposed,

and their performance is compared. A special relevance is given to a special type of paraphrases,

named asymmetrical (Definition 2, in Section 3.1), since they contain a variability factor which is

important for learning sentence simplification patterns, that is an asymmetry in terms of sentence

length. An example of an extracted paraphrase is shown below and more details about this issue are

presented in Chapter 3.

In the second module, for every extracted paraphrase from the previous step, word alignment be-

tween the paraphrase sentences is performed. These similar-sentence word alignments are likely

to reveal local differences and asymmetric regions, among the common ones, indicating possible

8



1.3 Work Overview

Figure 1.2: The Pipeline Architecture.

Sa: Police used tear gas to disperse protesters.

Sb: Police responded by firing tear gas, sending the protesters scattering.

Figure 1.3: An example of an asymmetrical paraphrase extracted from related news events.

sentence transformation patterns that may be exploited in learning. Sequence alignment algorithms

used for DNA sequence alignments in Bioinformatics were adapted to make the word alignments be-

tween our paraphrase sentences. For that purpose, a new dynamic algorithm is proposed in order

to select the most suitable alignment algorithm for a given sentence pair. More information about

this and their related issues are detailed in Chapter 4. Next we show the alignment obtained for the

paraphrase sentences previously shown in Figure 1.3.

police _________ __ ______ used tear gas _ _______ to disperse protesters __________ .

police responded by firing ____ tear gas , sending the ________ protesters scattering .

Figure 1.4: An aligned paraphrase sentence pair.

The third step shown in Figure 1.2 aims at looking at these special regions and prepare sets of learn-

ing instances to be used in a machine learning environment in order to discover general sentence

simplification rules. A special kind of paired-sentence regions are observed, which we call bubbles,

extracted and conveniently preprocessed to feed the induction process. A complete description of

this issue is made in Subsection 6.1, and several examples of bubbles are shown there.

9



1. INTRODUCTION

The induction process generates sentence reduction rules having the following general structure:

|X| = n ∧ Lcond ∧ Xcond ∧ Rcond ⇒ eliminate(X) (1.2)

This rule scheme means that a sentence segment X of size n may be eliminated if certain conditions

hold on the left (L), middle (X) and right (R) segments. In a sentence, the left and right segment

contexts are relative to the segment laying in between and called the kernel segment. Each seg-

ment may in general contain several words. In this work we have decided to maintain the maximum

segment size smaller than four, either for contexts and for the kernel, although in the future some

size variations may be explored. For the sake of simplicity and compactness, we will omit the con-

sequent rule, since in this rule scheme it will always be equal to "eliminate(X)". In order to provide

a quick overview and a general flavor of the system output, Figure 1.5 presents three different rules

automatically learnt by our system. These rules comply with the rule scheme presented in 1.2 and

|X| = 1 ∧ Lc = NP ∧ X1 = JJ ∧ R1 = IN (1.3)

|X| = 2 ∧ L1 = and ∧ X1 = the ∧ R1 = JJ (1.4)

|X| = 3 ∧ Lc = VP ∧ X1 = the ∧ R1 = NN (1.5)

Figure 1.5: Sentence Reduction Rules, automatically learned.

they are formed by a conjunction of several literals, setting constraints under which certain sen-

tence subparts may be deleted, thereby transforming the original sentence and giving, as a result, a

simplified version of it.

In the previous subset of induced rules, presented in Figure 1.5, the X symbol stands for the candidate

segment to be dropped - the kernel segment; the L(⋆) and R(⋆) are conditions over the left and right

context segments, respectively. The numeric subscripts indicate the sentence word position for which

a given segment condition applies, and it is always relative to the kernel. The position index starts

with 1 and is counted from left to right in the right context R and in the kernel segment X, and

from right to left in the left segment L, thus L1 and X1 will always represent the neighbor word or

part-of-speech tag. Such a sentence scheme is exemplified in the next figure, in which we have a

real news sentence targeted to be simplified by one of our induced rule.

Figure 1.6: Sentence schematic division.

The "c" subscript, in the rules in Figure 1.5, indicates a reference to segments with a given syntactic

10



1.3 Work Overview

chunk type. For instance, in the first rule, Lc = NP means that the first chunk on the left of the

kernel segment must be a noun phrase. The |X| = n condition defines the kernel length, in terms of

the number of words it contains.

In order to illustrate how one of these learned rules can be applied to new raw text, let us for instance

consider the rule 1.5 from Figure 1.5. This rule says that a word sequence consisting of three words

(|X| = 3) will be eliminated if a verb phrase (VP) chunk is observed in the immediate left context

(Lc = VP), and a noun in the right context, at position one (R1 = NN). This rule also requires that

the first word of the sequence being eliminated (the kernel) must be "the", as we have X1 = the.

This rule is a candidate to be applied to the sentence shown previously in Figure 1.6. To apply a rule

to a given sentence we have to mark it with a part-of-speech (POS) tagger and a chunker1 in order

to see whether the rule conditions are satisfied. Note that for POS tagging we are using the Penn

Treebank Tag set defined in Marcus et al. (1993). To help the reader we include a description of the

complete 48 tags in Appendix E. So, for the previous example we would obtain the following shallow

parsed sentence:

[NP congressional/jj leaders/nns] [VP say/vbp] [NP the/dt emerging/vbg stimulus/nn
program/nn] [VP could/md cost/vb] [NP between/in $/$ 400/cd billion/cd and/cc $/$
700/cd billion/cd]

In this notation each word is followed by a slash with its POS label and each sentence chunk is delim-

ited by brackets with the syntactic chunk label positioned at its beginning and written in uppercase

letters, unlike words and their POS labels, which are written in lowercase. With this notation it

turns out evident that rule 1.5 can be applied to this sentence and as a result the word sequence

"the emerging stimulus" would be delete, giving rise to the following reduced version:

Congressional leaders say program could cost between $400 billion and $700 billion.

This new sentence seems perfectly acceptable, as it preserves the main meaning, and provides a

reduction of three words from the original sentence.

Several rules may be applied to a given sentence, and obviously the more rules are applied the more

simplified the sentence will end-up. Compositional rule application can be made, if for instance

after a certain rule application the sentence is transformed in a new one complying with the con-

ditions of another rule which was not applicable earlier to the original sentence. In particular, we

propose a set of rules which allow the application of a simplification of a given sentence. Indeed,

some extra constraints must be observed in order to ensure syntactical correctness of the obtained

simplified versions. For that purpose a part-of-speech statistical model is employed for checking if

the candidate rule would yield a syntactically likely sentence, and if not it will prevent that particular

1We used the OpenNLP toolkit in this process. URL: http://opennlp.sourceforge.net/ [November 2010]
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1. INTRODUCTION

rule from firing for that specific case. This process of sentence reduction rules applicability corre-

sponds to the fifth and last module from our system pipeline (Figure 1.6), where new unseen web

news documents, supplied by the user, are simplified through the application of previously learned

sentence reduction rules. Naturally our focus is the simplification of sentences. However, it could

be combined with other already known summarization techniques, in order, for example, to first

filter out irrelevant sentences and afterwards apply rule simplifications to remaining sentences in

the document.

1.4 Main Scientific Achievements

The research work developed in the course of preparing this thesis gave us the opportunity to achieve

several relevant scientific contributions. These were presented at specialized international confer-

ences, and published in the proceedings. We have scientific publications in each one of our three

main work components: extraction, alignment, and induction. A brief synthesis of the set of publi-

cations, is given here together with a brief description and explanation of each one. The list follows

the chronological order of the events.

In the field of paraphrase identification and extraction from text corpora, we have three publica-

tions:

• Cordeiro et al. (2007b) (IEEE - ICCGI 2007) - This article presents the Sumo metric as a better

function for paraphrase identification, providing the results of an experimental comparison

between this function and four other functions used by others for the same task. The Sumo

function is presented in Subsection 3.3.1.

• Cordeiro et al. (2007a), (AAAI - FLAIRS 2007), DBLP - This contribution is a refinement of the

previous one, in which some aspects are better clarified. It also contains an experiment carried

out with paraphrase clustering by using the Sumo function as a similarity metric between two

sentences. This issue is discussed in Section 3.4.

• Cordeiro et al. (2007c) (Journal of Software 2007), DBLP - Our third publication starts with

our Sumo function and goes a bit further by proposing a new family of functions sharing sev-

eral common characteristics ideal for asymmetrical paraphrase identification in corpora. This

work contains also a comparative study with the conventional existing functions for shallow

symmetrical paraphrase identification. The details of this contribution can be found in Section

3.3.

Related with the topic of word alignments in paraphrasic sentences, described in Chapter 4, we have

one contribution:

12



1.5 Thesis Plan

• Cordeiro et al. (2007d) (ACL 2007 workshop) - This article is a concise introduction to the issues

presented in Chapter 4, related to the alignment of words between paraphrasic sentences.

Our last publication within the scope of this thesis, is related with the induction process, described

in Chapter 6:

• Cordeiro et al. (2009) (ACL 2009 workshop) - This article describes how Inductive Logic Program-

ming is used for learning sentence reduction rules, from our corpus of aligned paraphrases. This

work was presented in an ACL1 workshop specially dedicated to the topic of automatic language

generation and summarization.

More recently, the work contained in the previously mentioned contributions2 has been integrated in

new research tasks, which go beyond the aim of this thesis. In collaboration with other international

researchers, we have produced two publications on the topic of automatic word semantic relation

discovery from corpora:

• Grigonyté et al. (2010) (COLING3 2010) - This work uses an adapted version of the Sumo metric

and of the alignment algorithms in order to automatically discover synonyms from medical

corpora.

• Dias et al. (2010) (JNLE4 2010) - This work explores aligned paraphrase corpora to automatically

discover word semantic relations.

1.5 Thesis Plan

This thesis started by giving a short introduction to the area of Automatic Text Summarization, in

which our work is integrated. This was followed by a presentation of our work main motivations

and objectives. After, a work overview about sentence reduction was supplied to give the reader a

quick introduction about the research work developed. The work is composed by three main research

components, which are investigated separately and then adequately combined in order to produce

results to fulfill our initial objectives. These areas are:

1. Automatic paraphrase extraction from corpora,

2. Automatic paraphrase word alignment,

3. Sentence reduction rule induction, from aligned paraphrases, and application of rules.

1ACL - Association for Computational Linguistics.
2In particular the work related with paraphrase detection and alignment.
3COLING - Computational Linguistics
4JNLE - Journal of Natural Language Engineering
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The last one is certainly the most relevant of our research goals, but its strength is also dependent

on the data automatically collected in the first two components. In each component new solutions

were investigated and proposed. Therefore we dedicate one chapter for each one of these three

components.

In Chapter 2 we present the relevant related work in the area of sentence reduction, giving detailed

description and also addressing some critical aspects by indicating strengths and difficulties of each

approach.

In Chapter 3 we address the problem of automatic paraphrase extraction from corpora, mainly fo-

cused on using shallow techniques. Some already existing functions are presented and new ones are

proposed, together with justifications favoring the use of these last ones.

The issue of automatic paraphrase word alignment is discussed in Chapter 4. Optimal global and local

sequence alignment algorithms are detailed as well as their technical adaptation to our problem of

word alignment between paraphrase sentence pairs. Even here, in a well studied area having ma-

ture procedures and algorithms established, mainly from bioinformatics, we propose new solutions,

relevant for the particular problem faced.

Some theoretical foundations like First Order Logic and Inductive Logic Programming, as well as the

induction tools used, are presented in Chapter 5, before giving a complete description of our learning

process in Chapter 6. The reader with experience in those areas may skip Chapter 5.

In Chapter 7, we provide detailed experimental results obtained from every relevant issues developed

and presented throughout this thesis and finally Chapter 8 presents the main conclusions of our work

and points out several future directions of research worth to be followed.

14



Chapter 2

Related Work in Sentence Reduction

"No man is an island, entire of itself ..."

John Donne (1572-1631)

Sentence reduction1 has been an active subject of research during this decade. A set of approaches

involving linguistic knowledge, machine learning algorithms and statistical models has been investi-

gated, employed, and discussed in literature. Throughout this chapter we present various relevant

approaches found in the literature that address the issue of sentence reduction. We see this as a

promising area for enhancing the quality of automatic text summarization. However, so far, we

have not found much research work on sentence reduction. It is still an area with many issues to be

explored.

We noticed that the main approaches made to this area lie in three different sub-areas, in terms

of the main methodology employed. These can be labeled as translation-based, heuristic-based,

and learning-based methods. In the approaches inspired by automatic machine translation, the

problem of sentence reduction is interpreted as a kind of translation task, from a "source language"

of expanded sentences (input sentences) to a target language of their possible "compressed versions"

(output sentences). Section 2.1 addresses the translation-based approach. The heuristic-based

approaches use rich linguistic knowledge resources available electronically. These approaches are

presented in Section 2.2. The approaches based on machine learning, presented in Section 2.3, use

supervised learning methods, in which a set of sentence pairs is used to train a system for learning

sentence reduction patterns. Each pair consists of a sentence accompanied by its reduced version.

Some systems employ techniques from more than one of these three categories, for example exploit

machine learning and also linguistic knowledge.

Our approach is machine learning based. It differs from other existing systems in that it extracts

and formulates the required learning instances, from web news stories text, without any human

intervention.

1In the literature it is also referred as sentence compression, sentence summarization, or even as sentence simplification.
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2.1 Automatic Translation Methodologies

Historically, Automatic Machine Translation (AMT) was the main motivation leading to the creation of

the Natural Language Processing (NLP) discipline, back in 1950. Therefore a wide range of research

efforts have been dedicated to this throughout the subsequent decades, pursuing the goals of AMT,

which originally seemed quite reachable, but has revealed itself as a very hard problem with many

open questions to be solved even in the XXI century. Naturally a huge set of methods, algorithms,

and approaches developed in the AMT field have proved themselves to be useful in other NLP fields,

like automatic text summarization (ATS). In fact original ATS approaches began to appear roughly in

the second half of the 1990 decade. Many researchers were been working in AMT before realized

that their techniques could naturally be adapted to ATS. Therefore, several AMT approaches serve as

a basis for summarization. This includes in particular the sentence reduction problem, representing

a simplified version of a translation task, from a source language to a target language. In this section

we discuss several earlier sentence reduction approaches, mainly inspired by this AMT paradigm, as

well as some more recent ones which continue this tradition.

2.1.1 Origins - Pioneering Projects

One of the earliest work starting the sentence reduction field was carried out by Chandrasekar &

Srinivas (1997) which aimed at simplifying long sentences so as to serve several practical purposes,

among those, to ease machine translation. The whole idea was to transform a long and complicated

sentence into two or more shorter sentences and consequently simplify the process of automatic

machine translation. The following example was retrieved from the original article and included

here for illustration.

Talwinder Singh, who masterminded the Kanishka crash in 1984, was killed in a fierce

two-hour encounter.

The previous sentence would be split into the two following sentences:

Talwinder Singh was killed in a fierce two-hour encounter.

Talwinder Singh masterminded the Kanishka crash in 1984.

This method of long sentence splitting was described as a two stage process. The first one provides a

structural representation of the sentence and the second one applies a sequence of rules to identify

and extract the components that can be simplified. Special sentence splitting points ("articulation-

points") such as phrasal extremes, punctuation, subordinate/coordinate conjunctions and relative

pronouns are identified, based on predefined rules and grammatical formalisms.
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To avoid full sentence parsing, two simpler formalisms were experimented and compared to generate

sentence structural representations: the Finite State Grammar (FSG) and a Dependency Model (DM).

The first one is simpler than the second one, yielding sentence phrase chunks, while the DM formalism

uses partial parsing and is based on a dependency representation provided by a Lexicalized Tree

Adjoining Grammar (LTAG). An example of a sentence simplification rule, retrieved from the original

article is shown below:

X:NP, RelPron Y, Z → X:NP Z. X:NP Y.

This rule states that a sentence segment composed by a noun phrase X followed by a relative pronoun

Y and some other subsequence Z, will be transformed in two sentences starting with the same noun

phrase X and the first one ending with sequence Z, and the other ending with Y.

The evaluation of this work was rather too simple from our current perspective, sixteen years later.

However, as far as we can tell it was a pioneering work in the field, if not the first attempt in sentence

simplification. Using a corpus of newswire data and only considering relative clauses and appositive

simplification, 25 out of 28 relative clauses and 14 out of 14 appositives were correctly recovered,

by using the DM formalism, whereas with the FSG only 17 relative clauses and 3 appositives were

recovered. However, this work is exclusively based on a set of handcrafted rules.

Another pioneering approach in sentence reduction was the work by Grefenstette (1998) aiming at

simplifying text to provide audio scanning service for blind users. The major concern of this work

was not the generation of grammatically correct reduced sentences, but rather to provide relevant

sentence word sequences (telegraphic type). The aim was to let the targeted users to obtain a quick

preview of the text and help them to decide whether they would want to hear the original full text.

The input sentences are transformed by using a part-of-speech tagger which also groups words into

chunks and marks them with group markers identifying verb and noun groups. For each group, special

component types are identified, like for example "Head of Passive Verb Group", "Head of Infinitive

Verb Group", "FreeNoun" or "PrepNoun". By including a set of filters the system can also identify

syntactic dependencies, such as subject-verb, verb-indirect objects, etc. Afterwards the groups and

annotated text are transformed using a process which eliminates words depending on the level of

reduction specified according to one of the eight predefined levels, which are shown below. In each

case the rule describes which items are kept. The rest is eliminated.

1. Keep only proper names, no subclauses;

2. Keep only subjects and object nouns, no subclauses;

3. Keep only subjects, head verbs, and object nouns, no subclauses;

4. Keep only subjects, head verbs, and object nouns, preposition and dependent noun heads, no subclauses;

5. Keep only proper names, including subclauses;
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6. Keep only subjects and object nouns, including subclauses;

7. Keep only subjects, head verbs, and object nouns, including subclauses;

8. Keep only subjects, head verbs, and object nouns, preposition and dependent noun heads, including

subclauses.

For example, level eighth is somewhat similar to the process of stop-word elimination from text. It

has a relatively minor impact on text reduction. The generated telegraphic text version could feed a

speech synthesizer and fulfill the system design main objective. An example from the original article

is included below, where the input sentence is:

Former Democratic National Committee finance director Richard Sullivan faced more pointed ques-

tioning from Republicans during his second day on the witness stand in the Senate�s fund-raising

investigation. While he grew flustered at times, the 33-year-old Sullivan stayed tight-lipped,

downplaying concerns about former fund-raiser John Huang.

The generated reductions for each one of the eight predefined levels would be:

1. Richard Sullivan Republicans Senate Sullivan John Huang.

2. Richard Sullivan pointed questioning. Sullivan tight-lipped concerns.

3. Richard Sullivan faced pointed questioning. Sullivan stayed tight-lipped concerns.

4. Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation. Sullivan stayed tight-lipped concerns about John Huang.

5. Richard Sullivan Republicans Senate Sullivan John Huang.

6. Richard Sullivan pointed questioning. Sullivan tight-lipped concerns.

7. Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation, he flustered, Sullivan stayed tight-lipped concerns about John Huang.

8. Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation, he flustered at times Sullivan stayed tight-lipped concerns about John Huang.

The work of Witbrock & Mittal (1999) used more sophisticated approach for this task. It was also

inspired by previous work1 in machine translation, and has already employed machine learning to

train their language models. Here the summarization task is described as the process of translation

from a verbose (source) language into a succinct (target) language. It was claimed that it is simpler

than translation because here we do not have to capture every sense and nuances of the source docu-

ment. This work only aims at generating very small summaries, such as just a headline, representing

the original document. This system may be trained by feeding it with a set of ⟨document, summary⟩
1Essentially the IBM CANDIDE system.
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pairs that are used to learn translation mappings between the source and the target formulations.

During the training process the system constructs a statistical model, representing a mapping be-

tween the two formulations. The training process is subdivided in two main tasks named as: content

selection and surface realization. The first one models the likelihood for a given word from the

source document to be present in the target document (summary):

P(word ∈ sumary | word ∈ document) (2.1)

The second task aims at producing likely sequences of words in the summary, based on a language

bigram model. The overall likelihood of a word sequence with n tokens S = [w1, w2, ..., wn] is calcu-

lated by multiplying the sequence of their bigram probabilities:

likelihood(S) = P(w1) ∗
n

∏
i=2

P(wi | wi−1) (2.2)

Actually the log-probability (LP) is taken, as is usual in such cases. For unseen bigrams the back-off

discount method (Katz, 1987) is used. For example the probability of the sequence "Details of sexual

affair" would be equal to:

LP(details) + LP(o f |details) + LP(sexual|o f ) + LP(affair|sexual) (2.3)

These two models are combined in a single one, in order to rank candidate summaries which can

meet certain constraints, like for example compression rate1. This combination is made simply by

weighted sum of the two model probabilities from equations 2.1 and 2.2. In our previous example

we would have:

α ∗
[
LPcond(details) + LPcond(o f ) + LPcond(sexual) + LPc(affair)

]
+ (2.4)

β ∗
[
LP(details) + LP(o f |details) + LP(sexual|o f ) + LP(affair|sexual)

]
where LPcond(word) means log

[
P(word ∈ sumary | word ∈ document)

]
, and α and β are weights

equal to one.

The application of these models for sentence compression on new text rises the issue of searching

good combinations in order to generate good sentence compression. That is, choosing the sequence

of words that maximizes the probability of the model combination, as in the example shown in 2.4.

Thus, a first order Markov model was used and a Viterbi beam search algorithm (Forney & David,

1973) to efficiently find a sub-optimal summary.

To evaluate the system, a set of ⟨document, summary⟩ pairs were extracted from the Reuters news

agency, where each "summary" is just the "document" (news) headline. The evaluation procedure

consisted in simply counting term overlaps between the generated headlines and their corresponding

original data.

1This expression means the size of the summary over the size of the original document.
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2.1.2 Using an HMM for Optimizing Translation Templates

Another work in the field of sentence reduction, highly influenced by the AMT area, was made by

Nguyen et al. (2004). First, they adapted a translation-template learning (TTL) method, used in

the example-based machine translation (EBMT) framework, to the sentence reduction problem. To

avoid the problem of complexity that arises in rule combinations, they proposed an optimization

based on a Hidden Markov Model (HMM), in order to efficiently find the best template reduction rule

combinations for a given sentence.

The work on EBMT was initiated by Nagao (1984) and was one of the main approaches to AMT based

on corpora. Within this framework, the TTL method (Güvenir & Cicekli, 1998) has been successfully

applied in learning translation examples among two languages, for example, from English to Turkish.

Therefore in Nguyen et al. (2004) sentence reduction is interpreted as a kind of translation task, from

a sentence source language to a target language of reduced sentences, in order to apply this TTL

method to sentence reduction. This method learns a set of reduction rules, referred to as template-

reduction rules, from a set of learning examples, which are pairs of long and reduced sentences

⟨σs, σt⟩1, obtained from a parallel corpus. A template-reduction rule (TRR) is a structure defined as:

S1 S2 ... SN ↔ T1 T2 ... TK

where each Si and Tj are either constants or variables in the source and target languages, respec-

tively. One example is shown in Figure 2.1. In TRRs, a constant might be a word or a phrase and a

Figure 2.1: An example of a learned template-translation, in the context of sentence reduction. It is assumed

that T1 is in some sense a shorter version of S2.

variable, like those S2, T1, S4, and T3 in Figure 2.1, might be substituted by a constant. A TRR without

any variable is called a lexical rule, and these may substitute variables in other template-reduction

rules. For example in a system having already the rule shown in Figure 2.1 and the following two

lexical rules

both companies ↔ companies
high performance computing ↔ computing

it would reduce the sentence
1The s and t indexes mean respectively source and target.
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It is likely that both companies will work on high performance computing

into

Companies will work on computing

just by combining the TRR with the two lexical rules, by substituting the corresponding variables.

To obtain a template-reduction rule as the one shown previously the template learning algorithm

requires two similar reduction cases in the training corpus of ⟨σs, σt⟩ sentences. For example, the

following two training examples

σ1
s : The document is very good and includes a tutorial to get you started

σ1
t : Document is very good.

and

σ2
s : This paper is very good and includes a tutorial to get you started

σ2
t : Paper is very good.

will give rise to the TRR shown in Figure 2.2. The details about this generalization are explained in

Figure 2.2: An example of a template reduction rule, learned from two similar cases.

Nguyen et al. (2004). Hence, this system performs a generalization for two similar learning cases

encountered in the training data. Such generalization policy may yield a high number of TRRs, and

in our opinion of low quality, heavily affected by the variability or noise in the corpora. This issue

will be explained in more detail in Chapter 8, discussing our work.

The major difficulty of this work is its huge computational complexity, arising with even small learn-

ing datasets. The problem arises due to the possibility of combining lexical rules with any TRR

variable. For instance, in the experiments reported in the author's article (section 4), 1500 ⟨σs, σt⟩

pairs gave rise to 11034 TRRs and 2297 lexical rules. For a new sentence with a matching TRR having

n variables and k matching lexical rules, a brute-force approach would have to explore kn reduction

combinations! For example, let us assume that the system has the TRR shown in Figure 2.1, together
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with the following six lexical rules shown below. Let us further assume that it is seeking the best

strategy to reduce the following sentence

It is likely that two companies will work on integrating multimedia with database tech-

nologies.

For the first TRR aligned variable pair (S2, T1) one gets:

two companies ↔ two companies
two companies ↔ companies
two companies ↔ ∅

For the second TRR aligned variable pair (S4, T3) one gets:

integrating multimedia with database technologies ↔ <unchanged>

integrating multimedia with database technologies ↔ multimedia
integrating multimedia with database technologies ↔ dayabase technologies

In this case one would end up with a total of 9 = 32 combinations. To overcome this complexity

barrier, the authors implemented a Hidden Markov Model (HMM) to efficiently compute the most

likely sequence of lexical rules to be combined, in a given sentence matched to TRR. For this problem,

the lexical-rules are the model hidden states and the probabilities for the HMM are trained using the

corpus of ⟨σs, σt⟩ sentences through the Baum-Welsh learning algorithm (Baum & Eagon, 1967). More

details about it may be found in Nguyen et al. (2004). The introduction of this HMM technique allowed

to lower the previously mention complexity factor, from O(kn) to O(n ∗ k2), thanks partly to the use

of the Viterbi algorithm (Viterbi, 1967).

The evaluation of this system was performed using a set of sentence pairs of long and reduced sen-

tences, obtained from a vietnamese news agency, where 1500 pairs were manually corrected and

used to generate the TRR and lexical rules. Afterwards additional 1200 sentence pairs were used,

from which 32 pairs were randomly selected for testing and the remaining for HMM parameters esti-

mation.

The authors described a similar evaluation procedure as used by Knight & Marcu (2002) and claimed

that the system achieved a human comparable performance. However some key issues were not well

clarified, as for example the kind of manual corrections needed for the 1500 sentence set extracted.

Moreover, since they claimed that the algorithms could easily be adapted for any language, why did

they not test the system with the English language? In particular with the dataset used by Knight &

Marcu (2002), since they made several qualitative comparisons of their work with this system. We
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suppose that the main reason for that is because their induced templates are weak generalizations,

learned from a very few examples, leading to a set of lexical rules with low support, unlike in AMT,

where this technique has been used for induction of translation templates, where a huge set of

examples, obtained from parallel corpora, is usually employed. In our work, we have conducted

an experiment having several fundamental similarities with this approach and the results obtained

were in fact much worse when compared to the performance obtained when rules have a higher

generalization power. In our case we use a special type of learning instances, named bubbles (Section

6.1) to feed an induction engine and obtain more general sentence reduction rules. Our baseline

experience was to employ the set of bubbles directly as being sentence reduction rules, since they

represent such cases, and the obtained results are clearly much lower (see line BL in Table 7.10),

when compared with more general reduction rules, obtained after the induction process.

2.2 Heuristic Based Methodologies

In this section we present methodologies which are mainly based on rich language knowledge, as well

as specific heuristics designed for sentence reduction, like for example a set of handcrafted rules.

These approaches may also employ other methodologies, like machine learning, although their main

force relies mainly on supplied linguistic knowledge.

2.2.1 Using Rich Linguistic Knowledge

The work of Jing (2000) presents a sentence reduction system for automatically removing extraneous

phrases1 by combining multiple resources of knowledge in order to decide which are the most appro-

priate sentence phrases for deletion. As in the majority of work in this field, the main objective is to

eliminate or reduce sentences as much as possible, while maintaining their grammatical correctness.

Six major operations that can be used were identified in a previous work (Jing & McKeown, 2000).

These are:

1. remove extraneous phrases,

2. combine reduced sentences,

3. syntactic transformations,

4. substitute phrases by their paraphrases,

5. substitute phrases with more general or specific descriptions,

6. reorder extracted sentences.
1A phrase is a group of words functioning as a single unit in the syntax of a sentence, for example a noun phrase, or a

verb phrase.
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Naturally, for sentence reduction the most effective from is removal of extraneous phrases, which

was named as sentence reduction.

The implemented system operates by using multiple sources of knowledge to make decisions concern-

ing sentence reduction, which include lexical, syntactical, and corpus computed statistics. Basically

four linguistic resources were employed, which are summarized in the following list.

• Corpus - From a collection of news documents and their corresponding human-written ab-

stracts, a set of 500 sentence pairs were extracted, where for each pair of sentences of the

form ⟨soriginal , sreduc⟩, the sentence soriginal came from the original article and sreduc from the

human-written abstract.

• Lexicon - A combination of lexical resources, including the computational lexicon COMPLEX

(Grishman et al., 1994), which provides a detailed syntactic information for 380k English head

words; English verb classes and alternations (Levin, 1993), which studies and defines syntactic

and semantic verb proprieties; The WordNet lexical database (Miller, 1995) and the Brown

Corpus tagged with WordNet senses. The lexicon includes subcategorizations for over 5000

verbs and was used to identify the obligatory arguments of verb phrases.

• WordNet (Miller, 1995) - Provides information on lexical relations: synonym, antonym, meronym,

entailment and causation. These lexical links are used to identify the focus in the local context.

• Syntactic Parser - The IBM English Slot Parser (McCord, 1990), for sentence full parsing includ-

ing thematic role identification (e.g. subject, object).

These elements are used first to produce a full parse tree, then to identify the critical undeletable

sentence components for ensuring grammatical correctness as well as rule exceptions for those sen-

tence components that are usually deleted, like prepositional and to-infinitive phrases, as well as

the adjectives.

Afterwards the system computes a score for each sentence phrase, which represents the amount of

relatedness to the main topic. This computation is performed by weighting WordNet lexical relations

of each phrase word to the main topic, through the function shown in Equation 2.5.

ContextWeight(word) =
9

∑
i=1

Li ∗ NUMi(word) (2.5)

In this function nine types of lexical relations are considered and each one is represented by the i

index. The function NUMi(word) counts the number of i type lexical relations between the word

and any other word in the phrase (context), and Li is a weighting factor for that connection type.

The phrase score is calculated by adding all weighted lexical contextual relations.
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The last procedure performed by the system is the computation of the likeliness of sentence subtree

removal, from the training data of ⟨soriginal , sreduc⟩ sentence pairs, ending up with a set of phrase

removal probabilities, such as:

Prob{remove(when-clause) | verb = ”give”}

which in this case represents the probability of removing a "when-clause", when the main verb is

"give".

This last system component was the only one independent from linguistic knowledge and it aims at

modeling how likely humans delete certain phrases from sentences though for probabilistic models.

In our view a training set of 500 sentence pairs seems really insufficient. Moreover, the paper does not

present a detailed description or algorithm showing how the final reduction decisions are carried out

and generally the only thing mentioned is that the system will decide to remove a sentence subtree if

it is not grammatically obligatory, if it is not the focus of the local context, and if it has a "reasonable

probability" of being removed by humans. However, detailed decision parameters and procedures

are omitted. For example, what is the level of the "reasonable probability" just mentioned? In terms

of evaluation the authors claim that 81.3% of reduction decisions made by the system agreed with

those of humans, though no evaluation concerning grammatical correctness was performed.

This system is hugely dependent on the availability of all rich language knowledge resources and

therefore can hardly be adapted to non-english languages, most of them with very scarce computa-

tional linguistic tools.

2.2.2 As an Optimization Problem

Recently a different approach to the sentence reduction problem was presented as an optimization

problem, where the goal is to find the optimal reduced sentence version satisfying a set of integer

programming constraints (Clarke & Lapata, 2006). In this work a sentence S is characterized as a

sequence of n words (S = ⟨w1, w2, ..., wn⟩) and the space of all possible reductions contains all the

2n reduced versions of S, obtained by word elimination. As in any optimization problem, a set of

constraints guides the search through the narrowing subset of valid solutions (here reductions), until

the optimum is reached. The authors codify a set of linguistic constraints as linear inequalities,

in order to ensure the structural and semantical validity for the generated reductions. Indeed, in-

teger programming technique was used in which solutions must be linear combinations of integer
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quantities. For example their objective function z is given by

maximize z =
n

∑
i=1

yi · P(wi)

+
n

∑
i=1

pi · P(wi|start)

+
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k=j+1

xijk · P(wk|wi, wj)

+
n−1

∑
i=0

n

∑
j=i+1

qij · P(end|wi, wj)

subject to:

yi, pi, qij, xijk = 0 or 1 (2.6)

where P(·) represents n-gram models. In particular unigram, bigram, and trigram models were em-

ployed, as well as a special unigram model for sentence start and a bigram for sentence termination.

Thus parameters yi, pi, qij, xijk are binary functions indicating whether a given n-gram probability

counts or not for the final scoring function.

Afterwards sequential and linguistic constraints were defined, which encode a set of language knowl-

edge to guide the search for a useful, correct, and relevant (likely) solution which naturally in this

case will be a reduced sentence version from the original one. Naturally, the aim is to reduce the

search space as much as possible.

The sequential constraints define some sentence positional restrictions, like for example, a condition

that only one word can start a sentence, through the equation
n

∑
i=1

pi = 1 (2.7)

or a more complex one stating that if a word is included in a sentence then it must either start it,

or be preceded by two words or one other word and the start token "start" through the following

condition

∀k : k ∈ {1, ..., n} yk − pk −
k−2

∑
i=0

k−1

∑
j=1

xijk = 0 . (2.8)

Overall five sequential constraints were defined. In addition to the linguistic constraints encoding

grammatical conditions that must be preserved for the generated reduced sentences, like modifier

constraints ensuring that head words and their modifiers must still be connected in the reduction,

sentential constraints express some general intuitions, like one stating that at least one verb must

be included in the reduction as shown in Equation 2.9.
n

∑
i∈verbs

yi > 1 (2.9)

Other constraints state that if a verb is present in a sentence so must be its arguments and vice-versa.

Coordination is also handled in this constraint category, i.e. if two head words are conjoined in the
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original sentence, then if they are included in the compression the coordinating conjunction must

also be included. The third and last linguistic constraint category - compression-related constraints

- impose hard restrictions on the reduction output, by rejecting any sequence within brackets, forc-

ing personal pronouns to be included and forcing minimum sentence length. Details about such

constraints definitions are in the original paper.

Aiming at having relevant content words in the reduction, the first component in the objective func-

tion (Equation 2.6) was replaced by a significance score, and so a modified unigram model was

utilized, replacing ∑n
i=1 yi · P(wi) by

I(wi) =
l
N
· fi · log

Fa

Fi
(2.10)

where fi and Fi are the frequency of wi in the document and corpus, respectively, and Fa is the

sum of all topic words in the corpus. Considering the sentence parse tree, l is the number of clause

constituents above wi, and N is the deepest level of embedding.

Regards results, the authors claim comparability with their current state-of-art, namely the work

of Knight & Marcu (2002) (see Subsection 2.3.1) and followed a similar evaluation method, though

using a greater number of human evaluators. Although no parallel corpus was necessary to train the

system, it is hugely knowledge-driven and generally can be described as an approach that makes

sentence reduction through a human supplied rule set, codified as constraints in the framework of

integer linear programming. This approach is not easily transportable to other languages, since a

redefinition of handcrafted linguistic knowledge is necessary. Furthermore it fails to cover a variety

of linguistic phenomena involved in the sentence reduction process.

2.3 Machine Learning Methodologies

In the last twenty years, a great variety of AI problems have been successfully solved by applying

machine learning (ML) techniques. The fundamental idea behind is to have trainable systems capable

of being dynamically adjusted as needed, by obtaining the information from the surrounding envi-

ronment. Nowadays one can find ML solutions in almost all NLP main subareas, ranging from machine

translation to automatic text generation, and including naturally automatic text summarization.

2.3.1 Training a Noisy-Channel Model

The work of Knight & Marcu (2002) is an interesting example of a method that involves applying ma-

chine learning to the sentence reduction task. This work expresses the sentence reduction problem

by following two different directions. The first one, referred to as the noisy-channel model, is based

on a bayesian learning model, borrowed from the coding and communication theory. The second one

a decision tree learning method that induces a set of sentence reduction rules in a form of sequences
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of syntactic transformations.

The fist approach was inspired by a quite "old" NLP metaphor introduced by the well-known informa-

tion theorist Claude Shannon around 1960 - the noisy channel model and decoding, in the context of

language transmission through media, like communication channels and speech acoustics (Jurafsky &

Martin, 2000). The general idea consists of looking at the sentence reduction problem as a message

transmission phenomenon, from a source space of reduced sentence versions to a target space of

expanded versions, where the extra information responsible for this expansion is considered to come

from some sort of random effect which superfluously inflates the original pure and concise sentence.

Therefore the main task of this approach consists in learning a new model - the decoder - from train-

ing examples of sentence pairs, in order to decode the expanded sentences back to their reduced

versions.

In this sentence transmission adaptation of the noisy-channel model there are two sentences involved

s and t, standing for the compressed and expanded sentence versions respectively, as illustrated in

Figure 2.3. The transmission process adds some noise to s, some spurious words, and as a result

Figure 2.3: The noisy channel model for sentence transmission.

an expanded sentence version is obtained from the transmission output. The goal of the sentence

reduction system is to recover the most likely original message from their noisy, expanded version t.

In order to do that the process is normally subdivided into three steps, common in any noisy channel

problem.

• The source model: Where the probabilities of the source sentences, P(s), are calculated

and estimated from corpora, hence preserving certain language principles, as low value for

ungrammatical sequences of words.
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• The channel model: It calculates the probability that sentence s is transformed into sentence

t through the noisy communication channel, which can be expressed as P(t | s), that is, a

probability of t given s. This information is obtained from the training process, by looking at a

set of n training examples in the form of {⟨s1, t1⟩, ..., ⟨sn, tn⟩}.

• The decoder: This model applies the previous models, estimated during the training process,

to compute the most likely source sentence (reduced sentence version), for a particular new

assumed expanded sentence t. This is done by searching the sentence s that maximizes P(s | t),

through the usually used bayesian equivalent form:

argmax
s

P(s | t) = argmax
s

P(t | s) ∗ P(s) (2.11)

To compute the source model probabilities, aiming at grammatical correctness and language word

sequence likelihood, a combination of a Probabilistic Context Free Grammar (PCFG) score and a

standard word-bigram score is employed. First, the sentences are fully parsed through Collin's parser

tree(s)

NP

George

VP

VB

meets

NP

Kate

Figure 2.4: The parse tree for the "George meets Kate" sentence.

(Collins, 1997) and then the model probabilities are calculated from the parsed trees. For example, to

calculate the source probability of the sentence s = "George meets Kate", tree(s) will be taken (see

Figure 2.4) and its PCFG computed as shown below, where each conditional probability is estimated

from language corpora.

P{tree(s)} = Pc f g{TOP --> S | TOP} ∗ Pc f g{S --> NP VP | S} ∗

Pc f g{NP --> George | NP} ∗ Pc f g{VP --> VB NP | VP} ∗

Pc f g{VP --> meets | VB} ∗ Pc f g{NP --> Kate | NP} ∗

Pbigram{George | EOS} ∗ Pbigram{meets | George} ∗

Pbigram{Kate | meets} ∗ Pbigram{EOS | Kate}

For the channel model probability estimation the authors use a parallel corpus of sentences and their

reduced versions, extracted from the Ziff-Davis corpus of newspaper articles announcing computer

products. A total of 1067 pairs were extracted and used to train the model by aligning related

tree nodes among reduced and expanded sentences. From these related subtree alignments the
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estimates of syntactical tree expansions were used to define the decoder model. Such pairs are

called expansion-templates. Below we show five examples of possible expansion-templates from the

"NP --> DT NN" structure and their estimated probabilities:

Pexp{NP --> DT NN | NP --> DT NN} = 0.8678

Pexp{NP --> DT JJ NN | NP --> DT NN} = 0.0287

Pexp{NP --> DT NNP NN | NP --> DT NN} = 0.0230

Pexp{NP --> DT JJS NN | NP --> DT NN} = 0.0115

Pexp{NP --> DT NNP CD NN | NP --> DT NN} = 0.0057

Afterwards the system is ready to compute the decoder model, based on the learnt source and

channel models. The aim is to apply it to the new unseen sentences and obtain their likely reduced

versions. For a sentence t with n words, there exist a huge set of possible reduction combinations,

namely 2n − 1 possibilities, though many of them may be eliminated a priori due to their ungram-

maticality. In order to generate a set of grammatical reduced sentence versions from t the authors

applied a generic extractor which was designed for a hybrid symbolic-statistical natural language

generation called Nitrogen (Langkilde, 2000). With this tool a selection of sentence subtrees from t

are scored, guided by the combination of word bigrams and expansion-templates inferred during the

training process. A ranked set of such generated sentence reductions for the sentence

"Beyond that basic level, the operations of the three products vary widely"

is shown in Figure 2.5. Each sentence is followed by its negative log-probability score, divided by

Beyond that basic level, the operations of the three products vary widely (1514K)

Beyond that level, the operations of the three products vary widely (1430K)

Beyond that basic level, the operations of the three products vary (1333K)

Beyond that level, the operations of the three products vary (1249K)

Beyond that basic level, the operations of the products vary (1181K)

The operations of the three products vary widely (939K)

The operations of the products vary widely (872K)

The operations of the products vary (748K)

The operations of products vary (690K)

Operations of products vary (809K)

The operations vary (522K)

Operations vary (662K)

Figure 2.5: A rank of reduced sentences, obtained from a given sentence.

the reduction length and this way rewarding longer strings. Generating such a sentence reduction
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ranking with different sentence lengths is certainly an interesting feature which enables a system to

better comply the user's desired compression rate.

Later Turner & Charniak (2005) made an extension of this work, showing a cleaned-up, and slightly

improved the noisy-channel model by incorporating supervised and semi-supervised methods for sen-

tence compression and additional linguistic constraints to improve compression. This work stresses

out conceptual problems inherent to the original noisy channel model used by Knight & Marcu (2002).

Since the noisy-channel is a statistically-based method its quality depends on large training quanti-

ties of data, contrary to the relatively scarce amount of data used in Knight & Marcu (2002) - 1035

training and 32 test sentences. The main reason for that was naturally the great difficulty involved

in extracting ⟨s, t⟩ examples selection from corpora. Therefore Turner & Charniak (2005) proposed

an unsupervised method to compress sentences without parallel training data by selecting sentence

joint rules1 from the Penn Treebank, counting probabilistic context free grammar (PCFG) expansions

and then matching up other similar rules to form unsupervised joint events. An example of such a

joint rule is

⟨NP→ DT NN, NP→ DT JJ NN⟩ .

This data was used to train a new version of the decoder-model, which was named as Pexpand(t | s).

In order to avoid ungrammatical compressions, due to artificially generated training pairs, several

constraints were added, like for example one that does not allow the deletion of any subtree head,

as well as others preventing the deletion of syntactic complements.

The last section of Turner & Charniak (2005) explains the existence of a more theoretical problem in

using the noisy-channel model for sentence compression, which generally relies on assuming that the

probability of a compressed sentence, the P(s) from Equation 2.11, will simply be its probability as

a sentence in the language. However, this is generally false. In fact, and as stated by the authors,

one would expect that the probability of a compressed sentence should be higher as a member of

the set of all compressed sentences, than it is as a member of all English sentences.

2.3.2 A Symbolic Learning Method

Another approach, proposed by Knight & Marcu (2002), was the decision-based model in which

instead of inferring a statistical sentence reduction model, the learning strategy was directed towards

learning a set of tree sentence transformation rules to simplify sentences. This method is more

ambitious, since it aims at rewriting of sentence structure, through syntactical tree transformation,

instead of simple tree pruning as in the first model. For example the two schematic sentence parse

trees shown below represent a pair of expanded ( t(s) ) and reduced ( t(sr) ) sentences.

In this approach the system learns syntactic tree rewriting rules, defined through four operator types:

1A sentence rule here means basically a sentence parse tree.
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s = "a b c d e" ---> sr = "a b e"

t(s)

H

a

A

C

b

B

Q

Z

c

R

d

D

e

t(sr)

F

H

a

K

b

D

e

Figure 2.6: Illustration of a transformation for a sentence tree scheme.

Shift, Reduce, Drop, and AssignType. Sequences of these operators are learnt from the training

set. Each sequence defines a complete transformation from an original sentence to the compressed

version. For each learning instance ⟨t(s), t(sr)⟩ the system will generate possible transformation

sequences which codify a rewriting process from t(s) to t(sr). Any of these rewriting processes starts

with an empty stack and an input list with the words subsumed by t(s). Each word in the input list

is labeled with all syntactic constituents in t(s). At each step, the rewriting process applies the

appropriate operation that aims at reconstructing the smaller sentence t(sr). The four operation

types mentioned above may be briefly described as follows:

• Shift - Transfer the first word from the input list to the stack,

• Reduce - Pop the k syntactic trees from the top of the stack, combine them into a new tree

and push it on the top of the stack,

• Drop - Delete sequences of words from the input list that corresponds to syntactic constituents,

• AssignType - Change the POS tag of trees at the top of the stack.

The system uses 109 reduce operations, 63 drops, 37 assign types, one for each POS tag, and naturally

one single shift operator. This sums up to a total of 210 possible operations that may be applied at

each iteration of the reconstructing path from t(s) to t(sr).

Afterwards, the system uses the C4.5 (Quinlan, 1993) decision tree induction algorithm to learn a

set of conditional sequencing operator rules such as the ones shown in Figure 2.7. Each sequence

of operators can be compared to a small sentence tree transformation program, consisting of a set

of transformation instructions, taking the original sentence tree to its reduced version. The rules
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Figure 2.7: Three learned rules of sentence syntactic tree transformation toward reduction.

in Figure 2.7 are self-explanatory and the symbols used are from the Penn Treebank1 tag set. For

instance WHNP and WHPP mean, respectively, "WH noun-phrase" and "WH prepositional" phrase, while

"WH" indicates that the phrase contains a Wh-determiner, as in "which car", "whose father". The ADJP

tag stands for an adjective phrase like "greatest achievement".

From the same dataset of 1067 related sentence pairs used for the noisy-channel model, the system

generates a set of likely transformation paths, yielding a total of 46383 learning instances. An exam-

Figure 2.8: A sequence of 9 steps showing the operators for transforming t(s) into t(sr).

ple of a sequential tree transformation through several operation steps is shown in Figure 2.8, which

1http://www.cis.upenn.edu/∼treebank/ [October 2010].
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was retrieved from the original paper and is related to the tree pair presented in Figure 2.6.

These last approach of learning transformation rules for reducing syntactical trees seems quite in-

teresting. However, it has at least two major drawbacks. First, the rules were learned from a small

training data set. Second, restricting the transformation operations to just these four operations

seems insufficient. We think that more sophisticated transformation should be integrated to be able

to tackle more complex transformations, like syntactic subtree fusions, needed when we have for

example phrases conveying similar information.

The improvement of this approach could be fruitful, but it is hard to supply a sufficient training set for

inducing a relevant rule set. This tends to be even more critical as new transformational operations

are introduced in the system. We think that instead of using a propositional learner (C4.5), the

learning task could be better reformulated using a relational learning method, like Inductive Logic

Programming approach. This is what we have done in our case (see chapters 5 and 6). We have also

decided to work with features based on a shallow parser, instead of full parser, as it is more simple

and the majority of human languages still do not have electronic versions of full parsers available.

2.3.3 Mixing ML and Predefined Rules

A work which combines the machine learning framework with a set of handcrafted rules was presented

by Vandeghinste & Pan (2004). They described a sentence compression system, built with the purpose

of automatic subtitle generation for the deaf and hard-of-hearing people. The system uses a set of

lexical and syntactical tools, like a part-of-speech tagger, a word abbreviator, a shallow parser and

a subordinate clause detector, to pre-process the input sentence and obtain a shallow parse tree.

Using paired texts obtained from a parallel corpus containing transcripts of television programs and

their correspondent subtitles, the system uses statistically-based approaches to recognize irrelevant

sentence elements, such as words, chunks, or subordinate clauses, which are candidates for elimi-

nation and thereby yielding simplified sentence versions.

Below is a complete list of all language transformation modules used:

• Tagger - The TnT part-of-speech tagger (Brants, 2000), trained on the Spoken Dutch Corpus

(CGN),

• Abbreviator - Employs a database of common abbreviations, like for example:

⟨European Union, EU⟩

• Numbers to Digits - This module converts all numbers expressed through words, either cardinal

or ordinal, to sequences of digits,

• SharPa - This module includes a sentence chunker, a subordinate clause detector and generates
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a shallow parse tree for that sentence, thus avoiding full sentence parsing.

To train the model, for each related sentence pair ⟨s, sr⟩ obtained from the parallel corpus, shallow

parse trees are generated and aligned with each other on a chunk basis, yielding a pair of aligned

trees ⟨tree(s), tree(sr)⟩. The learning task consists of estimating the tree node probabilities of three

Figure 2.9: Shallow parse tree, with their branch probabilities estimated.

possible operations: remove ("X" symbol), not remove ("=" symbol) and reduce (">" symbol). This

last operator is only meant to be applied on the tree of non-terminal nodes. For terminal nodes the

probabilities are obtained directly from language corpora. Figure 2.9 shows an example reproduced

from the original paper showing different component estimates, for the sentence: "De grootste

Belgische bank", meaning "The largest Belgian Bank".

Afterwards, this probabilistic model is applied to a new sentence, to suggest reductions, which are

represented in a similar shallow parse tree format. The probabilities of removal and reduction are

calculated. Then for a tree like the one shown in Figure 2.9 all possible removal combinations are

computed, including the possibility of no compression at all. Finally a rank of potential sentence

compressions is generated. In the previous example the probability of no compression would be equal

to 0.54 ∗ (0.68 ∗ 0.56 ∗ 0.56 ∗ 0.65) = 0.07485 and the probability for sentence reduction (">") through

the "grootste" (largest) word removal would be equal to: 0.05 ∗ (0.68 ∗ 0.35 ∗ 0.56 ∗ 0.65) = 0.00433,

while the removal of "bank" yields a lower value, thus being less likely: 0.05 ∗ (0.68 ∗ 0.56 ∗ 0.56 ∗

0.26) = 0.00277.

This probabilistic model revealed itself insufficient for ensuring grammatical correctness in most

cases. Therefore, several handcrafted constraints for ensuring that critical sentence elements were

not removed, were supplied to the system. Now, for a given sentence, after obtaining the sentence

reduction versions, from the model, the system uses this rule set to filter out those versions that are

violating these grammatical constraints. Figure 2.10 shows three examples of such rules.

Even with this engineered rule set ensuring grammaticality, supplied to the system, the results re-
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Figure 2.10: Examples of handcrafted constraints ensuring grammatical correctness.

ported in Vandeghinste & Pan (2004) still show rather low quality rate, with so called "acceptable

correctness" ranging from 32% up to 51%, depending on the test set.

Having presented the main relevant approaches that we have identified as being closely related to our

work, we finish this chapter by restating the main issues of our system, which is explained in detail

in the following chapters. Unlike any system presented earlier, our system is designed to operate

in a real web/text scenario. From a huge collection of automatically gathered web news stories,

paraphrases are automatically identified and extracted. Then these are automatically aligned and

certain type of learning instances are extracted. Afterwards, a learning process is carried out, which

generates sentence reduction rules. Finally the system can use these new induced rules to simplify

sentences from new unseen documents. This brief description is represented in the pipeline scheme,

shown previously in Figure 1.2. In our system the whole process of sentence reduction is completely

automatic. It exploits a huge amount of on-line text available nowadays, extracting and generating

the sentences to be used in the learning process.

The next chapter starts the description of our system's first main module, concerned with automatic

paraphrase extraction from web news texts.
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Chapter 3

Paraphrase Extraction

"He that will not apply new remedies must expect new evils, for time is the greatest
innovator."

Francis Bacon, Essays

In general, a paraphrase consists in a pair of text segments, usually sentences1, conveying mainly

the same information yet possibly each one may be written differently. The term paraphrase derives

from the Latin paraphrasis and from the Greek para phraseïn, which means additional manner of

expression. There are a range of paraphrase types, varying from lexical reorganization, as in the

example from Figure 3.1, to more complex ontological or semantic rearrangements, like in Figure

3.2.

Sa: Due to high energy prices, our GDP may continue to fall.

Sb: It is likely that our GDP will continue to fall, as a consequence of high energy

prices.

Figure 3.1: Lexical paraphrase type.

Sa: To be or not to be.

Sb: Should I kill myself?

Figure 3.2: Semantic paraphrase type.

These previous two paraphrase examples represent two points, each one at an extreme point of the

paraphrase "spectrum". Our main objective is not to study paraphrases in general, but rather to use

certain types of paraphrases, that are closer to the lexical type (Figure 3.1), as our "raw material"

for the sentence reduction problem. Therefore, our initial work was directed towards the extraction

of paraphrases from a corpus in a complete automatic form. We aimed at creating a relatively large

corpus, containing several hundreds of thousands pairs or even more. As a consequence, we searched

for "suitable" electronic texts and existing methods of paraphrase identification, in order to fit our

needs. A first attempt of using these tools in such setting encountered some difficulties, which led

us to design new functions, more appropriate for our main objective. A discussion of this is detailed

throughout the subsequent sections in this chapter.
1Throughout this work, a paraphrase refers always to a pair of two sentences.
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3. PARAPHRASE EXTRACTION

3.1 Automatic Paraphrase Corpora Construction

Paraphrase corpora represents a golden resource for learning monolingual text-to-text rewritten pat-

terns1, satisfying specific constraints, such as length in summarization (Barzilay & Lee, 2003; Jing &

McKeown, 2000; Knight & Marcu, 2002; Nguyen et al., 2004; Shinyama et al., 2002) or style in text

simplification (Marsi & Krahmer, 2005). However, such corpora are very costly to be constructed

manually and will always be an imperfect and biased representation of the language paraphrase phe-

nomena. Therefore reliable and efficient automatic methodologies capable of paraphrase extraction

from text, leading to construction of paraphrase corpora, are crucial. In particular, we are mainly

interested in a special type of paraphrases, named asymmetrical paraphrase, where one sentence

entails the other one, as stated in Definition 2. In terms of information content, we define two types

of paraphrases: symmetrical and asymmetrical.

Definition 1. A symmetrical paraphrase is a pair of sentences ⟨Sa, Sb⟩, where both sentences contain

the same information, or in terms of entailment, each sentence entails the other one, i.e: Sa �
Sb ∧ Sb � Sa.

The asymmetrical case is defined below in Definition 2.

Definition 2. An asymmetrical paraphrase is a pair of sentences where at least one sentence is

more general or contains more information than the other one, that is either Sa � Sb ∧ Sb 2 Sa or

Sa 2 Sb ∧ Sb � Sa.

An example of an asymmetrical paraphrase is shown next:

Sa: The control panel looks the same but responds more quickly to commands

and menu choices.

Sb: The control panel responds more quickly.

Figure 3.3: An asymmetrical parafrase.

In fact, text-to-text generation is a particularly promising research direction, given that there are

naturally occurring examples of comparable texts that convey the same information yet, written

in different styles. Web News Stories are obviously a natural space for searching this type of texts.

There we find a multitude of events, from different subjects, happening every day, like a presidential

election, a space shuttle mission, or a terrorist attack. For each event there are several news

agencies reporting it. Therefore a set of different texts can be created about the same event. So,

given such texts, one can pair sentences that convey the same information, thereby building a training

set of rewriting examples i.e. a paraphrase corpus.

1For example by applying machine learning techniques.
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3.2 Functions for Paraphrase Identification

Algorithm 1 The process of automatic paraphrasic corpus construction.
1: nclusters← readNewsClusters(”WebNewsStories”)

2: paraphcorpus← ∅

3: for all clust ∈ nclusters do

4: v← getArrayO f Sentences(clust)

5: for i = 1 to size(v)− 1 step 1 do

6: for j = i + 1 to size(v) step 1 do

7: if FuncPsim(vi, vj) > θ then

8: paraphcorpus← paraphcorpus ∪ {⟨vi, vj⟩}

9: end if

10: end for

11: end for

12: end for

13: save(paraphcorpus)

We have investigated several existing functions for paraphrase identification in corpora. However,

the difficulties and limitations revealed by these led us to propose new functions, as explained later

in this chapter. Before entering in this topic we provide a conceptual view, expressed through an

Algorithm 1, of the process used for extracting paraphrases from corpora. From a given "cluster of

web news stories"1, the set of all sentences are gathered in an array of sentences ("v" in Algorithm 1).

Afterwards paraphrasic sentence pairs are searched sequentially in vs (line 5 to 10) and added to the

corpus (line 8). Note that "FuncPsim(vi, vj)" is the paraphrase detection function, in the algorithm.

The decision is made upon a pre-defined threshold (θ in line 7), which depends from the function

being used and certain practical needs one may have.

In Algorithm 1 we have a computational complexity of O(n2) in the process of paraphrase identifica-

tion from a vector of sentences. Therefore an important concern in choosing "FuncPsim(vi, vj)" was

efficiency. This is further described in Section 3.6.

3.2 Functions for Paraphrase Identification

The issue of identifying paraphrases in monolingual comparable corpora has become increasingly

more relevant, as researchers realize the importance of such resources for many Natural Language

Processing (NLP) areas, such as Information Retrieval, Information Extraction, Automatic Text Sum-

marization, and Automatic Text Generation (Barzilay & Lee, 2003; Carroll et al., 1999; Chandrasekar

& Srinivas, 1997; Grefenstette, 1998; Jing & McKeown, 2000; Knight & Marcu, 2002; Lapata, 2003;

Marsi & Krahmer, 2005; Nguyen et al., 2004; Shinyama et al., 2002). In particular, three differ-

1A set of related news texts covering approximately the same event.
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3. PARAPHRASE EXTRACTION

ent approaches have been proposed for paraphrase detection: unsupervised methodologies based

on lexical similarity (Barzilay & Lee, 2003; Dolan et al., 2004), supervised methodologies based on

context similarity measures (Barzilay & Elhadad, 2003) and methodologies based on linguistic analysis

of comparable corpora (Hatzivassiloglou et al., 1999).

Microsoft researchers (Dolan et al., 2004) carried out a work to find and extract monolingual para-

phrases from massive comparable news stories. They used the Edit Distance1 (Levenshtein, 1966)

and compared it with an heuristic derived from Press writing rules, where the initial sentences from

equivalent news stories were considered as paraphrases. The evaluation showed that the data pro-

duced by the Edit Distance is cleaner and more easily aligned than by using the heuristic. However,

when evaluating by using word error alignment rate, a function borrowed from statistical machine

translation (Och & Ney, 2003), shows that both techniques perform similarly.

In Barzilay & Lee (2003) the authors use the simple word n-gram (n = 1, 2, 3, 4) overlap function in the

context of paraphrase lattices learning. This string similarity measure is used to generate paraphrase

clusters with hierarchical complete-link clustering algoritm. This function is also often employed for

string comparison in NLP applications (Lita et al., 2005; Sjöbergh & Araki, 2006).

More advanced techniques rely on context similarity measures such as the one proposed by Barzilay &

Elhadad (2003), where sentence alignments in comparable corpora are identified by considering the

sentence contexts (local alignment) after semantically aligning equivalent paragraphs. To combine

the lexical similarity2 and the proximity feature, local alignments are computed on each paragraph

pairs, through dynamic programming. Although this methodology shows interesting results, it relies

on supervised learning techniques, which requires huge quantities of training data that may be scarce

and difficult to obtain in many situations.

Others, as Hatzivassiloglou et al. (1999), go further by exploring heavy linguistic features combined

with machine learning techniques to propose a new text similarity function. Once again, this is

a supervised approach and also heavily dependent on valuable linguistic resources, which are not

available for the vast majority of languages. We agree on the issue that linguistic resources may

improve accuracy and accordance with human judges. However, this approach limits the application

of such systems to very few languages, for which such resources are available.

Finally, we address the work carried out by Stent et al. (2005), where a set of evaluation metrics are

compared for the task of text-to-text generation. They compare NIST simple string accuracy (SSA),

BLEU, and NIST n-gram co-occurrence metrics, Melamed's F-measure (Turian et al., 2003), and latent

semantic analysis (LSA). The comparison was done with respect to fluency (word order variation) and

adequacy (word choice variation) of generated candidate sentences by comparison with one or more

1Also known as the Levenshtein Distance
2With the cosine similarity measure.
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3.2 Functions for Paraphrase Identification

reference sentences. The authors claim that these automatic evaluation metrics are not adequate

for the task of fluency evaluation, and are barely adequate for evaluating adequacy. So, these results

reinforce our motivation to investigate new sentence similarity functions for paraphrase detection.

We have taken into account in particular the fluency issue, as we were also aiming to focus on shallow

paraphrase identification functions, due to efficiency and portability reasons1. To address adequacy

one would have to introduce deeper linguistic analysis, working at least with a thesaurus.

In the literature (Barzilay & Lee, 2003; Levenshtein, 1966; Papineni et al., 2001), we can find the

Levenshtein Distance (Levenshtein, 1966) and what we call the Word N-Gram Overlap Family (Barzilay

& Lee, 2003; Papineni et al., 2001). Indeed in the latter case, some variations of word n-gram overlap

functions are proposed, but not clearly explained. In this section, we review these existing functions

and also propose a new n-gram overlap function based on the Longest Common Prefix (Yamamoto &

Church, 2001).

3.2.1 The Levenshtein Distance

This function, also known as Edit Distance, was created for string similarity computation. Considering

two strings, the function computes the number of character insertions, deletions and substitutions

that would be needed to transform one string into the other one (Levenshtein, 1966). The function

may be adapted for calculating Sentence Edit Distance by using words instead of characters (Dolan

et al., 2004). Considering two sentences, it calculates the number of word insertions, deletions and

substitutions that would be needed to transform one sentence into the other one.

A problem that we observed, when applying this function for paraphrase detection on text, was that

it fails on certain types of true paraphrases like the ones where there are high lexical alternations or

different syntactical structures. For example, sentences (1) and (2) would probably no be identified

as paraphrases using the Edit Distance similarity function, since a high value is computed, indicating

the existence of a high string dissimilarity between the sentences and leading thus to the unwanted

rejection outcome. This happens despite the fact that both sentences convey exactly the same

information and are true paraphrases of each other.

(1) Due to high energy prices, our GDP may continue to fall, said Prime Minister, early morning.

(2) Early morning, Prime Minister said that our GDP may continue to fall, due to growing energy

prices.

Edit Distance was specially conceived to be used with words, where character reordering will neces-

1Deeper linguistic analysis implies more time spent on identifying paraphrases and a more language dependent system as

well.
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3. PARAPHRASE EXTRACTION

sary imply lexical dissimilarity. However, in sentence proximity calculation our basic symbolic unit

is the word, not the character, and word reordering between paraphrasic sentences is very likely to

happen. For instance, in the previous example we have Edit Distance of 11, which is quite a lot,

considering the sentences word lengths (16 and 17 words, respectively). This value represents a

normalized similarity of only 0.3125 (1− 11
16 ).

3.2.2 The Word N-Gram Family

Throughout the literature there are several text similarity measures based on word n-gram overlap.

Sometimes it is not clear or it is unspecified which word n-gram version was employed in a given

experience and so it remains a bit obscure. Mainly two functions are usually mentioned in the litera-

ture: the Word Simple N-gram Overlap and the BLEU Metric, which is detailed next. The analysis and

experiment with word n-gram overlap functions also led us to consider and propose a new function

from this type, based on the Longest Common Prefix (Yamamoto & Church, 2001).

3.2.2.1 Word Simple N-gram Overlap

This is the simplest function that uses word n-gram overlap count between sentences. For a given

sentence pair, the function counts how many 1-grams, 2-grams, 3-grams, ..., N-grams overlaps exist

between the sentences. Usually N is chosen to be less or equal to 4 (Barzilay & Lee, 2003). Let us

name this counting function as Countmatch(n-gram). For a given N > 1, a normalized metric that

equally weights any matching n-gram and evaluates similarity between sentences Sa and Sb, is given

by Equation 3.1:

simo(Sa, Sb) =
1
N
∗

N

∑
n=1

Countmatch(n-gram)
Count(n-gram)

(3.1)

where the function Count(n-gram) counts the maximum possible number of n-grams that exist in the

shorter sentence, as it governs the maximum number of overlapping n-grams.

For example, in the sentence pair ⟨(1), (2)⟩ previously shown, we have three 4-gram matches: "our

GDP may continue", "GDP may continue to", "may continue to fall". Thus we have Countmatch(4-gram) =

3. We also have four 3-grams, ten 2-grams, and fifteen 1-grams, in that same sentence pair. Therefore

we have:

simo(Sa, Sb) =
1
4
∗

(
3
13

+
4
14

+
10
15

+
15
16

)
= 0.5302

3.2.2.2 The BLEU Function

The BLEU (Papineni et al., 2001) metric was introduced as a function to automatically evaluate the

performance achieved by a translation system and was employed in some conference contests to

judge the quality of their competing systems. In such a competition each system has to generate a

translation text from a given source text supplied by the evaluator. Afterwards the evaluator calcu-
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3.2 Functions for Paraphrase Identification

lates the quality of the generated translation, by comparing it with a set of reference translations

from the original source text, usually created by humans. This comparison is executed through the

BLEU function, shown in Equation 3.6. First, the pn value is calculated as follows:

pn =
∑

C∈{Candidates}
∑

n-gram∈ C
Countclip(n-gram)

∑
C∈{Candidates}

∑
n-gram∈ C

Count(n-gram)
(3.2)

and then

BLEU = BP ∗ exp
N

∑
n=1

wn log pn (3.3)

where BP is a brevity penalty factor and wn are weighting factors (wn ∈ [0, 1] and ∑N
n=1 wn = 1.0). In

Equation 3.2 the set {Candidates} is the reference translation set and the function Countclip(n-gram)

counts the number of n-gram clippings (like matches) between a generated translation and a given

reference translation. This means that this function calculates the n-gram relation strength, among

two texts and, as a consequence, BLEU can be adapted to compute proximity among sentences. This

function adaptation is named here BLEUadapted.

BLEUadapted = exp

[
1
N

N

∑
n=1

log Cn

]
(3.4)

where Cn is computed as follows:

Cn =
N

∑
n=1

Countmatch(n-gram)
Count(n-gram)

(3.5)

For the brevity penalty factor we chose BP = exp(1− r
s ), where r and s are respectively the shorter

and longer sentence lengths, in terms of word counts. For the weighting factors, we took each one

equal to the same value, wn = 1
N , and so end up with nearly the geometrical mean of the Cn ratios:

BLEUadapted = BP ∗
[

N

∏
n=1

Cn

] 1
N

(3.6)

The Countmatch(n-gram) function counts the number of n-grams co-occurring between the two sen-

tences, and the function Count(n-gram) counts the maximum number of n-grams existing in the

shorter sentence. The maximum number of n-grams (N) was chosen equal to 4 in our experiments,

like in many other cases where BLEU is employed.

Considering the sentence pair ⟨(1), (2)⟩ shown previously, we have BP = e1− 16
17 and

BLEUadapted = e(1− 16
17 ) ∗

(
3
13
∗ 4

14
∗ 10

15
∗ 15

16

) 1
4

= 0.4856

3.2.2.3 Exclusive LCP N-gram Overlap

In most NLP works, the longer a string is, the more meaningful should be the function value (Dias

et al., 2000). Based on this principle, we were motivated to investigate an extension of the word
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3. PARAPHRASE EXTRACTION

simple n-gram overlap function. The difference between simple and exclusive n-gram overlap lays in

the fact that the exclusive form counts prefix overlapping1 1-grams, 2-grams, 3-grams, ..., N-grams,

regarding the Longest Common Prefix (LCP) technique proposed by Yamamoto & Church (2001). For

example, if some maximum overlapping 4-gram match is found, then its 3-grams, 2-grams and 1-

grams prefixes will not be counted. Only the 4-gram and its suffixes will be taken into account. This

is based on the idea that the longer the match, the more significant the match is. Therefore smaller

matches are discarded.

In particular, we compute exclusive n-grams co-occurring in a sentence pair by using a suffix-array

algorithm proposed by Yamamoto & Church (2001), to efficiently compute n-grams in a long corpus

and calculate term and document frequencies. So far, we have never come across an implementation

of this n-gram overlap method and so we decided to carry out some experiments with this function

as it is based on a sound hypothesis from Natural Language Processing applications. However, in

Section 7.1 we show that the simple word n-gram overlap function gives overall better results within

this n-gram family. However, this new exclusive n-gram overlap function shows interesting results to

classify false paraphrases.

In order to clarify how the word LCP is calculated, the following example is presented, with sentences

(3) and (4), having some n-grams in common:

(3) The President ordered the final strike over terrorists camp.

(4) President ordered the assault.

Between these two sentences we have the LCP n-gram overlap given by: "President ordered the"

which is a 3-gram. So the complete set of overlapping n-grams, besides the 3-gram, is: "ordered

the" (2-gram) and "the" (1-gram), i.e all its suffixes. To normalize the n-gram overlap, a particular

difficulty rises, due to the LCP n-gram considerations, i.e. the maximum number of overlapping

n-grams depends on the number of (n+1)-gram overlaps that exist. For example, in the previous

case and for 1-grams, we only have one overlapping 1-gram ("the") between the two sentences and

not 3 as it could be computed with the word simple n-gram overlap metric, i.e. "the", "President"

and "ordered". Thus, with this process of considering exclusive n-grams, it is unlikely to compute

similarity based on a weighted sum like in formula 3.1 and another method is defined in Equation 3.7

simexo(Sa, Sb) = max
n

{
Countmatch(n-gram)

Count(n-gram)

}
(3.7)

where Sa and Sb are two sentences and the functions Countmatch(n-gram) and Count(n-gram) are the

same as above with this new matching strategy. We first calculate simexo(Sa, Sb) for 4-grams and

then for the remaining 3-grams and so on and so forth, and after that the maximum ratio is chosen.

1This concept is exemplified later in this subsection.
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Continuing with the example of the sentence pair ⟨(1), (2)⟩ shown earlier in this subsection, we obtain

simexo(Sa, Sb) = max
{

3
13

,
4
14

,
10
15

,
15
16

}
= 0.9375

A few metrics have been applied to automatic paraphrase identification and extraction (Barzilay &

Lee, 2003; Dolan et al., 2004). However, these unsupervised methodologies show a major drawback

by extracting quasi-exact or even exact match pairs of sentences as they rely on classical string

similarity measures such as the Edit Distance in the case of Dolan et al. (2004) and Word N-gram

Overlap in Barzilay & Lee (2003). For these functions, the more similar two strings are the more likely

classified as paraphrases will be. In the limit the "best" pair will be precisely two exactly equal strings.

This is clearly naive and we may state that the more similar two strings are, the poorer is the quality

of the paraphrases generated. This kind of paraphrasing is usually what a naive plagiarist does! It

is desirable to identify paraphrases which share some dissimilarities among their sentences, because

this will open or widen the field for semantic relation discovery, according to the Distributional

Hypothesis (Harris, 1968). This principle suggests that counting the contexts that two words share

improves the chance for correct guessing whether they express the same meaning or not. One of our

later work confirmed this claim (Dias et al., 2010), where paraphrases, automatically extracted with

the functions proposed in Section 3.3, were used to discover semantic relations between words.

3.3 New Functions for Paraphrase Identification

To overcome the difficulties of the existing functions reported in the previous section, we have in-

vestigated new paraphrase identification functions (Cordeiro et al., 2007d). Contrary to the classical

functions, these new ones share the common characteristic of having an "hill shape curve", with zero

or near zero values near the domain boundaries and a maximum value reached in between, as il-

lustrated in Figure 3.4 where some of these functions are drawn. The domain for these functions is

usually1 the [0, 1] interval. These new functions have two main objectives. On one hand, to avoid

paraphrases where both sentences are equal or almost equal, and on the other hand also to reject

pairs of sentences which do not share any lexical unit, i.e completely different sentences. A certain

degree of sentence asymmetry in the paraphrase is desired, but only until a certain level, and beyond

that level the sentence pair will become progressively less relevant for our objectives. We will call

these new functions as asymmetrical paraphrase identification functions or simply as AP-functions,

while the classical paraphrase identification functions will be referred from here on as SP-functions,

where the "S" stands for "symmetrical", i.e symmetrical paraphrase identification functions. In our

1It is straightforward to rescale the domain in order to adjust this to some specific feature combinations with value outside

the [0, 1] interval.
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research work five AP-functions were experimented with, and these are show below.

y1(x) = 1− 2|x− 1
2 | (triangular) (3.8)

y2(x) = 4x− 4x2 (parabolic) (3.9)

y3(x) = sin(πx) (trignometric) (3.10)

y4(x) = ae−
(x−b)2

2c2 (gaussian) (3.11)

y5(x) = −xlog2(x)− (1− x)log2(1− x) (entropic) (3.12)

Each function curve is shown in the graph from Figure 3.4, identified by its name y1, ..., y5. It is

Figure 3.4: Hill shape functions for paraphrase identification.

important to remark that the gaussian function (y4) is in fact a family of functions, depending on the

a, b, and c parameters, which in our tests were chosen as a = 1, b = 0.5, and c = 0.3. For a gaussian

function, the a parameter defines the function maximum value, the b parameter sets the x value,

where the function reaches its maximum, and the c quantity shapes the curve x, where greater c

values means more stretched bell curves.

In the paraphrase detection functions presented earlier (e.g. y1(x)), the x represents certain fea-

tures, computed for the paraphrase sentences, like for example the number of word n-gram overlaps1

or the number of matching sinsets or any other combination of features one may decide to consider

in order to calculate this sentence connectivity/relatedness. A wide range of more or less complex

possibilities may be considered here. However, in our work (Cordeiro et al., 2007d) we simply count

the exclusive lexical links between two sentences. For a given sentence pair, an exclusive lexical
1More often used.
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Figure 3.5: Exclusive lexical links between a sentence pair.

link is a connection between two equal words, from each sentence. When such a link holds then

each word becomes bounded and cannot be linked to any other word. This is illustrated in Figure

3.5, where, for example, the word "the" in the first sentence has only one link to the first word "the"

in the second sentence and the second word "the" in that sentence remains unconnected.

The number of exclusive links bounding two sentences, is represented by λ, and we may now take

x = λ
m and x = λ

n , where m is the number of words in the longer sentence, and n the number from

the shorter one. Each fraction represents a participation rate for a "relationship" connecting these

two sentences. We may even take a combination of these two proportions, like for example the

geometric mean:
√

λ
m ∗

λ
n .

The main relevant issue with this type of hill-shaped functions is not the exact form of how x is

calculated but the general shape of the curve. These curves convey a common meaning, since the

maximum value is reached strictly inside the ]0, 1[ interval, in some cases near the 0.5 value, which

means, on one hand, that a certain degree of dissimilarity between the paraphrase sentences is

"desirable" while, on the other hand, that both the excessive dissimilarity and similarity, tends to be

penalized as we when limx→0 fhill(x) = 0 and limx→1 fhill(x) = 0. The main difference from the

classical paraphrase detection functions, is that the latter maintain their monotonicity and reach the

maximum when x = 1, i.e. f (xmax) = 1. An example of a paraphrase that would have a high value

with classical functions and lower value for fhill functions, is shown in Figure 3.6.

1. The stock has gained 9.6 percent this year.

2. The stock has gained 9.6% this year.

Figure 3.6: An example of a too similar paraphrase.

From the textual entailment standpoint, this example is obviously of very low utility. Hence, the

main advantage of a hill-shaped curve is that it allows a degree of "controlled" variability between

the sentences forming the paraphrase pair, thereby useful for the construction of an asymmetrical

paraphrase corpus, which is explored for sentence compression.

The experimental results achieved provided evidence that these AP-functions perform better than

the classical SP-functions. Better paraphrases are extracted from web news corpora, that are asym-
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metrical and satisfy the Distributional Hypothesis. Results also showed that even when using a corpus

containing only symmetrical type paraphrase, like for example the Microsoft Paraphrase Corpus, the

fhill (or AP-functions) still achieve better results than the SP-functions.

3.3.1 The Sumo Function

In Cordeiro et al. (2007d) another function - Sumo - containing the same main characteristics as the

fhill functions, was investigated and the results showed that it preforms even better (though only

slightly better in some cases) than any other fhill function, when tested in the majority of corpora.

This may be verified by looking at the results presented in Subsection 7.1.5.

Indeed, the Sumo metric was proposed for paraphrase identification even before we have conceptu-

alized the fhill mathematical functions. Our aim was to obtain better results than with the traditional

functions. Besides, we required that our function would be computed efficiently, while processing

the huge amount of text, from web news stories.

The Sumo metric was inspired by the Entropy function that is used to compute the Information Gain

of a particular attribute in a propositional learning problem. Viewing asymmetrical paraphrasing as

a one way entailment, as defined previously, we may see the entailed sentence as a compressed

output obtained from a given input sentence through a noisy channel model transmission, similarly

to what is presented by Knight & Marcu (2002). Hence, a question arises regards what the information

gain value of the compressed sentence is in relation to the input expanded one. This thought has

led us to define a kind of entropic function, calculated on the basis of the relative exclusive links1

connecting two sentences. Let λ be the number of exclusive lexical links connecting two sentences,

m the number of words in the larger sentence, and n the number of words in the shorter one. Then

we consider the fractions λ
m and λ

n , and combine them trough the function:

S(m, n, λ) = −α log2(
λ

m
)− β log2(

λ

n
) (3.13)

where α, β ∈ [0, 1], such that α + β = 1. Note that if α = β = 0.5, then 2S(m,n,λ) is equal to the

geometric mean of the two proportions:
√

λ
m ∗

λ
n . These are weighting parameters, giving more or

less importance to one or another proportion. In our experiments2 we used α = β = 0.5, equally

weighting both proportions.

Since this function is undefined for λ = 0, we naturally defined it to be equal to zero in that case,

because no lexical connection exists between the two sentences. Of course, we are aware that there

are paraphrases where their sentences do not have any lexical match at all. However, these type of

paraphrase analysis requires more advanced linguistic tools, like thesaurus and ontologies, which we

decided not to use, at least for now, maintaining our method as efficient as possible. Besides, these

1See the explanation, near Figure 3.5.
2The results are reported in Subsection 7.1.5.
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3.3 New Functions for Paraphrase Identification

tools are not available for many languages, as we have mentioned earlier. The reader may observe

that:

lim
λ
m→0

S(m, n, λ) = +∞ (3.14)

which conceptually looks a bit strange. The simple fact that S(m, n, λ) > 1.0 is not problematic. To

overcome the previous functional singularity and to rescale its range to a more conventional [0, 1]

interval, we have redefined the sentence similarity function by introducing a new condition (branch),

named the penalization branch. So, we define our Sumo as shown in Equation 3.15.

Sumo(Sa, Sb) =



S(m, n, λ) i f S(m, n, λ) ≤ 1.0

0 i f λ = 0

e−k∗S(m,n,λ) otherwise

(3.15)

The penalization branch e−k∗S(m,n,λ) recomputes the Sumo output to the [0, 1] interval and, as the

name indicates, it penalizes the too dissimilar sentence pairs. The k parameter is the penalization

magnification parameter. The greater its value, the more likely it is that dissimilar sentences will be

rejected as paraphrases. We have decided to fix k = 3, after several initial experiments, revealing

better results with this value.

For the the sentence pairs ⟨(1), (2)⟩ and ⟨(3), (4)⟩ previously shown we have:

S⟨(1),(2)⟩(17, 16, 15) = −0.5 · log2(
15
17

)− 0.5 · log2(
15
16

) = 0.1368

and

S⟨(3),(4)⟩(9, 4, 3) = −0.5 · log2(
3
9
)− 0.5 · log2(

3
4
) = 1.0

Note that the first pair gets a relative low value, smaller than any one obtained with the other

functions, including the word edit distance, while in the second case the maximum value is achieved.

This is so because the ⟨(3), (4)⟩ pair fits perfectly in the kind of asymmetrical paraphrases we are

searching for, serving as learning examples for sentence reduction. On the contrary, the ⟨(1), (2)⟩ pair

is much less interesting for learning reduction rules, as one sentence is almost a reordered version

of the other one.

The Sumo function may raise some mathematical and practical questions to the reader, hence in

order to clarify some possibly obscure issues, more details are presented throughout the rest of this
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3. PARAPHRASE EXTRACTION

subsection. Let us start by looking at which conditions we still obtain S(m, n, λ) ≤ 1.0:

S(m, n, λ) ≤ 1.0 ⇔ − α ∗ log2(
λ

m
)− β ∗ log2(

λ

n
) ≤ 1.0

⇔ log2(
λ

m
)

α

+ log2(
λ

n
)

β

> −1.0

⇔ (
λ

m
)

α

∗ (
λ

n
)

β

>
1
2

⇔ λ >
1
2

mα nβ (3.16)

Condition 3.16 states that the number of lexical links is bounded by the sentences number of words,

and if that number is low, with λ ≤ 1
2 mα nβ then S(m, n, λ) ≥ 1.0 and consequently the Sumo value

should start to decrease. In this case the output value is calculated through the penalization branch,

in which we have:

lim
S(m,n,λ)→+∞

Sumo(Sa, Sb) = 0 (3.17)

In our experiments1 we took α = β = 0.5, which implies that the connection constraint is λ >

1
2
√

m n, and the following table illustrates numerically several situations with different input values

and their effects on this constraint and the final Sumo output values.

Table 3.1: Sumo-Metric output examples.

m n λ 1
2
√

m n S(m, n, λ) Sumo(Sa, Sb)

1 20 18 17 9.49 0.158 0.15846

2 20 18 11 9.49 0.786 0.78649

3 20 18 3 9.49 2.661 0.00034

4 20 10 9 7.07 0.652 0.65200

5 20 10 6 7.07 1.237 0.02446

6 20 10 2 7.07 2.822 0.00021

7 20 5 5 5.00 1.000 0.04979

8 20 5 3 5.00 1.737 0.00546

9 20 5 1 5.00 3.322 0.00005

In this example the size of the larger sentence is maintained at 20 words for all cases, and only

the smaller one varies from 18 down to 5, simulating an increasing asymmetric pair size. There are

three examples with length 18, three with 10 and the last three with 5 words, representing shorter

sentences. Within any of these three subsets, we have a variation in the number of connecting lexical

links: λ. This example shows how far the sentence asymmetry is allowed to vary before entering the

penalization region (λ ≤ 1
2
√

m n) and what the effects are of the respective function's penalization

branch. Note that only cases 1, 2 and 4 fall within the "normal" region. Case 2 has a greater output

value than case 1, despite the fact that in this last case almost all words from the smaller sentence

1See Subsection 7.1.5.
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3.3 New Functions for Paraphrase Identification

are connected (17). This shows how Sumo prefers some degree of dissimilarity between sentences,

which is important from the point of view of the linguistic Distributional Hypothesis. It helps to

obtain pairs of sentences with high lexical matches and high lexical differences as well, and at the

same time, which may be helpful to induce sentence transformation rules (i.e. sentence reduction

rules) the main objective of this work.

In order to have a graphical representation of Sumo, one may consider x = λ
m and y = λ

n , which trans-

forms S(m, n, λ) in a two-dimensional function: S(x, y) = −α ∗ log2(x)− β ∗ log2(y), illustrated in

Figure 3.7, for α = β = 0.5.

x

z

1.0

1.0

1.0

xy

z

1.01.0

1.0

y

z

1.0

1.0

1.0

x

y

z

1.0

1.0

segunda-feira, 11 de Outubro de 2010Figure 3.7: A graphical representation for z = S(x, y), with α = β = 0.5, represented through four different

views.

For the sake of simplification and to have a clear view of the function, we also consider projections

in the two-dimensional subspace, with y = S(x, 1), y = S(x, 3
4 ), and y = S(x, 1

2 ). These functions

are represented in Figure 3.8 respectively with colors black, blue and green.

The red line represents the penalization branch, in this case e−3∗S(x,1), which was rotated and trans-
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3. PARAPHRASE EXTRACTION

Figure 3.8: A graphical representation for y = S(x, k), with α = β = 0.5, and k ∈ { 1
2 , 3

4 , 1}.

lated in order to match the S(x, 1) function at point ( 1
4 , 1). Looking just at the conjunction of the

black and red graphs, we can see a complete graphical example of the Sumo function, which is a

projection among many possible ones, evidencing that this function has an hill-shape curce with the

properties described at the beginning of this section.

3.4 Paraphrase Clustering - An Investigated Possibility

In an early phase of our research, also motivated by some other's work (Barzilay & Lee, 2003), we

have decided to investigate the application of clustering algorithms to extract paraphrase clusters

from text sentences. A paraphrase cluster is a set of sentences where each pair constitutes a para-

phrase. In the work of Barzilay & Lee (2003) it is claimed that clusters of paraphrases could lead to

better learning of text-to-text rewriting rules compared to simple paraphrasic examples. However,

as Barzilay & Lee (2003) did not propose which clustering algorithm should be used, we carried out

a study with a set of clustering algorithms and present the comparative results. Contrarily to what

was expected clustering did not bring any benefit.

Clustering is based on a similarity or (distance) matrix An×n, where each element aij is the simi-

larity (distance) between sentences si and sj. We have conducted experiments with four clustering
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3.4 Paraphrase Clustering - An Investigated Possibility

algorithms on a corpus of web news stories and then three human judges manually cross-classified a

random sample of the generated clusters. They were asked to classify a cluster as a "wrong cluster"

if it contains at least two sentences without any relation between them. Results are shown in Table

3.2. The "BASE" column represents the baseline, where the Sumo function was applied rather than

Table 3.2: Precision of clustering algorithms

BASE S-HAC C-HAC QT EM

0.618 0.577 0.569 0.640 0.489

clustering. Columns "S-HAC" and "C-HAC" express the results for Single-link and Complete-link Hier-

archical Agglomerative Clustering (Jain et al., 1999). The "QT" column shows the Quality Threshold

algorithm (Heyer et al., 1999) and in the last column "EM" stands for the Expectation Maximization

clustering algorithm (Hogg et al., 2005).

The main conclusion we can draw from Table 3.2 is that clustering tends to achieve worse results than

the paraphrase pair extraction. Only the QT achieves a somewhat better results. Moreover, these

results with the QT algorithm were applied with a very restrictive value for cluster attribution with

an average of 2.32 sentences per cluster (see Table 3.3). In fact, Table 3.3 shows that most of the

Table 3.3: Figures about clustering algorithms

Algorithm # Sentences/# Clusters

S-HAC 6.23

C-HAC 2.17

QT 2.32

EM 4.16

clusters have less than 6 sentences, which forces us to question the results presented by Barzilay &

Lee (2003) who only keep the clusters that contain more than 10 sentences. So, not only the number

of generated clusters is very low, but more importantly, all clusters with more than 10 sentences

appeared to be of very bad quality.

Given this, we have abandoned the idea of extracting clusters of paraphrases and decided to follow

the extraction of just sentence pairs. Nevertheless, we think that more directed algorithms might

be investigated in the future for special paraphrasic cluster extraction, instead of using conventional

clustering algorithms. For example, it could use two steps. After the extraction of a paraphrasic

sentence pair, one may search in the text for other reduced versions of the shorter sentence and add

them to the initial pair. This could generate a paraphrasic cluster with one relatively longer sentence

and several related reduced versions.
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3.5 Extraction Time Complexity

At the beginning of this chapter we have presented the algorithm for automatic paraphrase corpus

construction (Algorithm 1). There we mentioned that the process of extracting paraphrases from

arrays of sentences, obtained from news clusters, is of a complexity of O(n2). This led us to search

for efficient paraphrase identification functions. Our new proposed functions are more efficient,

as they rely on the number of exclusive lexical links. For example counting word n-gram overlaps,

which is the basis of several existing functions1 is computationally more costly. Assuming that we

are computing the similarity of two sentences with m and r words (m ≥ r), Sumo a complexity

of O(m ∗ r), in terms of word comparisons and in the worst case scenario. However, if any n-gram

based function is used, the complexity rises approximately to O(m ∗ r ∗N), where N is the maximum

number of n-grams used. This is the case for Simo, Simexo, and Bleu. These differences have been

observed in some experiments as shown in the following table. Only three AP-functions are shown,

Table 3.4: Paraphrase extraction times for six different functions.

Sumo Gaussian Entropy N-Gram Bleu Edit

time 00:31:48 00:30:12 00:32:45 01:30:27 01:45:58 01:31:19

as the others are also based on exclusive lexical links and so also spend nearly the same time, about

30 minutes. The SP-functions spent nearly 3 times more. This is also verified for the Edit function,

which has to compute a (m + 1)× (r + 1) matrix and carried out several operations on it, in order

to obtain the sentence edit distance. Time for Simexo are not shown, but it is even worse than the

time taken by Simo.

These times were measured on a dataset obtained from seven days of news2, totaling to about 37MB

of text, containing a total of 238 news clusters (34 per day), 11 548 news stories, and a total of

293 642 sentences. This gives an average of 48.52 related news per cluster and 25.43 sentences by

each news story. We can see that the array of sentences from which paraphrases are searched for

and extracted has an average size of 25.43× 48.52 = 1233.86 sentences. So, the spatial complexity

in terms of number of clusters processing (p) is linear: O(p). This is because each news cluster is

processed independently for the paraphrase search. For example, the computation time spent for 4

weeks (nearly one month) of news data would be approximately 2 hours for the AP functions and 6

hours for the SP-type functions.

These computations were measured on a machine with an Intel Core 2 Duo processor, working at

1.83Ghz, having 2GB of RAM, and running a POSIX3 operating system.

1For example Word N-gram Overlap, BLEU, and Exclusive LCP N-gram Overlap
2Each day was stored in a separate xml file.
3In our case the Mac OS X.
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3.6 Final Remarks

This chapter was dedicated to the topic of functions for paraphrase detection in text corpora. Several

existing functions were described (SP-type), as well as their limitations for asymmetrical paraphrase

identification. A set of new functions, AP-type, was also investigated and these are proposed as a

better type for asymmetrical paraphrase identification. Comparative results are presented in Section

7.1. These also revealed that the AP functions are at least as good as the SP type, even in corpus

containing almost symmetrical paraphrases.

In future, improvements could be investigated in order to enhance the results, despite the already

high quality achieved (Subsection 7.1). We suggest to investigate the inclusion term relevancy, like

for example tf.idf (Salton & Buckley, 1988), and Part of Speech Tagging, as input features for the

paraphrase identification functions. We believe that word links between sentences should have

distinct weights according to such characteristics, since it seems obvious that words do not have

the same information or relevancy. It is less important to have a match between determiners than

between names and verbs, which convey information about entities and actions. One may also

integrate the notion of content n-grams that can be extracted from monolingual corpora as in Dias

et al. (2000).

The next chapter presents the natural follow-up of work undertaken by discussing the issue of word

alignment between paraphrasic sentences. We end this chapter by referring the main scientific

contributions achieved in this subject. The work of paraphrase extraction enabled us to produce

three publication (Cordeiro et al., 2007a,b,c). These are more detailedly listed and described in

Section 1.4.
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Chapter 4

Paraphrase Alignment

"He that will not apply new remedies must expect new evils, for time is the greatest
innovator."

Francis Bacon, Essays

In Chapter 3 we presented our paraphrase gathering method, which is able to automatically identify

paraphrases from text. The next natural step in our research was to investigate different paraphrase

alignment techniques. By "paraphrase alignment" we mean the alignment of words inside the pair of

sentences forming a paraphrase. Identical or even similar1 word pairs, one from each paraphrasic

sentence pair, are aligned and dissimilar words aligned with empty gaps. For example, consider the

following paraphrase, which was automatically extracted from the news:

Sa: Tropical Storm Gilbert formed in the eastern Caribean and strengthened into a hur-

ricane Saturday night.

Sb: Tropical Storm Gilbert strengthened into an eastern Caribean hurricane on Saturday

night.

One possible alignment is shown in Figure 4.1. A closer analysis shows that in general there may

Tropical Storm Gilbert ____________ formed in the eastern Caribean ...

Tropical Storm Gilbert strengthened ______ into an eastern Caribean ...

... and strengthened into a hurricane __ Saturday night.

... ___ ____________ ____ _ hurricane on Saturday night.

Figure 4.1: A possible alignment for two paraphrase sentences.

be more than one possible alignment generated by different algorithms. For instance, the previous

example could have been realigned as shown in Figure 4.2.

By analysing qualitatively these two alignments, the latter appears less satisfactory than the former.

We note that the latter contains more word gaps. Hence, we have devoted some research effort
1We specify later in this chapter what type of similar words we use.
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Tropical Storm Gilbert formed in the eastern Caribbean ...

Tropical Storm Gilbert strengthened __ ___ _______ _________ ...

... and strengthened into a _______ _________ hurricane __ Saturday night.

... ___ ____________ into an eastern Caribbean hurricane on Saturday night.

Figure 4.2: Another possible alignment for the same paraphrase.

to discover and employ the algorithms which produce alignments as "good" as possible. We have

investigated methods for global and local alignments and proposed a dynamic strategy for choosing

the best one at run time. We also propose a new function to model word alignment in paraphrasic

sentences. It also allows the alignment of non-identical yet lexically similar words, which mimics the

mutation matrices in DNA sequence alignments.

In Subsection 4.3.1 we define a function to calculate the lexical quality of an alignment (Equation

4.9). Using this function for the previous two alignment examples we obtain algval(Figure 4.1) =

0.728 and algval(Figure 4.2) = 0.679, which confirms our initial perception.

4.1 Biology-Based Sequence Alignment

Sequence alignment aims at pairing, as best as possible, the symbols contained in at least1 two

sequences. This is done by satisfying a set of alignment constraints, usually defined as a mutation

matrix in biology. It has been extensively explored in bioinformatics for a long time, where one of the

most notable early achievement is the Needleman-Wunsch global alignment algorithm (Needleman &

Wunsch, 1970). More recently, after the beginning of the Human Genome Project in 1990, and boosted

by the gradually increasing computation power, a wide and fruitful research was pursued with the

aim to perform near optimal and efficient DNA sequence alignment. A draft of the human genome

was finished in 2000 and was announced jointly by then US president Bill Clinton and the British Prime

Minister Tony Blair on June 26, 2000. Subsequent sequencing efforts led to the announcement of the

essentially complete genome in April 2003. In May 2006, another milestone was achieved on the way

to the completion of the project, when the sequence of the last chromosome (chromosome one) was

published in the scientific journal Nature (Gregory et al., 2006).

In bioinformatics, sequence alignment is a process of arranging the sequences of DNA, RNA, or a

protein to identify regions of similarity that may be a consequence of functional, structural, or

evolutionary relationships between the sequences. Aligned sequences of nucleotide or amino-acid

residues are typically represented as rows within a matrix. Gaps are inserted between the residues

so that identical or similar characters are aligned in successive columns, as shown in Figure 4.3.

1There are also Multi-Sequence-Alignment methods.
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Figure 4.3: DNA sequence alignment.

The alignment construction is essentially algorithmic, like dynamic programming, which in turn is

guided by a mutation matrix codifying the likelihood for gene mutation. These mutation matrix

values have a direct implication on the quality of the created alignments.

In Natural Language Processing, sequence alignment has already been employed in some sub-domains

like Text Generation (Barzilay & Lee, 2002). However, as far as we know word alignment within

sentences has not been explored. Therefore, in our work we have investigated alignment methods

for aligning words between two sentences that form a given paraphrase. In our problem the sentences

represent the sequences and the words are the base blocks, the symbols, in those sequences.

Computational sequence alignment usually falls into two main categories: global and local align-

ments. In the first one, the algorithm tries to completely align all the symbols in both sequences,

while in the second one the objective is to find at least one relevant sub-alignment. The appropri-

ateness of each category depends on particular characteristics. Usually, global alignment is more

useful when the sequences in the query set are similar and with near equal size, while local align-

ments are more appropriate when we have highly asymmetrical sequence sizes containing similar

subsequences.

4.1.1 Global Alignment

The Needleman & Wunsch (1970) algorithm was the first method for determining sequence homology

(Waterman, 1984). It uses dynamic programming to find the best possible alignment between two

sequences, with respect to the scoring system used, which includes a substitution matrix and a gap-

scoring scheme. The former defines the cost of aligning two symbols in the sequence, either equal or

different. The latter, also known as the gap penalty, specifies the alignment cost between a symbol

and a gap, which is a void space. This algorithm computes the optimal1 global sequence alignment

1The term "optimal" here means that the best alignment match is generated, depending on the symbol-to-symbol alignment

function.
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between the two sequences, in which different symbols may be pairwise-aligned, or else a symbol

may be aligned with an empty space (a gap). To illustrate how this alignment algorithm works, we

present here a small example. Suppose the aim is to align the following two DNA sequences, where

each letter represents a gene:

SEQUENCE(x): A C A C A C T A
SEQUENCE(y): A G C A C A C A

Let us assume that the scoring function governing the alignment of two symbols is defined as shown

in Equation 4.1, where xi and yj represents the i-th and j-th symbols in the x and y sequences,

respectively:

w(xi, yj) =


1 if xi = yj

−1 if xi ̸= yj

−1 if xi = ”__” or yj = ”__”

(4.1)

This function assigns value 1 for a match, that is, aligning two equal symbols, −1 for a mismatch

and for gap penalty, that is, aligning different symbols, including voids, will have a unit cost of −1.

The algorithm starts by iteratively (line by line or row by row) filling in a similarity matrix, usually

designated as F, where the alignment path is dynamically computed and F(i, j) holds the global

alignment score for the subsequences x[1..i] and y[1..j]. The exception will is top row and the leftmost

column which are initialized with multiples of the gap penalty value, −1 in this case, representing

the scores of aligning prefixes of x or y to sequences of gaps. The m and n values in 4.2 and 4.3

represent the lengths of the x and y sequences.

F(i, 0) = (−1) ∗ i 0 ≤ i ≤ m (4.2)

F(0, j) = (−1) ∗ j 0 ≤ j ≤ n (4.3)

F(i, j) = maximum



0

F(i− 1, j) + w(xi, __)

F(i, j− 1) + w(__, yj)

F(i− 1, j− 1) + w(xi, yj)

(4.4)

As we can see from the function definition 4.4, each matrix value F(i, j) is calculated by taking into

account three recursive values and the respective cost for establishing the (xi, yj) alignment. They

are exactly the immediate upper, left, and diagonal matrix values and we may call them as the
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previous neighbors. Hence the F matrix for our two x and y sequences will be:

F =



__ A G C A C A C A

__ 0 −1 −2 −3 −4 −5 −6 −7 −8

A −1 1 0 −1 −2 −3 −4 −5 −6

C −2 0 0 1 0 −1 −2 −3 −4

A −3 −1 −1 0 2 1 0 −1 −2

C −4 −2 −2 0 1 3 2 1 0

A −5 −3 −3 −1 1 2 4 3 2

C −6 −4 −4 −2 0 2 3 5 4

T −7 −5 −5 −3 −1 1 2 4 4

A −8 −6 −6 −4 −2 0 2 3 5



(4.5)

In this matrix, the first line and first column are used just for labeling, containing exactly each

sequence symbol, the fist column for the x sequence and the first line for the y sequence.

The matrix values starts at the second line and second column, which have indexes equal to zero,

i.e. the indexes in matrix F vary from zero to m for lines, and to n for columns. Thus we have

one line and one column more than the sequence sizes to account for the gap symbol "__", which

is positioned at the beginning. For example, the square signaled value in F(5, 6) has as previous

neighbours F(4, 6) = 2, F(4, 5) = 3 and F(5, 5) = 2. The reward of aligning the 5-th element from

the x sequence with the 6-th element from the y sequence is given by w(x5, y6) = w(A, A) = 1,

given the defined scoring set. Therefore the matrix value for matrix position (5,6) is computed as

F(5, 6) = max{0, 2 + (−1), 3 + 1, 2 + (−1)} = 4.

After this construction we are ready to finally make the alignment by following a backward path,

starting at the matrix lower rightmost position and successively jumping back to one of the three

previous neighbours. That is, we have three possible directions to follow let us name them: north

(Fi,j 7→ Fi−1,j), north-west (Fi,j 7→ Fi−1,j−1) and west (Fi,j 7→ Fi,j−1). The direction is decided

according to the function inherent to the dynamic matrix construction made in the first step, which

resembles a kind of remembrance process. In each Fi,j position one needs to determine whether

this value was obtained from F(i − 1, j) + w(xi, __), or from F(i, j− 1) + w(__, yj), or from F(i −

1, j− 1) + w(xi, yj), to determine whether the jumping-back direction is north, west, or north-west,

respectively.

The effect of jumping back one step forces at least one symbol, either from sequence x or y, to be

aligned, with another symbol or an empty space ("__"). If Fi,j is the actual position, then a north-

west jump will align symbols xi and yi, while a north jump will align xi with a void space and a west

jump aligns yj with void space too. When a tie exists and there are more than one likely direction to

jump back, one is randomly chosen. This process stops when the F1,1 position is reached, providing a

full alignment for both sequences. The jumping-back path in our previous example is marked in the
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matrix shown using a bold face, and the obtained alignment in this case is:

SEQUENCE(x): A G C A C A C _ A
SEQUENCE(y): A _ C A C A C T A

This alignment algorithm reveals space and time inefficiency when sequence lengths increase sub-

stantially, due to the fact that an m ∗ n1 matrix must be processed and held in memory during the

computation. This is not problematic for relatively small sequences. However, in the general case of

DNA sequence alignments usually many thousands of nucleotides have to be aligned. This complexity

bottleneck lead to further research effort in order to discover more efficient algorithms. In particu-

lar, several new algorithms are now able to overcome the complexity barriers of many problems and

produce useful practical results, as for example the BLAST family (Altschul et al., 1997) and FASTA

(Orengo et al., 1992) algorithms.

In our alignment task we do not have these complexity obstacles, because in web news stories the

average length of a sentence is equal to 20.9 words, which is quite insignificant when compared

to DNA sequences which are at least, three or four orders of magnitude longer. Therefore, we

could afford to implement an adapted version of the Needleman-Wunsch algorithm for making global

alignments between paraphrase sentences.

To the horror of their television fans , Miss Ball and Arnaz were divorced in 1960.

__ ___ ______ __ _____ __________ ____ _ ____ Ball and Arnaz ____ divorced in 1960.

Figure 4.4: A global alignment for two paraphrase sentences.

Figure 4.4 exemplifies another global word alignment for a new paraphrase. The Needleman-Wunsch

algorithm depends directly on the mutation matrix used, which is a substitution matrix that reflects

the probabilities of a given symbol-to-symbol (word-to-word, in our case) substitution. Therefore

if a given mutation matrix does not model correctly what occurs in the problem domain, then low-

quality, or even unsatisfactory alignments may be generated. This is the reason behind the differ-

ences between the examples contained in figures 4.1 and 4.2, which show that from the same original

paraphrase sentences we can obtain different alignments. The issue of having a mutation matrix to

model word substitutions is discussed in Subsection 4.3.

4.1.2 Local Alignment

The Smith-Waterman algorithm is similar, in many aspects, to its predecessor for global sequence

alignment - the Needleman-Wunsch algorithm, described in the previous subsection. Proposed nearly

ten years later (1981), the Smith-Waterman algorithm was specially conceived to extract at least one

sub-alignment from a given sequence pair. According to the literature (Smith & Waterman, 1981) this

1Where m and n are the sequence lengths.
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algorithm is more adequate than the global alignment for heterogeneous sequences, either having

asymmetrical lengths or a great proportion of symbol dissimilarity among sequences, or even both,

though in this last situation we tend to have a more unrelated sequence pair and any alignment

attempt would be unworthy. For highly similar sequences there is not much difference between

applying the global or local alignment procedures, and even if local alignment is used we may have

a global alignment as a result. Table 4.1 presents three local alignments, obtained from their re-

spective main sequences and it is evident that a high degree of dissimilarity exists between each

main sequence pair is unlikely to produce a global alignment with any real quality. For the sake of

representation simplicity and without loosing any generality, we use here character sequences.

Table 4.1: Example of local alignments.

N Char. Sequences Alignments

1
ABBAXYTRVRVTTRVTR X Y T R V

FWHWWHGWGFXYTVWGF X Y T _ V

2
ABCDXYDRQZR A B _ C D X

GADQZZSTABZCDX A B Z C D X

3
ABCD A B _ _ C D

DQZZSTABZYCDUQRTVUAA A B Z Y C D

The complexity difficulties remain the same as for the global alignment, due to the same reasons,

which are related to the maintenance and processing of the m× n matrix, where m and n are the

sequence lengths. For the same reasons as for the global alignment algorithm, several more efficient

algorithms have been investigated during the last 20 years, in order to extract aligned subsequences

from long DNA sequences. For our specific word alignment problem this matrix size is relatively small

and we can afford to employ the Smith-Waterman algorithm, which produces the best alignment

match, depending on the word-to-word alignment function.

The original algorithm extracts only the sub-alignment with maximum score . However, other relevant

sub-alignments can exist, besides the best one. For example, by looking carefully at the second

example in Table 4.1 we note another possible sub-alignment of length 4:

D _ Q Z
D R Q Z

This shows that the algorithm could be adapted to generate not only the maximum sub-alignment, but

a set of sub-alignments that satisfy some criterium, for example having an alignment value greater

than some minimum threshold. In fact, this is relevant for our sentence word alignment problem,

since sentences may be rewritten by rearranging their parts in a different order. Furthermore,

this motivated us to implement a dynamic alignment method, described in the next section (4.2).

Having a method of extracting not just the best, but several relevant sub-alignments, from one para-
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phrase, has the effect that a richer aligned paraphrase corpus will be constructed, with different

and more detailed phrase alignments. Hence, we implemented a modified version of the original

Smith-Waterman algorithm, where several sub-alignments are likely to be generated.

Similarly to what was done for the Needleman-Wunsch algorithm described in the previous subsection,

an illustration of the Smith-Waterman algorithm is presented here, and in particular our adaptation

involving the extraction of multiple sub-alignments. The sequences used for this illustration are those

contained in the second example, in Table 4.1, hence we have:

SEQUENCE(x): A B C D X Y D R Q Z R
SEQUENCE(y): G A D Q Z Z S T A B Z C D X

Here we assume that the scoring function returns 2 for a symbol match and -1 either for a mismatch

and for gap penalty alignment:

w̆(xi, yj) =


2 if xi = yj

−1 if xi ̸= yj

−1 if xi = ”__” or yj = ”__”

Another difference is the filling values for the initialization rows, the line zero and column zero are

initialized with zero values:

F̆(i, 0) = 0 0 ≤ i ≤ m

F̆(0, j) = 0 0 ≤ j ≤ n

The recursive dynamic filling function, for the rest of the matrix elements is exactly the same as in

the global alignment, though w(xi, yj) weights differently.

F̆(i, j) = maximum



0

F̆(i− 1, j) + w̆(xi, __)

F̆(i, j− 1) + w̆(__, yj)

F̆(i− 1, j− 1) + w̆(xi, yj)
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and in this case our F̆ matrix will be:

F̆ =



__ G A D Q Z Z S T A B Z C D X

__ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0

B 0 0 1 1 0 0 0 0 0 1 4 3 2 1 0

C 0 0 0 0 0 0 0 0 0 0 3 3 5 4 3

D 0 0 0 2 1 0 0 0 0 0 2 2 4 7 6

X 0 0 0 1 1 0 0 0 0 0 1 1 3 6 9

Y 0 0 0 0 0 0 0 0 0 0 0 0 2 5 8

D 0 0 0 2 1 0 0 0 0 0 0 0 1 4 7

R 0 0 0 1 1 0 0 0 0 0 0 0 0 3 6

Q 0 0 0 0 3 2 1 0 0 0 0 0 0 2 5

Z 0 0 0 0 2 5 4 3 2 1 0 2 1 1 4

R 0 0 0 0 1 4 4 3 2 1 0 1 1 0 3



Whereas in global alignment the jumping-back alignment path starts at the lower rightmost position,

here the construction starts at the position holding the maximum value, in this case F̆(5, 14) = 9.

The jumping-back direction, is computed easily, since we only need to pick the maximum value

from the prior neighbors and jump to that position, while in the previous algorithm more arithmetic

calculations are involved. For example, we can see the justification for the jump F̆2,11 7→ F̆2,10,

because F̆(2, 10) = max{0, F̆(2, 10), F̆(1, 10), F̆(1, 11)} = max{0, 4, 1, 0} = 4. The complete

jumping-back path is marked with boxes and the sub-alignment output is:

A B _ C D X
A B Z C D X

To seek for another possible sub-alignment, one must look at the values outside the optimal path,

assigned to lines and columns. These are positions where their line and column indexes do not

intercept lines and columns of the optimal path elements - a new starting point in a disjoint region.

In our example, we have to scan F̆(i, j) positions such that i ∈ {6, 7, ..., 11} and j ∈ {1, 2, ..., 8}. If

the maximum scanned value is greater than a minimum threshold δ then a starting point for another

sub-alignment can be found. Admitting that δ = 4 was predefined, then F̆(10, 5) = 5 is our new

alignment starting point. Afterwards, the jumping-back walk works exactly the same as for the global

alignment. Our second sub-alignment is marked in the matrix by using an underlined bold font. The

search for sub-alignments in disjoint regions continues while unassigned lines and columns exist and

as long as max {F̆(i, j) : f ree(i.j)} > δ, where f ree(i, j) represents an unassigned position. The

application of this adapted version of the Smith-Waterman algoritm to our example would generate

two sub-alignments:
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ALIGNMENT 1 ALIGNMENT 2
----------------------------------

A B _ C D X D R Q Z
A B Z C D X D _ Q Z

We conclude this section by showing some examples of aligned word sub-sequences obtained from

our paraphrase corpus. The reader may check the appropriateness of this algorithm in this particular

kind of sentence pairs, usually sharing some length dissimilarity, i.e. asymmetrical paraphrases (see

definition 2 in Section 3.1). Let us see a case with three paraphrases in which local alignment is

more appropriate. The "algval(A2×n)" function, defined in Subsection 4.3.1, is used to provide

quantitative comparisons. First we show what would be the bad effect of global alignment applied

to these three paraphrases:

(1) The McMartin Pre-school molestation case was the longest _ _________ _ criminal trial in
The ________ __________ ___________ ____ ___ ___ longest , costliest , criminal trial in

________ U.S . history _ ___ ________ __________ ___________ ____ _ _____ ________ .
American ___ _ history , the McMartin Pre-School molestation case , ended Thursday .

[algval(1): 0.500]

(2) ________ ________ After the 45-minute service , the families attended a private
Moosally attended _____ the _________ service _ ___ ________ ________ _ _______

reception with Moosally .
_________ ____ ________ .

[algval(2): 0.388]

(3) __ _ _______ __________ The storm , ___ _ _______ __ ________ ____ packing winds of up
21 , hitting Charleston ___ _____ , S.C . head-on at midnight with _______ winds __ up

to 135 mph , raged into Charleston Thursday night .
to 135 mph _ _____ ____ __________ ________ _____ .

[algval(3): 0.358]

Now, for each one, we show the sub-alignments obtained through the application of the local (Smith-

Waterman) alignment algorithm:

(1)
a) longest _ _________ _ criminal trial in ________ U.S . history [algval(1a): 0.815]

longest , costliest , criminal trial in American ___ _ history

b) McMartin Pre-school molestation case [algval(1b): 1.000]
McMartin Pre-school molestation case

(2)
a) the 45-minute service [algval(2a): 0.840]

the _________ service

(3)
a) winds of up to 135 mph [algval(3a): 0.927]

winds __ up to 135 mph

b) , _______ raged into Charleston [algval(3b): 0.657]
, hitting _____ ____ Charleston

It appears that these obtained sub-alignments are much more useful and make more sense for our
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main objective of the identification of sentence reduction rules, than the corresponding global align-

ments. Thus in some situations local alignment is preferable to global alignment. In the next section

we present a new method for determining which alignment algorithm should be applied at run time.

4.2 Dynamic Alignment

In the last section we presented two classically alignment algorithms for symbol sequences, the

Needleman-Wunsch for global and the Smith-Waterman for locally alignment. In particular, we pro-

posed an adaptation of this last one in order to be able to generate more than one sub-alignment

from the same sequence pair. This last new method revealed to be more adequate to align our data,

in many cases due to the high presence of asymmetrical paraphrases in our corpus. However, in many

other cases a global alignment will comply better with the alignment task needed. So, a natural and

relevant question raises:

Which alignment algorithm should be employed in our sentence word alignment problem?

Initially, we were inclined to use only the global alignment algorithm, since a full word alignment for

each sentence is generated. However, we noticed that the global strategy was not appropriate for

many paraphrase sentence pairs, in particular when there are syntactically valid variants, like the

pair shown in the next example:

::::::::::::::::::::::::::
During his magnificent speech, the president remarkably praised IBM research.

The president praised IBM research,
:::::::::::::::
during his speech.

Figure 4.5: A paraphrase sentence pair which include interchange of paraphrases.

This type of phrase interchange may occur with some frequency in a paraphrase corpus, and global

alignments in such cases may align many unrelated sentence portions to word gaps, and as a result this

may lead to a poor quality alignment. This has negative consequences for the induction of sentence

transformation and reduction rules. The global alignment for the paraphrase example from Figure

4.5 is represented below.

during his magnificent speech the president remarkably praise ibm research ______ ___ ______
______ ___ ___________ ______ the president __________ praise ibm research during his speech

[algval: 0.644]

This is clearly a situation where our adapted local alignment algorithm (see Subsection 4.1.2) would

perform better than the global one, since the local method would generate the following two sub-

alignments:

(1) the president remarkably praised ibm research [algval: 0.927]
the president __________ praised ibm research

(2) during his magnificent speech [algval: 0.886]
during his ___________ speech
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There are other situations, even without such syntactical alternations, where the local alignment

procedure seems more adequate. For example, when one of the paraphrase sentences is considerably

longer than the other one, like in the following example in Figure 4.6, a local alignment would

Sayako has taken driving lessons and practiced shopping at supermarkets, the couple

has studied catalogs to choose furniture and appliances for their new home.

Sayako took driving lessons and practiced shopping at supermarkets.

Figure 4.6: A paraphrase sentence pair with relevant asymmetrical lengths.

produce a more specific alignment, which would be better suited for learning more restricted and

simple sentence transformations:

Sayako ____ has taken driving lessons and practiced shopping at super
Sayako took ___ _____ driving lessons and practiced shopping at super

[algval: 0.874]

However, this kind of asymmetrical length examples may be useful to infer regularities specifying

the condition in which the long sentence portions can be eliminated, which is one of our main goals.

Hence, the best of "two worlds" is desirable, and ideally both global and local alignment algorithms

are worth to be applied, each one in its particular cases.

The previous situations motivated and led us to search for a strategy for run-time-choice of an ap-

propriate alignment algorithm, between the global and local methods mentioned. For that purpose,

we use the concept of exclusive link discussed in Section 3.3. Considering a connecting line set be-

tween two sentences, we noticed that when we have high syntactic alternations, the number of line

intersections is high, whereas the absence of any alternations is reflected by no line intersections.

Based on this notion, we have formalized our method for algorithm selection. We refer to these

intersection points as crossings. An illustration is given in the Figure 4.7, where 15 crossings are

identified using small squares.

During his magnificent speech, the president remarkably praised IBM research.

The president praised IBM research, during his speech.

Figure 4.7: Crossings between a sentence pair.

The maximum number of crossings, between two sequences with n exclusive links is equal to θ =
1
2 ∗ n ∗ (n− 1), which is the case when the words in the second sentence appear in reverse order
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when compared with the first sentence.

the   president   remarkably   praised   IBM   research 

research      IBM      praised      president      the

Figure 4.8: Maximum number of crossings in a complete word inversion case.

This is an extreme situation and almost never happens, because the order of words in a sentence

is subject to various linguistic constraints such as the syntactical structures. The result would be a

bunch of unrelated words. However, this value is a relevant upper limit for our algorithm, allowing

us to calculate a kind of "reversion proportion" and take decisions at run time. Such an extreme

inversion situation is illustrated in Figure 4.8, where each line has an intersection point with all the

others, and so we obtain the total of θ = 1
2 ∗ 5 ∗ 4 = 10 crossings.

In order to count the total number of intersections, which in the general case may include n lines, we

start by removing a given line and count the number of intersections vanished through this operation.

For the first line, n − 1 crossings will disappear. We continue this process until no lines are left.

Hence, in the second removal n− 2 crossings disappear, in the third one n− 3 and so on. When only

two lines are left and one is removed, exactly one intersection is removed. The removal of the last

line implies obviously the removal of zero crossings. Therefore, it clear that:

θ = (n− 1) + (n− 2) + ... + 2 + 1 + 0

=
1
2
∗ n ∗ (n− 1)

With this upper bound of the number of crossings θ, we can count the number of crossings in a

given case, lets say κ. This enables us to decide whether κ is greater than a certain pre-defined

proportion of θ (for example whether κ ≥ 0.5 ∗ θ ) and opt for global alignment if this condition is

not guaranteed. This is synthesis below in Algorithm 2.

Given two sentences, the method to calculate a crossing point takes into account the word index

in the sentence, that is the position in which a word occurs within the sentence, which starts with

one. For instance, in our previous example from Figure 4.7, the word "president" occurs in the sixth

position, whereas in the second sentence it occurs in the second position. This connecting line is

represented through a tuple ⟨w, i, j⟩, where the first component is the word being connected, and

the second and third components are respectively the indexes of that word in the first and second
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Algorithm 2 Runtime decision to chose between local and global alignment.
1: n← NumExclusiveLinks(S1, S2)

2: θ ← 1
2 ∗ n ∗ (n− 1)

3: κ ← NumCrossings(S1, S2)

4: if κ ≥ 0.5 ∗ θ then

5: LocalAlignment(S1, S2)

6: else

7: GlobalAlignment(S1, S2)

8: end if

sentence. So the connecting line would be represented as ⟨president, 6, 2⟩, whereas the connection

line relative to the word "during" would be represented as ⟨during, 1, 6⟩. With this representation it

is fairly straightforward to verify whether any two connecting lines have an intersection point. If we

have connections ⟨w, iw, jw⟩ and ⟨v, iv, jv⟩, a crossing point exists if and only if:

(iw − iv) ∗ (jw − jv) < 0 (4.6)

For instance, the previous example that involves ⟨president, 6, 2⟩ and ⟨during, 1, 6⟩ is covered by this

condition, because we have (6− 1) ∗ (2− 6) < 0, revealing that a crossing point exists for these two

connections. The total number of crossings found between two sentences S1 and S2, corresponds

to the NumCrossings(S1, S2) function in Algorithm 2. As shown, this value is used for deciding the

alignment algorithm that should be applied in a given case. The decision threshold of 0.5 in line 4

is a value that should be tuned according to the input data type being processed and also the final

alignments one would prefer. In our case this value seems reasonable, however other values may

also be considered.

4.3 Modeling a Similarity Matrix for Word Alignment

In bioinformatics, the DNA sequence alignment algorithms are usually guided by a scoring function,

defining the probability of gene mutation. Such scoring functions are defined using matrices that

relate the mutation likelihood among amino-acid characters. Two well-known and widely used ma-

trices are the PAM1 (Dayhoff et al., 1978) and the BLOSUM2 (Henikoff & Henikoff, 1992), which encode

evolutionary approximations regarding the rates and probabilities of amino-acid mutations. The PAM

family were designed to be used for a more global distant or global gene alignment investigation,

whereas the BLOSUM family is more directed towards local alignment searching between evolution-

arily divergent protein sequences. Similarly as for PAM matrices, several sets of BLOSUM exist, using

different alignment databases, identified by numbers. BLOSUM matrices labeled with high numbers

1Point Accepted Mutation.
2BLOcks of Amino Acid SUbstitution Matrix.
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are designed to compare closely related sequences, while BLOSUM matrices with low numbers are in-

tended for comparing less related sequences. An example of a BLOSUM matrix is presented in Figure

4.9.

Figure 4.9: The BLOSUM62 substitution matrix.

Any similarity matrix models a set of concepts accepted in a particular domain, as probable evo-

lutionary gene mutations. Hence different matrices will generate different alignments, since such

matrices provide direct and fundamental guidance for the alignment.

Subsequently, this inspired us to develop a model that governs the likeliness of "word mutation".

Such a model could then be used to guide the word alignments between our paraphrase sentences

and could produce more relevant material for the learning phase. We note that different authors

employ synonyms or even more simpler lexical similarities, like plurals, or different verb modes in

their formulations. A word mutation model could combine different types of linguistic features:

lexical, syntactical or even semantic. In our work, limit our proposal to a simple model which is

based exclusively in lexical features. However, in the future more complex combinations could be

experimented with.

Our main concern was to define a simple lexical mutation function that would reward naturally re-

lated word transformations, whereas unlikely word transformations would be significantly penalized.

For example, it seems more likely to admit a lexical mutation between the words spirit and spiritual

than between the words spiritual and hamburger, which would not occur much in a paraphrase word

alignment.

The first idea we had to introduce a word mutation function was to consider the well-known Edit
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Distance (Levenshtein, 1966) and adapt it for word alignment by introducing a negative reward. The

reason for taking a negative value is to comply with the content type of a mutation matrix, since

it represents costs, not rewards, for allowing gene alignments. So when using the negative Edit-

distance for a word pair ⟨wi, wj⟩, the lower the negative Edit-distance value, the more unlikely the

word wi would be aligned with word wj.

However, despite many good alignments generated in some early experiments with this negative-edit-

distance function, we found that it was not appropriate in many situations, as it lead to alignments

between very different words, like for example: ⟨total, israel⟩, ⟨ f ire, made⟩, ⟨troops, members⟩.

The main reason why this happens is because the edit-distance returns relatively small values, inca-

pable of sufficiently penalizing morphological differences, like those listed before, in order to inhibit

their alignment. In terms of bioinformatics concept, this means that our model is still giving rela-

tively high mutation probability scores for such pairs. Another problem with this function is related

to the fact that it does not make any distinction between long and small word sizes, for instance the

pairs ⟨in, by⟩ and ⟨governor, governed⟩ have exactly the same Edit-distance equal to 2, despite the

huge differences between the pairs.

After some further research, we have defined a more adequate function to model lexical word mu-

tations, avoiding the previous difficulties - the costAlign(wi, wj) function. Thus, we proposed a

new word alignment scoring function in Equation 4.7) which is an adaptation of the Edit-distance

function, by dividing it by a normalization factor, the maxseq(wi, wj) function, which discriminates

among word lengths.

costAlign(wi, wj) = −
edist(wi, wj)

ε + maxseq(wi, wj)
(4.7)

The edist(wi, wj) is the string edit distance, and the maxseq(wi, wj) function calculates a normalized

maximum common sequence value between two words. That is, it represents the length of the longest

common subsequence of the two words divided by the maximum length value. For example, the

longest common subsequence for the pair ⟨reinterpretation, interpreted⟩ is "interpret", with length

equal to 9, thus:

maxseq(reinterpretation, interpreted) =
9

max{16, 11} = 0.5625

On the other hand the pair ⟨hamburger, spiritual⟩ has a maximum common sequence equal to 1 (just

one letter: "a" or "u" or "r") and so we would obtain:

maxseq(hamburger, spiritual) =
1

max{9, 9} = 0.1111

In Equation 4.7 the ε represents a small value1 near zero, acting like a "safety hook" against divisions

by zero whenever maxseq(wi, wj) = 0. This happens when we have completely different words

1We took ε = 0.01 in our experiments.
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that do not share any character in common. We named our function as "costAlign", instead of, for

example, "scoreAlign", since it looks more like a cost function, with values always less than zero. In

fact its maximum value is zero, when we have two identical words, however in such cases a positive

value should be assigned, rewarding the occurring match. This is exactly what we make, according

to the function w(xi, yj) (4.8), explained later.

Table 4.2: Comparing two word mutation functions.

word 1 word 2 -edist costAlign

rule ruler -1 -1.235

governor governed -2 -2.632

pay paying -3 -5.882

reinterpretation interpreted -7 -12.227

hamburger spiritual -9 -74.312

in by -2 -200.000

In Table 4.2 we present several cases, comparing the simply negative edit-distance and the defined

costAlign(wi, wj) function for word alignment. These examples demonstrates the advantages of

the costAlign(wi, wj) over negative edit-distance, specially in the case of small word lengths. For

instance, we note that although the pairs ⟨in, by⟩ and ⟨governor, governed⟩ have exactly the same

negative edit-distance value, their costAlign values are hugely different, giving no alignment chance

in this case. With our costAlign function the word mutations are more admissible for longer words,

whereas much restricted for the short ones.

The costAlign(wi, wj) function defines our word mutation matrix for different words, in which lex-

ically similar words are admitted to be aligned. We finalize this chapter by showing a paraphrase

alignment example where costAlign(wi, wj) is employed, yielding the alignment of the paraphrase

words. In our case, considering the type of values possibly returned by the costAlign(wi, wj) func-

tion, and after some experiments, we decided to assign a reward of 10 for a match. Therefore in our

case the w(xi, yj) function was defined as follows:

w(xi, yj) =


10 if xi = yj

−3 if xi = ”__” or yj = ”__”

costAlign(xi, yj) if xi ̸= yj

(4.8)

As it can be seen by looking at the second brach, the gap penalty used was equal to −3. With this

parameterization suppose one want to align the paraphrase sentences shown in Figure 4.10 then the

S1 : Gilbert was the most intense storm on record in the west.

S2 : Gilbert was the most intense hurricane ever recorded in western hemisphere.

Figure 4.10: A paraphrase sentence pair with relevant asymmetrical lengths.

alignment matrix dynamically constructed was equal to:
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__ Gilbert was the most intense storm on record in the west

__ 0.0 −3.0 −6.0 −9.0 −12.0 −15.0 −18.0 −21.0 −24.0 −27.0 −30.0 −33.0

Gilbert −3.0 10.0 7.0 4.0 1.0 −2.0 −5.0 −8.0 −11.0 −14.0 −17.0 −20.0

was −6.0 7.0 20.0 17.0 14.0 11.0 8.0 5.0 2.0 −1.0 −4.0 −7.0

the −9.0 4.0 17.0 30.0 27.0 24.0 21.0 18.0 15.0 12.0 9.0 6.0

most −12.0 1.0 14.0 27.0 40.0 37.0 34.0 31.0 28.0 25.0 22.0 19.0

intense −15.0 −2.0 11.0 24.0 37.0 50.0 47.0 44.0 41.0 38.0 35.0 32.0

hurricane −18.0 −5.0 8.0 21.0 34.0 47.0 44.0 41.0 38.0 35.0 32.0 29.0

ever −21.0 −8.0 5.0 18.0 31.0 44.0 41.0 38.0 35.0 32.0 29.0 26.0

recorded −24.0 −11.0 2.0 15.0 28.0 41.0 38.0 35.0 35.4 32.4 29.4 26.4

in −27.0 −14.0 −1.0 12.0 25.0 38.0 35.0 36.0 33.0 45.4 42.4 39.4

western −30.0 −17.0 −4.0 9.0 22.0 35.0 32.0 33.0 30.0 42.4 39.4 37.2

hemisphere −33.0 −20.0 −7.0 6.0 19.0 32.0 29.0 30.0 27.0 39.4 36.4 34.2



and the jumping back path followed after constructing the alignment matrix is marked in bold face,

which determines the sequence alignment. The resulting alignment for the two paraphrase sentences

was:

Gilbert was the most intense _________ ____ storm on record in the west __________
Gilbert was the most intense hurricane ever _____ __ recorded in ___ western hemisphere

We note that in this example we got heterogeneous word pairs aligned, as for example ⟨recorded, record⟩

and ⟨western, west⟩. These two cases show that the costAlign(wi, wj) function play it's role in

the construction of the alignment matrix. In the first case we have costAlign(recorded, record) =

−2.632 ≈ −2.6 and we have a north-west jumping back, as 35.4 = F(8, 8) = 38.0 + (−2.6). The

same occurs at F(10, 11), where costAlign(western, west) = −5.16.

4.3.1 The Quantitative Value of an Alignment

Several times, when we are discussing about paraphrase alignments we subjectively compare dif-

ferent alignments, stating that a given one looks better that another one. In order to have a more

objective criteria to compare alignments, at least at a surface level1, we define here a function for

that, based on the word aligning function have used on the alignment construction - Equation 4.8.

To define this function let us consider an alignment as an 2× n matrix of tokens, where each line

contains the words of each sentence. For example:

A2×7 =

Maxwell plans __ raising ______ $448 million

Maxwell planed to raise around $448 million


Then our lexical alignment evaluation function algval(A2×n) is defined as shown below in equation

4.9.

algval(A2×n) =
1
2

+
∑n

j=1 σ(A1j, A2j)

10 · (n1 + n2)
(4.9)

The 1
2 and 1

10·(n1+n2)
values are normalization factors in order to have as a result 0 ≤ algval(A2×n) ≤

1, where n1 and n2 are respectively the number of non-empty tokens in sentences A1 and A2. The

1Only lexical relations are considered.
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token match function - σ(w1, w2) - is based on the previously defined w(xi, yj) function from Equation

4.8 and calculates the similarity value between two tokens. Thus we have:

σ(x, y) =


10 if x = y

−3 if x = ”__” or y = ”__”
10

−costAlign(x,y) if x ̸= y

(4.10)

The value 10 in the third branch of this function is related with the positive reward giving to a match,

as well as the 10 appearing in the denominator of the algval function.

4.4 System Execution

Before giving final remarks and finishing this chapter, we present here some implementation and

execution details of our system, until the alignment phase, which comprehends steps one and two1.

Further details about subsequent system steps are given in Chapter 6.

Excepting the Aleph execution module, all the other modules shown in Figure 1.2 were implemented

using the Java programming language. The conceptual presentations of paraphrase extraction and

alignment were already done. Here we show system execution examples involving the extraction and

alignment of paraphrases from web news stories. More deeply implementation details about some

relevant issues/algorithms are presented in Appendix B.

4.4.1 Extraction of Web News Stories

According to the scheme in Figure 1.2, the first step consists in automatically gather a collection of

web news stories, organized in clusters of events. Each cluster contains several news about a single

event, for example: "The presidential speech in the state of the union". Each news document comes

from a different electronic source. A quite handy place, on the Web, to look for such data is naturally

the "Google News" web site2.

From a given news event, a set of related news stories links are followed. The launch of the web

news extractor is made through the execution of the "GoogleNewsSpider" class, which is included

in the GNewsSpider.jar package. By default the Google's English version is crawled. Other Google

News language versions can be indicated in a configuration file (with name ".gnews_spider"), in

the user's home directory, as well as other configuration parameters for news extraction can also be

included in this file. The user may even supply this configuration file directly in the command line,

through the "-conf" parameter. The syntax and parameters of the GoogleNewsSpider program is

listed below.

1See the system scheme in Figure 1.2.
2URL: http://news.google.com [November 2010]
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Figure 4.11: A link pointing to a cluster of web news stories related to a given event.

$ java GoogleNewsSpider
HELP:

java <P> [help] [-test] [-clustptxt <string>] [-serverurl <string>] [-conf <file>]
help:........... Print this help.
clustptxt:...... The string pattern to access the web news cluster.
conf:........... To supply the configuration file.
serverurl:...... The server url starting point, usualy: http://news.google.com
test:........... Run in test mode, with more output details.

The whole set of news data used in this research was collected with this program, scheduled to

automatically run once a day in a server1, collecting news data (320 files) between the dates from

2005/11/05 until 2008/12/31. It extracted a total of 1.4 GB of text data, storing these in XML files,

one file for each execution. Figure 4.12, in the next Subsection gives an idea about the structure of

one such data file.

4.4.2 Paraphrase Extraction and Alignment

The second step of our system scheme (Figure 1.2) consists in the extraction of paraphrastic sentences

and their subsequent word alignment, from the set of web news stories data files, collected in the

previous step. This operation is executed through the "java GenAlignParaphCorpus" command,

which corresponds to a Java class contained in the "Factory.jar" package. A simple execution of

this command, without supplying any parameter, will reveal a small command help, showing the set

of parameter possibilities.

1A machine running a POSIX operating system, with access to the World Wide Web.
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<?xml version="1.0"?>
<news-clusters>

<cluster i="1" url="http://news.google.com/?ncl=1285686762&hl=en&topic=h">
<new i="0" url="http://www.youtube.com/results?sa=N&tab=n1">
</new>
<new i="1" url="http://www.washingtonpost.com/wp-dyn/content/article/2008/12/30 ...">

President-elect spent yesterday afternoon in Honolulu, going to the zoo with
his daughters and visiting his high school campus. And yet, he couldn't escape the
political melodrama unfolding more than 4,000 miles away. While Obama vacationed,
some of the main characters from his political past took turns starring in a
bizarre Chicago news conference. First to the lectern was embattled Illinois
...

</new>
...
<new i="75" url="http://firstread.msnbc.msn.com/archive/2008/12/30/1727681.aspx">

First Read is an analysis of the day's political news, from the NBC News political
unit. First Read is updated throughout the day, so check back often. But can the
Senate do that? There's reason to think not, and here's why. In January 1967, Adam
Clayton Powell of New York was re-elected by the Harlem district he represented
since 1942, despite allegations that he had misused official travel funds and made
improper payments to his wife.?The House, invoking a provision of ...
...

</new>
</cluster>

...

...

...

<cluster ... >
...

</cluster>

</news-clusters>

Figure 4.12: Illustration selected from an xml web news file, produced by the "GoogleNewsSpider" program.

$ java GenAlignParaphCorpus
SYNTAX:

java <P> -dir <folder> [-out <fout>] [-m <metric>] [-aln <type>] [-thres <value>]
dir -----> the directory of xml web news stories files
fout ----> the xml output file, example: pac.xml
metric --> the paraphrase detection metric:

{sumo, ngram, xgram,
bleu, entropy, gauss}

aln -----> the alignment method: {nwunsch, swaterman, dynamic}
thres----> the decision threshold, example: 0.5, 0.75, etc.

This command was designed to process a directory containing a set of XML files with web news stories,

similar to the one illustrated in Figure 4.12. The "<P>" tag represents the class name, and the set of

parameters is briefly described. The "dir" and "fout" parameters indicate respectively the input and

output pointers. The output is also an XML file, containing the set of all paraphrases extracted and

their corresponding generated alignments. The "metric" parameter let the user specify the sentence

similarity function to be applied, and the "thres" parameter is closely related with this last one, as

it establishes the boundary value for paraphrase extraction decision. The "algn" parameter sets the

method that will be applied on sentence alignment, which according to sections 4.1 and 4.2 can be:

Needleman-Wunsch (nwunsch), Smith-Waterman (swaterman), or dynamic (dynamic). An excerpt

from a generated file with aligned paraphrases is listed in Figure 4.13.
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<?xml version="1.0" encoding="UTF-8"?>
<root>
<group>

...
<paraph id="850" alg="NW">

<nx>(4, 28, 0.864793)</nx>
<s1>sales were down 34.5 percent at the ford motor company, 32.8 percent at ...
<s2>sales were down 24 percent at honda motor co ltd, 32 percent at toyota ...
<sa1>sales were down __ 34.5 percent at _____ the ford motor __ company ...
<sa2>sales were down 24 ____ percent at honda ___ ____ motor co _______ ...

</paraph>
...
<paraph id="1063" alg="NW">

<nx>(12, 35, 0.903677)</nx>
<s1>this woman is a serious politician.</s1>
<s2>she is a politician not a leader.</s2>
<sa1>___ this woman is a serious politician ___ _ ______ .</sa1>
<sa2>she ____ _____ is a _______ politician not a leader .</sa2>

</paraph>
...
<paraph id="26160" alg="NW">

<nx>(41, 57, 0.913970)</nx>
<s1>obama would require that all employers either offer health benefits to their ...
<s2>obama's plan would require large employers to either offer insurance or ...
<sa1>obama ____ would require _____ that all employers __ either offer ...
<sa2>obama's plan would require large ____ ___ employers to either offer ...

</paraph>
...

</group>
...
<group>

...
</group>
</root>

Figure 4.13: An xml file of aligned paraphrases, showing the initial part of three examples.

Looking at the excerpt in Figure 4.13, we can see that paraphrases extracted from a cluster of re-

lated web news stories are stored within the same "<group>" tag. Each paraphrase is delimited by

a "<paraph>" tag, which has two parameters, one is a sequential identifier (id) and the other one

("alg") contains the alignment algorithm applied, "NW" for Needleman-Wunsch and "SW" for Smith-

Waterman. The "<nx>" tag contains a 3-ary tuple, where the first two arguments hold the sentence

identifiers from where the sentences were extracted, and the third argument is the calculated sen-

tence similarity for that sentence pair. The "<s1>" and "<s2>" tags contains naturally the paraphrasic

sentences, and "<sa1>" and "<sa2>" their corresponding alignments.

To give an idea about the amount of data produced by this system's module, from a set of just

three files of web news stories, collected from three different days, near 64 000 paraphrases were

extracted and aligned. This represents 53.4 MB of textual data.

4.4.3 Class Hierarchy Diagram

We finish this subsection by showing in Figure 4.14 a class diagram containing the key classes involved

in our data representation. This diagram is expressed using UML notation (OMG, 2010), where

rectangles represent classes and the connecting arrows represent the relationships among them. For
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Figure 4.14: A Selection of the main classes designed for text data representation.

any rectangle we have three main blocks. The first line contains the class name and in the second

block we have the class attributes. The third block contains the class methods.

There are only two types of connecting lines in this diagram. The line with a hollow triangle shape

(△) represents the generalization/specialization relationship, with the class directly connect to the

triangle extremity being a generalization (super class) of the other one (derived class). The other

line type, with a solid diamond shape at one of its extremities, represents a composition ("includes
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a") relationship between the two classes involved. The class next to the diamond is a container of the

other one (contained). The labels "1", "0..1" (zero or one), "0..*" (zero or many), and "1..*" (one

or many), indicate the cardinality participation in the relationships. For example in the relationship

between "LinkedList<Word>" and "Word" classes, the former contains one or more ("1..*") instances

of the latter.

It can be seen that "Word" is our basic class, representing naturally a textual word, which can be any

sequence of alphanumeric characters (a Java String), excluding obviously the space character. This

class is a kind of superclass for the "Sentence" which in turn is also a kind of superclass for the "Text"

class.

As it can be seen there is not a direct class derivation among these three classes, since "Sentence"

is derived from a linked list of words, and "Text" is derived from a linked list of sentences. The class

"CorpusDict" is a dictionary, generated from corpora, mapping word tokens into integer codes, for

the sake of computation efficiency.

The "ChunkedSentence" is a specialization from the "Sentence" class to handle chunked sentences

and it uses an array of "ChunkMark" instances, which is a class that stores the initial (a) and final (b)

chunk word positions, in a sentence, and the chunk type, for example: noun-phrase (NP), and verb-

phrase (VP). Sentence chunking and part-of-speech tagging may be processed by using one of the two

well-known tools, from the "OpenNLP"1 or "MontyLingua" (Liu, 2004) packages, as it can be seen in

the diagram, by looking at the "ChunkedSentence" class constructors. In this work, the "OpenNLP"

was exclusively employed, as it seemed a bit more accurate2, though both packages perform close

with almost the same labeling output.

4.5 Final Remarks

In this chapter we described that the goal for automatically generate learning instances for sentence

reduction rule induction led us to investigate techniques for aligned paraphrasic corpora construction,

without direct human intervention and as efficient and effective as possible. After automatic para-

phrase identification and extraction from web news corpora, techniques for paraphrasic sentence

alignment were investigated. Algorithms from the field of Bioinformatics, used for DNA sequences

alignment, were conveniently adapted for word alignment between paraphrasic sentences. In partic-

ular the Needleman-Wunsh (NW) and Smith-Waterman (SW) algorithms were respectively employed,

for global and local sentence alignment.Two new issues were introduced. First a function enabling

the alignment of lexical similar, words was established, and secondly a new method for choosing

between NW and SW during run-time.

1http://opennlp.sourceforge.net [October 2010]
2Qualitative comparisons of several examples led us to that conclusion.
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Equivalently to the "mutation matrices" used in Bioinformatics for DNA sequences alignment, we have

defined a function establishing the likelihood of lexically similar word alignment - the costAlign(wi, wj),

presented in Subsection 4.3. It resembles a kind of "word mutation" occurring between the paraphra-

sic sentences, where "mutations" are more likely to occur between longer words. Our word mutation

function is based exclusively in lexical features, however in the future more linguistically complex

characteristics may be considered, as fore example synonymy.

We observed that for some paraphrases the local alignment (SW) would be much more appropriate

than a full alignment. So, we introduced an efficient method to choose along run-time the right

alignment algorithm. This method is based on a pre-analysis of the exclusive lexical links existing

between the paraphrase sentences.

The work presented here and in the last chapter allows us to automatically collect paraphrases from

web news stories and align their words, thereby generating corpora of aligned paraphrase pairs.

These data is used to learn sentence reduction rules in our subsequent step. So, the next chap-

ter introduces a number of fundamental theoretical aspects related to the learning system used -

an Inductive Logic Programming system named Aleph. Afterwards in Chapter 6 we described our

implementation of the sentence reduction rules learner, based on Aleph.

Regards our alignment work we have achieved a scientific contribution published in the ACL 2007

conference proceedings and presented at the RTE Workshop (Cordeiro et al., 2007d).
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Chapter 5

Inductive Logic Programming

"Give me a place to stand and a lever long enough and I will move the world."

Archimedes, 250 BC

During the last two decades, remarkable achievements have been reached in the field of Machine

Learning research, from applications of Case Base Reasoning, Neural Networks to Decision Trees and

Inductive Logic Programming. In this chapter we introduce the basic knowledge of Inductive Logic

Programming that we have used in our architecture that involves induction of reduction rules.

Induction can be seen as a process, starting from observations and generating general patterns that

underly these observations. Humans are accustomed to construct theories about the surrounding

world. We tend to formulate generalizations very easily, from a very few examples, which sometimes

leads to erroneous conclusions. But we also tend to specialize or even correct previously induced

theories if contrary examples from the real world are seen. Hence, induction is a kind of bottom-up

reasoning flowing from the specific towards the general, where successive orders of generalization

may be incrementally constructed, as one sees the world passing events.

5.1 Machine Learning

In Machine Learning, a theory or an hypothesis is the result obtained from an inductive process by

observing a set of examples from a given phenomenon. There are two main learning categories:

supervised and unsupervised. In the first one the learner is supplied with a set of labeled examples

called training instances. Such instances are usually represented in the form of an ordered pair as:

⟨−→X , h(
−→
X )⟩ where

−→
X = ⟨x1, x2, ..., xn⟩

Vector
−→
X is the feature vector which contains the values of a given set of n attributes characterizing

the concept to be learned in that particular case. The h function represents the hypothesis being

learned. In some cases h(
−→
X ) consists in a class value from a discrete set, and we say that we have

a classification problem. Whenever h(
−→
X ) is a real value we have a regression problem. A classical

illustrative example of classification learning is the "Play tennis" problem from Quinlan (1986): In this
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Table 5.1: Quinlan's "Play Tennis" learning example.

x1 x2 x3 x4 h(
−→
X )

Day Outlook Temperature Humidity Windy Class

1 sunny hot high weak no

2 sunny hot high strong no

3 overcast hot high weak yes

4 rainy mild high weak yes

5 rainy cool normal weak yes

6 rainy cool normal strong no

7 overcast cool normal strong yes

8 sunny mild high weak no

9 sunny cool normal weak yes

10 rainy mild normal weak yes

11 sunny mild normal strong yes

12 overcast mild high strong yes

13 overcast hot normal weak yes

14 rainy mild high strong no

case we have four attributes and 14 learning instances. Several machine learning algorithms may be

applied to induce the hypothesizes covering the observed dataset. One originally applied was the

ID31 which produces the hypothesis in the form of a decision tree as shown below:

Figure 5.1: A learned decision tree for the play tennis problem.

1Which stands for "Induction of Decision Tree".
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Such a tree may be converted in a set of if-then rules by considering each path from the root to the

leafs. In this case we would have the following five rules, which represents a theory to explain which

are the weather conditions for playing tennis:

If outlook = overcast Then play = yes

If outlook = sunny And humidity = high Then play = no

If outlook = sunny And humidity = normal Then play = yes

If outlook = rain And wind = strong Then play = no

If outlook = rain And wind = weak Then play = yes

In supervised learning the training instances are usually labeled by humans, implying necessarily

considerable amounts of manual work with all its inherent limitations and imperfections. On the

other hand, in unsupervised learning there are no labeled training instances. This learning method

organizes the "observed" dataset into several main categories being these also discovered throughout

the learning process. One concrete example such learning type is clustering.

There are also semi-supervised learning (Zhu, 2005), where labeled and unlabeled data are combined

in the learning process. The approach which we have followed resembles more this learning method.

In our system the learning instances are automatically cerated (and labeled) by the system. Thus,

we use supervised-like instances without manual intervention.

Exhaustive machine learning paradigms and algorithms may be found in wide a set of bibliographic

material, from which we highlight here Mitchell (1997) and Witten & Frank (2005). We are now going

to motivate and introduce here a more powerful learning paradigm, employed in this work - Inductive

Logic Programming (ILP).

A great number of machine learning tasks are based on what is known as propositional learning, the

application of the ID3 algorithm to the "playing tennis" problem, previously shown, is just example.

In such a learning paradigm, the learning instances are characterized by a set of features, also named

as attributes, and the learned theory can be described as a set of specific rules from propositional

logic (Appendix A.1). In this context a rule is a propositional logic formula formed by two main

components: the antecedent and the consequent. The former is usually formed by the conjunction

or disjunction of other several subparts (conditions), while the latter gives the classification. The

two parts are connected through the (=>) connective in the form of "antecedent => consequent",

which naturally also represents an "If antecedent Then consequent" rule, similar to the examples

given for the "playing tennis problem".

However, a different learning paradigm, known as relational learning, can be used, in which we have

multiple relations representing several entities and the concept being learned is also represented
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with a relation. Relations are expressed trough n-ary tupples, similar to n-ary predicates in First

Order Logic (FOL) (Appendix A.2). For example, continuing to use the "playing tennis" domain we

may consider the relations player and game as follows:

player(id, name, weight, height)
player(101, john, 85, 173) player(102, mary, 71, 171)
player(103, anne, 57, 155) ...

game(num, id1, id2, result)
game(345, 101, 102, 6:7) game(347, 101, 103, 7:1)
game(346, 102, 103, 7:2) ...

The climatic features used in the propositional formulation will also become relations, for example:

wind(345, weak) outlook(345, sunny) temp(345, hot) ...
wind(346, strong) outlook(346, overcast) temp(346, normal) ...
wind(347, normal) outlook(347, overcast) temp(347, mild) ...

The learning concept can be play(X,Y,G), that is, in which conditions two players X, and Y, accept

to play a game G. A possible learned rule is:

play(X,Y,G) <=
wind(G, strong) AND
player(X, Xname, Xweight, Xheight) AND
player(Y, Yname, Yweight, Yheight) AND
|Xheight - Yheight| < 20

which can be read as "two players accept to play in a windy day if their height differences is less

than 20 cm".

The type of concept learning in the relational formulation has a much greater expressive power and

normally it is very hard, if not impossible in some situations, to reformulate it in propositional learning

(Kramer, 2000). In terms of expressive power and knowledge representation, the main difference

between these two learning paradigms is the same as the one that exists between propositional logic

and first order logic, briefly presented in appendixes A.1 and A.2, respectively. Thus, in this work we

have decided to use a relational learning based approach, known as Inductive Logic Programming, to

learn sentence reduction rules.

Inductive Logic Programming (ILP) is a mathematical formalization characterizing the inductive rea-

soning, which is applicable in almost any learning case, from simple every day life situations to

complex scientific problems. Our system's third step (fourth module in Figure 1.2) is mainly based on

ILP, in particular a computational implementation of it (the Aleph system, presented in Subsection

5.4). Since it is a very important step in our work, we have decided to dedicate this chapter to cover

some basic ILP aspects. ILP is based on Logic Programming which in turn is based on and uses many

aspects from Mathematical Logic. Thus, we have also decided to include a small set of notes from

this discipline in the appendixes, just for the reader who wants quickly remind some concepts men-

tioned in the text. Among other important things, Logic defines rigorously the notion o deduction,

which can be seen as the induction's inverse mechanism. In Section 5.3 we describe the main ILP
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concepts and in Section 5.4 we present the Aleph system. But first we have to present the subject

of Logic Programming (Section 5.2), which is the basic language for ILP.

5.2 Logic Programming

Logic Programming (LP) is a Computer Science discipline directly based on First Order Logic (FOL)

and a great deal of aspects and terminology in LP comes from it. LP is even presented as an important

FOL subset (Lavrac, 2001). A general FOL description, touching the main relevant aspects of LP, is

given in Appendix A.2 for the interested reader. In this section we present basic LP concepts and

terminology that are employed in ILP, which is presented in the next section.

ILP produces knowledge in the form of logic programs, which are formed by a special type of FOL rules

named as clauses. Let us consider the syntactical valid FOL formulas, called well formed formulas

(wffs - Definition 9), then a clause is a wff formed by the disjunction of a set of literals. A literal

is an atomic formula or its negation, such as: L1 = p(X0, a), L2 = ¬p(X0, a), where a negated

literal is also called a negative literal, and a non negated one a positive literal. For example,

assuming that we have a set of literals {L1, ..., Ln}, either positive or negative, having k variables,

being universally quantified, say X1, ..., Xk, then the following expression is a clause:

∀X1 , ..., ∀Xk L1 ∨ ...∨ Ln (5.1)

For the sake of simplicity, the universal quantifiers are usually omitted, and so in a clause variables

are interpreted as being universally quantified. Since clauses are in fact FOL rules, an implication

connective is normally employed in a right-left direction, making a separation between the clause

head, at the left hand side, and the clause body in the right hand side. For example, assuming that

we have m positive literals H1, ..., Hm and n negative literals ¬B1, ...,¬Bn, then our clause can be

written as follows:

H1 ∨ ...∨ Hm ⇐ B1 ∧ ...∧ Bm (5.2)

Variables occurring in the clause head are still universally quantified whether those occurring exclu-

sively in the clause body are existentially quantified, due to the negation operation, since we have:

H1 ∨ ...∨ Hm ⇐ B1 ∧ ...∧ Bm ≡ H1 ∨ ...∨ Hm ∨ ¬B1 ∨ ...∨ ¬Bm (5.3)

A clause having at most one positive literal is called a Horn clause and a Horn clause with exactly

one positive literal is called a definite clause or a rule, and is normally expressed as:

H ⇐ B1 ∧ ...∧ Bm (5.4)

where H is obviously the formula's unique positive literal. A program clause is a more general rule

where negated literals are also admissible in the rule's body. More precisely, a program clause is
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a clause of the form of 5.4, where any Bi may be a positive or negative literal. If a given Bi is a

negative literal then it is written in the form of "not B̂i", where B̂i is a positive literal.

Program clauses are the "building blocks" for any logic program. A definite clause without a body

is called a fact, which are meant to be always true, since it is formally represented as H ⇐ true.

Usually it is written just as "H".

A predicate definition is a set of clauses having the same head, and a set of clauses is called a

clausal theory, representing the conjunction of their clauses. A set of program clauses is called

a logic program. For example, in Figure 5.2 it is shown a simple logic program, with only one

predicate and two clauses, defining the list membership, that is, what it means for a given element

to be member of a list of elements.

member(X, [X | Tail]).
member(X, [Y | Tail]) <= member(X, Tail).

Figure 5.2: The "member" predicate, with two clauses and being defined recursively.

The expression "X | Tail" represents a list decomposition into its first element, X, and the rest

of the list represented by the variable Tail. In this case the predicate member(X,L) assumes a

particular semantic, meaning that X belongs to the list "L". This is a recursive definition, stating that

an element X belongs to a list of elements ("is a member of") if it is its first element (first clause) or

else if X is an element belonging to the list tail. Note that in the previous example we are almost

using the Prolog notation, in which every clause ends with a stop mark. The only difference here is

the "<=" symbol, which in Prolog would be ":-".

Another important concept from FOL which is largely employed in ILP is substitution, which assigns

terms to variables, and may be used to obtain a specific instance of a given formula. This concept is

formalized in the following definition:

Definition 3 (Substitution). Given a wff φ with n variables X1, ..., Xn, a substitution

θ = {X1/t1, ..., Xn/tn} defines a variable replacement function, where each variable Xk is substi-

tuted by a corresponding term tk in φ.

Given a literal P, the result of applying a substitution θ to P is written as Pθ. A substitution θ unifies

two literals P and Q if we have Pθ = Qθ. For example the substitution θ = {X/a, Tail/[b, c]}

unifies the literals member(X,[X|Tail]) and member(a,[a|[b,c]])1. The member term is a also

predicate, as explained next, presented as an example in Figure 5.2.

1As in Prolog the simplified list representation is indeed a binary term, and for example "[b, c]" represent a term like:

term(b, trem(c, ∅)), with the term name being equal to the full stop (".") character.
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5.2.1 Inference Rules

In Mathematical Logic there are two main concerns related to well formed formulae (wff): semantic

and syntax. In model theory we are interested to assign meaning (semantic) to a formula, i.e. to

know when it is true or false. We explain this more formally in Appendix A.2, through definitions

10 and 11. Informally, an interpretation is a function that maps any wff φ into a given domain

determined by the ground facts in which φ is true. We say that an interpretation I is a model to φ if

it assigns the true value to φ. A formula is said to be satisfiable if it has a model, and unsatisfiable

otherwise. We say that a formula φ is logically implied by another wff ψ, i.e. ψ |= φ if every model

for ψ is a model for φ. In that case we also say that ψ semantically entails φ.

In proof theory the focus is syntax - what kind of formula operation maintains its syntactical correct-

ness? One want to know how to correctly generate new formulae (conclusions) from other formulae

(premises). This has to do with inference rules or deductive reasoning. We say that a formula φ is

deductible from a set of formulae S, expressed as S ⊢ φ, if there exist a proof of φ from S. A proof

is a sequence of formula consequences obtained through an inference rule (see Definition 13 from

Appendix A.2). if we have S ⊢ φ we also say that S syntactically entails φ.

We say that an inference rule is sound if whenever we have S ⊢ φ we also have S |= φ. We say that

the inference rule is complete if the previous implication holds to in the opposite direction, that is

if S |= φ then S ⊢ φ. When a set of inference rules is both sound and complete, the two concepts

are equivalent and we are sure that deduced formulae from valid formulae are still valid. One such

inference rule is deduction modus ponens, simply mentioned as deduction .

Deduction is one of the Logic Programming corner stones, specially Prolog, and the other one is

unification (Robinson, 1965). To illustrate deduction suppose that we have a common sense rule

stating that every man having at least one million dollars and a big house is considered a rich man.

Then if a particular person, let's say john, fulfills these conditions, we naturally conclude (deduce)

that john is a rich man. Schematically we have:

MillionDollar(X) ∧ BigHouse(X)⇒ IsRich(X)

MillionDollar(john) ∧ BigHouse(john)

−−−−−−−−−−−−−−−−−−−−−−−−−−

∴ IsRich(john)

Note that variable "X" was unified1 with constant "john". This mechanism contains a trivial case of

syntactic entailment, expressed as:

{α⇒ β, α} ⊢ β (5.5)

where formulae α⇒ β and α are respectively the first and second premises and β is the conclusion.

1From the unification algorithm (Robinson, 1965).
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Furthermore, modus ponens it is a special case of a more general inference rule, which is resolution,

defined by Robinson (1965). The resolution rule is a valid inference rule that produces a new clause

from two clauses having complementary literals. The two original clauses should be in a normal dis-

junctive form, i.e a sequence of literals connected with the disjunction operator. Two literals pi and

qj are complimentary if one is the negation of the other one, for example pi = ¬qj. Schematically,

the resolution rule may be drawn as shown in Figure 5.3. The resulting formula is a clause with a

p1 ∨ p2 ∨ ...∨ pi ∨ ...∨ pn

q1 ∨ q2 ∨ ...∨ qj ∨ ...∨ qm

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∴ p1 ∨ p2 ∨ ...∨ pi−1 ∨ pi+1 ∨ ...∨ pn ∨ q1 ∨ q2 ∨ ...∨ qj−1 ∨ qj+1 ∨ ...∨ qm

Figure 5.3: The general resolution scheme.

disjunction of their premisses, excepting the complimentary literals pi and qj.

5.3 ILP Generals

Although only in 1991 the term Inductive Logic Programming (ILP) was defined in (Muggleton, 1991),

some concepts and key ideas of this discipline have its roots way back in the 1960s, from the fields of

Psychology and Artificial Intelligence (Sammut, 1993). It is a formal scheme of an inductive process

through computational logic and can be defined as the intersection between Inductive Learning and

Logic Programming.

ILP = Inductive Learning
∩

Logic Programming

As a learning mechanism it provides several advantages over other learning schemes, which are

usually based on propositional logic, like for example decision tree induction, where the hypothesis

is constructed from a set of learning instances represented in a n-dimensional space where for each

instance we have n− 1 feature values and the remainder value is the class or target value.

The task of an ILP system may be defined as the knowledge production from a set of observed learning

examples (E ), according to the knowledge one already has about some problem domain, named as

the background knowledge (BK). The knowledge created is codified through a set of rules which

form utterly the best theory or hypothesis which explains the observations and still be coherent with

the BK. This theory is also known as the hypothesis (h). Being "⊢" the logic entailment operator, we

say that a set of first order logic formulae S entails a given formula q (S ⊢ q) if it can be obtained

from S through natural deduction1, as defined in propositions A.13 and A.14, in Section A.2.
1There are other deduction operators that may be used.
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The objective of ILP can be stated in a more formal way as the search for the best hypothesis h from

an hypothesis space H such that:

BK ∧ h ⊢ E+ (5.6)

BK ∧ h 0 E− (5.7)

where BK is the background knowledge and E+ and E− are the sets of positive and negative examples

respectively.

In order to have a simple and illustrative example, suppose that one wants a system to learn the

human concept of being in love, through ILP techniques. Of course, this aims only to identify the

most elementary conditions for such a human complex relationship, which states that for two humans

to be in love they must love each other. In terms of predicate representation we want to induce rules

where the head is the inLove(X, Y), meaning that X and Y are in love. The system will be supplied

with a small population of 16 humans, 8 male and 8 female, and their affective relationships, which

are represented in Figure 5.4.

Figure 5.4: "Humans in love!"

The one side dash arrow means that some one loves the other one, however the reverse does not

hold. For example, Monica loves Kevin but Kevin does not love her. Naturally the full two side arrows

represent love feelings in both directions. This information is represented through FOL predicates

and shown in Table 5.3.

With only this information, an ILP system may be able to make a generalization about the inLove(X, Y)

concept, and in this case the constructed hypothesis (h) would have only one clause shown in 5.8.

inLove(X, Y) ⇐ love(X, Y) ∧ love(Y, X) (5.8)

meaning that X and Y are in love if X loves Y and Y loves X. Note that both conditions 5.6 and 5.7 are
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Table 5.2: Relations expressed in FOL.

BK E+ E−

human(X)⇐ male(X) inLove(brad, jolie) inLove(kevin, anne)

human(X)⇐ f emale(X) inLove(mary, john) inLove(jolie, louise)

inLove(rose, bill) inLove(anne, david)

love(jolie, brad) male(paul) inLove(james, viki) inLove(wiki, john)

love(brad, jolie) male(james) inLove(hilda, arnold)

love(anne, david) ... inLove(bill, anne)

love(monica, kevin) f emale(mary) inLove(rose, arnold)

love(arnold, rose) f emale(viki) inLove(paul, bill)

... ...

satisfied therefore the Formula 5.8 represents a complete and consistent hypothesis.

Figure 5.5: Example: "Why are they different?"

Despite the simplicity of the previous example, usually an ILP system is employed to learn more

complex and hidden relations, as for example mining relations in relational data bases (Lavrac, 2001).
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In the example of Figure 5.5 it is not so obvious to see what is the difference between two graph

types, identified as "+" and "−". The answer will be given in Section 5.4, where the ILP Aleph system

(Srinivasan, 2000) is described.

5.3.1 The Structured Hypothesis Search Space

The majority of learning tasks may be seen as the searching process for the best possible hypothesis

h from an hypothesis space H (Mitchell, 1982) that can be, and usually is, extremely large if not

infinite. Fortunately, methods were devised in machine learning to overcome these difficulties by

exploiting strategies to carry out an intelligent and systematic search through the hypothesis space.

One of these techniques employs the θ-subsumption operator, based on term variable substitution,

as presented in Definition 3.

Definition 4 (θ-subsumption). Given two clauses c1 and c2, we say that c1 θ-subsumes c2, represented

as c1 ◃θ c2, if and only if there exists a substitution θ such that c1θ ⊆ c2θ.

For example, if we have:

c1 = inLove(X, Y)⇐ love(Y, X)

c2 = inLove(brad, jolie)⇐ love(jolie, brad) ∧ f emale(jolie)

then we have c1 ◃θ c2, with θ = {X/brad, Y/jolie}, because if we regard clauses as sets of con-

junctions of literals, we have c1θ = {inLove(brad, jolie), ¬love(jolie, brad)}, which is a subset of

c2θ = {inLove(brad, jolie), ¬love(jolie, brad), f emale(jolie)}.

The θ-subsumption operator ensures the important relation of logical implication in the H space, as

formalized in the next proposition:

Proposition 1. For any two clauses c1 and c2, if c1 ◃θ c2 then c1 |= c2.

In general, the contrary does not hold. For example, in the next case succ(X) is a function which

returns the successor of a natural number (ex: succ(1) = 2) and natural(X) a predicate expressing

that its argument is a natural number. Continuing with our example, we have:

c1 = natural(sucessor(X))⇐ natural(X)

c2 = natural(sucessor(successor(Y)))⇐ natural(Y)

It is clear that c1 |= c2, however there is no substitution θ that allows c1 to θ-subsume clause c2.

From the Gödel theorem (Theorem 6, in Appendix A) and the previous proposition, we may also

conclude that if c1 ◃θ c2 then c2 is deducible from c1, i.e c1 ⊢ c2. This means that clause c1 is

more general than clause c2, and that we have a relation among clauses which gives us the ability to
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organize/order the H space in a way that will facilitate searching through the hypothesis space. To

have a clearer view of this we first need to introduce the mathematical notion of a partial order.

For a given set A, a partial order is a binary ordering operator (⊑) with the properties of reflexivity,

antisymmetry and transitivity. That is, for any elements a ∈ A, b ∈ A, and c ∈ A we have:

a ⊑ a (re f lexive) (5.9)

a ⊑ b ∧ b ⊑ a⇒ a = b (antisymmetric) (5.10)

a ⊑ b ∧ b ⊑ c⇒ a ⊑ c (transitive) (5.11)

Definition 5 (lattice). A structure ⟨A,∨,∧,⊑⟩ is a lattice if ⊑ is a partial order over the set A, and

any pair of elements in A has a supreme and an infimum, denoted respectively as a ∨ b and a ∧ b,

where a ∈ A and b ∈ A.

For example, the structure ⟨P(A),∪,∩,⊆⟩, where P(A) is the power set1 of A is a lattice. For

instance, if A = {x, y, z} we would have:

P(A) = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

and the lattice may be represented with an Hasse diagram as in Figure 5.6

Figure 5.6: A lattice Hasse diagram for P({x, y, z}).

Proposition 2. Being H the space of admissible hypotheses which can explain a set of examples E ,

based on a set of background knowledge clauses BK, then the structure ⟨H,∨,∧, ◃θ⟩ is a lattice.

The previous proposition asserts that ∨ and ∧ exists in H, i.e. any two clauses c1 ∈ H and c2 ∈ H

always have a supreme and an infimum clause, which are respectively more general and more specific

than c1 and c2.
1The power set is the set of all subsets of a given set.
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The notion of clause pair generalization was initially investigated by Plotkin (1970) as the least gen-

eral generalization (lgg). It assumes that if two clauses are true then it is very likely that their lgg

will also be true. The lgg of two terms compares the components in the same predicate position and

if they are equal the value will remain in the resulting generalization. If they are not equal, then

that position is replaced by a variable. A few examples are shown in Table 5.3.1. Hence the supreme

Table 5.3: Examples of least general generalizations.

Ta Tb lgg(Ta, Tb)

love(brad, jolie) love(brad, jolie) love(brad, jolie)

love(brad, jolie) love(brad, anne) love(brad, Y)

love(brad, jolie) love(john, jolie) love(X, jolie)

love(john, jolie) love(brad, mary) love(X, Y)

love(brad, jolie) dream(brad, jolie) Z

operator, which gives the minimum of the majorants, for two clauses c1 and c2 in ⟨H,∨,∧, ◃θ⟩ may

be defined as the lgg(c1, c2), i.e c1 ∨ c2 = lgg(c1, c2).

Since the lgg generalization operator does not consider the background knowledge, a relative least

general generalization (rlgg) operator was proposed later by Plotkin (1971), where for two positive

examples e1 ∈ E+ and e2 ∈ E+ we have:

rlgg(e1, e2) = lgg(e1 ⇐ BK, e2 ⇐ BK) (5.12)

and here the background knowledge is already taking into account, in the generalization process. This

is more realistic and coherent with the human mental generalization process, which always works

with the whole knowledge in a given problem (the background knowledge or world knowledge).

The lgg and rlgg enable a bottom-up theory construction through successive, though non-deterministic

generalizations following the paths in the ⟨H,∨,∧, ◃θ⟩ lattice.

The opposite direction (top-down) is also possible since for any two hypotheses there exist an infi-

mum, which will be a more specific hypothesis. Specialization operators were also investigated and

employed in many ILP systems like FOIL (Quinlan, 1990). One of these is based on θ-subsumption and

a refinement graph, which is a directed acyclic graph, where the nodes are clauses and the arcs are

possible refinement operations that may be followed, representing the replacement of a variable with

a term, or an insertion of a new literal in the clause body. The search starts with the most general

clause, which becomes more specific after each search step, until certain conditions like coverage or

entropy are satisfied. Part of a refinement graph from an example used by Lavrac & Dzeroski (1994)

is shown in Figure 5.7. The objective there is to learn the concept of "daughter(X,Y)", where the BK

set contains facts about being "male", "female", "father", "mother" and a predicate which defines the
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concept "progenitor". The search starts with the most general clause "daughter(X, Y) ⇐", stating

Figure 5.7: Part of the refinement graph, for learning the concept "daughter" (Lavrac & Dzeroski 1994)

that every X is a daughter of Y, which is, of course, too general and heavily inconsistent. There-

fore, a search of successive specialization (refinement) steps is undertaken, following a given search

method, like hill-climbing or the A* best-first.

5.3.2 Inverse Resolution

Another generalization method is the inverse resolution, introduced by (Muggleton & Butine 1998),

consisting of the process of inverting the deductive inference resolution rule (see Figure 5.3). Resolu-

tion identifies a pair of literals, one in clause c1 and the other in c2, where one is the negation of the

other one and then derive a new formula, the resolvent res(c1, c2) = c, where these two opposites

were eliminated and the remaining literals maintained, i.e c = (c1 \ {a}
∪

(c2 \ {¬a})1.

c1 = ¬a ∨ b = a⇒ b

c2 = ¬b ∨ c = b⇒ c

-------------- --------------

res(c1, c2) = ¬a ∨ c = a⇒ c

In terms of propositional logic it is easy to devise an inverse resolution operator, also named as

inverse entailment, by considering one of the initial clauses, let's say c1 and the resolvent res(c1, c2).

It should enable the inference of the other clause, c2 in this case, through the following two steps:

1In this context the "\" and "
∪

" operators still represent set difference and union, respectively. The sets are formed by

the clause literals.
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1. Find a literal A that occurs in c1, but not in clause c

2. Then construct clause c2 with the literals of: (c \ (c1 \ {a}))
∪ {¬a}

For example if we have:

c1 = a

c2 = ???

------------------

c = res(c1, c2) = b

then following strictly the operator, we get c2 = (c \ (c1 \ {a}))
∪ {¬a}, and c1 \ {a} = ∅ ,

c \ (c1 \ {a}), and finally c2 = b ∨ ¬a , or equivalently: c2 = a ⇒ b , and so a rule has been

induced.

For the case of FOL formulae the inverse entailment operator is based in the same principle, however

it contains an extra complexity due to the possible existence of quantified variables. In this situation

the resolution works together with unification (Robinson, 1965) through an unifying substitution. An

illustration with our previous "inLove(X, Y)" domain is:

c1 = inLove(X, Y) ⇐ love(X, Y) ∧ love(Y, X)

c2 = love(brad, jolie) ∧ love(jolie, brad)

-----------------------------------------------------------

c = inLove(brad, jolie)

and the unifying substitution would be θ = {X/brad, Y/jolie}. The resolution rule in FOL is an

extension from its propositional counterpart, incorporating the substitution function. Given two FOL

clauses c1 and c2, with a1 a literal occurring in c1 and a2 a literal from a2, and let θ be the unifying

substitution among the two clauses, such that a1θ = ¬a2θ, then a new clause c will be deduced as

in proposition 5.13.

c = (c1 \ {a1})θ
∪

(c2 \ {a2})θ (5.13)

Now it is possible to derive the inverse resolution for FOL clauses by algebraic manipulation of propo-

sition 5.13. From Mitchell (1997), the θ unifier can be uniquely factored in θ1 and θ2, such that

θ = θ1θ2 and θ1 contains all substitutions involving variables from c1 and θ2 substitutions involving

those from c2. Hence, Proposition 5.13 is equivalent to Proposition 5.14.

c \ (c1 \ {a1})θ1 = (c2 \ {a2})θ2 (5.14)

On the other hand, as we have a1 ∈ c1 and ¬a2 ∈ c2, then a1θ1 = ¬a2θ2 or equivalently a2 =

¬a1θ1θ−1
2 and finally the inverse resolution equation for FOL clauses is shown in proposition 5.15.

c2 = (c \ (c1 \ {a1})θ1)θ−1
2

∪
{¬a1θ1θ−1

2 } (5.15)
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The θ−1
• operator is simply the inverse of a variable/term substitution operator, mapping concrete

entities, i.e. terms, into generalized variables. The inverse entailment operation is not deterministic

and different choices for literal a1 yield to different clause inductions (c2). To give a simple illus-

tration about this mechanism, we will take our previous inLove(X, Y) example and their BK, E+,

E− components, where the target is to induce conditions such that inLove(X, Y). Taking the first

positive example, from table in Table 5.3, inLove(brad, jolie), and choosing from BK a convenient

c1 clause, love(brad, jolie), we would have what is schematized in Figure 5.8.

c = inLove(brad, jolie)

θ1 = ∅

c1 = love(brad, jolie)

θ2 = {X/brad}

c2 = inLove(X, jolie) ∨ ¬love(X, jolie)

Figure 5.8: An inverse resolution first step application for the "In Love" example.

From Equation 5.15 c1 = a1 and θ1 without any necessary substitution, hence we get (c1 \ {a1})θ1 =

∅, and

c2 = cθ−1
2

∪
{¬a1θ−1

2 }

= inLove(brad, jolie) θ−1
2 ∨ ¬love(brad, jolie) θ−1

2

= (inLove(brad, jolie) ∨ ¬love(brad, jolie)) θ−1
2

and it is only necessary to choose a θ2 substitution, which in this case one may think of θ2 =

{X/brad, Y/jolie}, however it would not generate the least general generalization and the search

space would not be systematically traversed (see Subsection 5.3.1), thus only one variable substitu-

tion was chosen, as shown in Figure 5.8.

Looking at the generalization achieved so far, it is clear that the fix point is not yet reached, since

only one positive example is covered. It only states that someone (X) is in love with Jolie if he loves

her, but from the background knowledge we know that David loves Jolie too yet they are not in love.

Thus another inverse resolution, step similar to the previous one, will solve the problem and lead

the process to the final generalization state. And as result the final rule will be induced, stating that

two humans are in love if they love each other (see Figure 5.9).
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c = inLove(X, jolie) ∨ ¬love(X, jolie)

θ1 = {brad/X}

c1 = love(jolie, brad)

θ2 = {Y/jolie}

c2 = inLove(X, Y) ∨ ¬love(X, Y) ∨ ¬love(Y, X)
= inLove(X, Y) <= love(X, Y) ∧ love(Y, X)

Figure 5.9: An inverse resolution second step applied for the "In Love" example (see also Figure 5.8).

The inverse resolution is a mechanism implemented in the kernel of several ILP implementations, as

the Aleph system. The non-determinism inherent to this logic mechanism requires that some search

strategies as well as convenient stop criteria must be set before the induction process starts and

each ILP system implements its own criteria. In the next subsection, we present the ILP system we

used for sentence reduction rule induction, as well as some particularities and system settings we

decided to follow.

5.4 The Aleph System

The Aleph1 system (Srinivasan, 2000) is an empirical ILP system, written in Prolog, initially designed

to be a prototype for exploring ILP ideas and originally named as P-Progol. It has become a quite

mature ILP system, used in many research projects, ranging from Biology to NLP areas. In fact, Aleph

is the successor of several and "more primitive" ILP systems, like: Progol (Muggleton, 1999), FOIL

(Quinlan, 1990), and Indlog (Camacho, 1994), among others, and may be appropriately customized

to emulate any of those older systems.

The relationship to Prolog, inherent in the Aleph system, gave it the capacity to use a conventional

and powerful language to represent world knowledge and consequently exploit this in the induction

of new relational knowledge. The Aleph system contains a set of options providing the user with

a vast amount of possible configurations. One may easily and incrementally insert more domain

knowledge, choose the direction for rule generation (bottom-up or top-down), define the evaluation

function (Precision, Entropy, Laplace, among others) and the search method (Hill-Climbing, Branch-

and-Bound, Best-First, among others). One interesting feature in Aleph is the possibility to learn

exclusively from positive instances, contrary to what is required by most learning systems. More-

1Aleph - A Learning Engine for Proposing Hypothesis
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over, there is theoretical research work (Muggleton, 1996) demonstrating that the increase in the

learning error tends to be negligible with the absence of negative examples, as the number of learn-

ing instances increases. This is a relevant issue in many learning domains, and especially ours, where

negative examples are not available, as we will see in the next chapter.

In Aleph any knowledge, including the Background Knowledge (BK) is represented using relations,

codified through Prolog predicates. In the previous subsection, particularly conditions 5.6 and 5.7,

we stated that the main objective of induction is to find the best possible hypothesis (h), which in

conjunction with BK, entails the maximum number of positive examples E+, ideally all, and none or

the minimum number of negative cases E−. In such a system, BK, E+ and E− are input sets, while h

is the output generated, representing the learned theory that explains the observed data (E = E+ ∪

E−), with respect to the background knowledge (BK). In Aleph these three input data/knowledge

sets, that is BK, E+, and E−, are represented through three files, having respectively ".b", ".p", ".n"

extensions.

In the rest of this subsection we give a general overview of the Aleph system modus operandi and

describe some particular features. Some of them were employed in our work in order to satisfy the

specific characteristics related to our problem of the induction of sentence reduction rules. The

Aleph default induction algorithm includes four main steps listed below, which are repeated until no

more uncovered positive example is left.

1. Selection - Selects a positive example from the training set to be generalized. The algorithm

stops if no example is available.

2. Saturation - Constructs the non-ground most specific clause that implies the positive exam-

ple selected in the previous step. This is made through successive application of the inverse

resolution1 operator, on the selected example, until all ground terms have been generalized

to variables. These substituted variables are reused in the clause body until only the selected

positive ground example is covered. This minimum generalized clause is called the bottom

clause.

3. Reduction - The system searches for a "good" clause amongst the variety ranging from the

maximally general clause, the empty clause, and the maximally specific clause, named as the

bottom clause2. This clause space is a lattice (according do proposition 2), having a partial

ordered defined through the θ-subsumption relation (as defined in Definition 4), which ensures

a systematically search for a good clause, a least general one covering as far as possible the

examples. During this searching process a defined evaluation function is used to measure the

quality of the clause. More about this evaluation function is explained later.

1As presented in Subsection 5.3.2.
2In the previous listing, it is the clause shown in lines 7 to 10.
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4. Cover Removal - Adds the best clause found in step 3 to the induced theory and removes all

their covered positive examples from the training set.

More detailed and exhaustive descriptions about all possible Aleph configurations, may be obtained

from technical documentation in Srinivasan (2000).

To exemplify Aleph's potential to induce useful theories we will use the graphs example, presented

previously in Figure 5.5. It is not obvious at first sight what the differences are between the two

graph classes: "+" and "-". We have 12 graphs labeled with lower case letters (a, b, ..., l), and in

each graph the vertices are sequentially marked with numbers: 1, 2, ..., n. Predicate goodgraph/1 is

used to represent the whole set using six positive and six negative cases. Hence we will have two

files holding each type, for "+" graphs, stored in file graphs.p, in which we have the following six

positive examples:

goodgraph(a). goodgraph(c). goodgraph(e).
goodgraph(g). goodgraph(i). goodgraph(k).

and for bad graphs, file graphs.n which will contain the other six negative cases.

goodgraph(b). goodgraph(d). goodgraph(f).
goodgraph(h). goodgraph(j). goodgraph(l).

The background information BK is inserted in a file with the same base name, having a ".b" extension,

graphs.b in this case. This file contains a set of Prolog predicates, related to the problem in question

and with the purpose to guide the induction process. Besides, there are two main directives that

can be defined, which establishes the predicates that can be combined by Aleph in the induction

process. Two mode directives, modeh/2 and modeb/2, can be used. The first one defines what is

the concept to be learned. The second one determines which predicates can be tried out during the

rule (predicate body) construction process. In our graph set example, we would have the following

predicates:

:- modeh(1, goodgraph(+gname)).
:- modeb(1, numvertex(+gname, -int)).
:- modeb(1, numedges(+gname, -int)).
:- modeb(1, maxdegree(+gname, -int)).
:- modeb(*, diff(+int, +int, #int)).
:- modeb(*, odd(+int)).
:- modeb(*, even(+int)).
:- modeb(*, prime(+int)).

Thus the mode directive (:- modeh(1, goodgraph(+gname)) defines that the aim is to generate

a predicate definition of goodgraph(...). The first argument indicates the maximum number of

times the predicate, indicated in the second argument position, can occur in the rule body, which

can be an integer: 1,2,..., or "*", meaning one or more times. Each predicate that can be used in the

induced clauses can have arguments represented by symbolic names representing a certain data type.

In our example gname and int respectively stand for "graph name" and an integer value. Each data
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type name is preceded by one of the three symbols for input/output mode: the "+" meaning an input

parameter, "-" an output parameter, and "#" for a constant. The plus and minus symbols are normally

used to bind variables in the induced rules. A general scheme for each rule is H :- B1, B2, ..., Bn,

with header H and the body literals B1, ..., Bn which may include variables. An input variable (+)

in a given Bj must be either an output variable (-) in H or an output variable in some Bi, where i<j.

An argument preceded by the constant symbol (#) can only be replaced by a ground atom.

For our graph example and with the previous mode declarations, we are informing Aleph that the rule

head must be goodgraph/1 and for the rule body several graph properties could be explored in order

to find a rule that will characterize well the training set, ideally covering all positive examples and

no negative ones. Therefore the number of graph vertices, edges and graph maximum degree1 are

considered through, respectively, the "numvertex/2", "numedges/2" and "maxdegree/2" predicates.

For each one of these, we have the graph name as input parameter and an integer as an output

parameter, which in turn is considered for numeric relation discovery through the other predicates:

"diff/3", "odd/1", "even/1" and "prime/1", in this case. The last three verify whether a given

integer is odd, even, and prime number respectively, as suggested by the name. The predicate

"diff(+int,+int,#int)" is used to discover numeric differences between two feature values. Here

we are assuming that the underlying law characterizing the positive graphs may rely on the difference

between vertices and edges, like vertices minus edges being always equal to 3. Then this phenomenon

could be expressed using the following rule:

goodgraph(G) :- numvertex(G,V), numedges(G,E), diff(V,E,3).

meaning that a graph G is a poisitive graph ("+") if it has V vertices, E edges and V-E=3.

Immediately after the mode declarations, should come the determination/2 directives, which in-

dicate which are the predicates allowed to be used in the construction of each rule body. In our

example we have the following ones:

:- determination(goodgraph/1, numvertex/2).
:- determination(goodgraph/1, numedges/2).
:- determination(goodgraph/1, maxdegree/2).
:- determination(goodgraph/1, diff/3).
:- determination(goodgraph/1, odd/1).
:- determination(goodgraph/1, even/1).
:- determination(goodgraph/1, prime/1).

Afterwards comes a section including all facts and all the predicate definitions directly or indirectly

involved in the rule induction. For example, in our case facts attributing names for graphs are:

gname(a). gname(b). gname(c). gname(d).
gname(e). gname(f). gname(g). gname(h).
gname(i). gname(j). gname(k). gname(l).

Each graph is defined through a 2-ary predicate graph/2, with the first argument containing the

1The maximum number of connections (edges) among the graph's vertices.
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graph name and the second argument a list of all graph edges. Each edge is represented by a term

connecting two graph nodes, in the form of "A-B", where "A" and "B" represent vertex connections.

Thus the twelve graphs shown in Figure 5.5 are represented as:

graph(a, [1-2, 2-3, 3-1]). (+)
graph(b, [1-3, 1-4, 4-3, 3-2, 3-5, 5-6, 2-6]). (-)
graph(c, [1-2, 1-3, 1-4, 1-5, 4-5, 5-3, 3-2]). (+)
graph(d, [1-3, 3-2, 2-4, 4-1]). (-)
graph(e, [1-2, 1-7, 1-6, 1-5, 7-6, 4-5, 4-2, 2-3]). (+)
graph(f, [1-5, 1-6, 1-2, 1-3, 4-5]). (-)
graph(g, [1-2, 2-3, 1-5, 5-4]). (+)
graph(h, [1-2, 2-4, 4-3, 4-7, 4-5, 4-6, 5-8, 5-9]). (-)
graph(i, [1-4, 1-5, 5-4, 4-2, 4-3, 2-3]). (+)
graph(j, [1-2, 1-3, 1-4, 3-5, 4-5]). (-)
graph(k, [1-2, 3-2, 1-9, 1-8, 1-6, 6-7, 1-5, 1-4]). (+)
graph(l, [1-2, 2-3, 3-5, 4-1, 4-5, 4-6, 6-5, 6-7, 7-1]). (-)

The remainder of the file contains the definitions for the predicates declared in the mod and de-

termination directives and any other auxiliar predicates used by them. The complete goodgraph.b

file may be consulted in Listing C.1, in Appendix C. This completes the Aleph background knowledge

definitions for our illustrative "good graph" example. Starting Aleph and running the default inducer

"induce", after loading the problem files (goodgraph.*), through the "read_all(goodgraph)" com-

mand, only one exact rule will be induced, which covers all positive examples and no negatives.

[Rule 1] [Pos cover = 6 Neg cover = 0]
goodgraph(A) :-

numvertex(A,B), odd(B), maxdegree(A,C), even(C).

Thus, according to this, a "good graph" has an odd number of vertices and a maximum degree which

is an even number. The execution will also print some statistical informations. First it shows the

confusion matrix and afterwards more details concerning how the theory was generated.

Actual
+ -

+ 6 0 6
Pred

- 0 6 6

6 6 12

Accuracy = 1.0
[Training set summary] [[6,0,0,6]]
[time taken] [0.011]
[total clauses constructed] [43]

An Aleph induction execution produces a trace, listing clause search along with their number of

positive and negative examples covered. An excerpt from this listing is shown below accompanied

by our commentary. The process starts with:

1 ?- induce.
2 [select example] [1]
3 [sat] [1]
4 [goodgraph(a)]

Then it shows the following bottom clause that was generated:
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5 [bottom clause]
6 goodgraph(A) :-
7 numvertex(A,B), numedges(A,B), maxdegree(A,C), diff(C,C,0),
8 diff(C,B,1), diff(B,C,-1), diff(B,B,0), odd(B),
9 even(C), prime(C), prime(B).

10 [literals] [12]
11 [saturation time] [0.002]

The search for the right clause is initiated.

12 goodgraph(A).
13 [6/6]
14 goodgraph(A) :-
15 numvertex(A,B).
16 [6/6]
17 goodgraph(A) :-
18 numedges(A,B).
19 [6/6]
20 goodgraph(A) :-
21 maxdegree(A,B).
22 [6/6]
23 goodgraph(A) :-
24 numvertex(A,B), diff(B,B,0).
25 [6/6]
26 goodgraph(A) :-
27 numvertex(A,B), odd(B).
28 [6/3]
29 ...

The last clause shown includes a subset of literals of the final clause shown earlier. The information

indicates that it covers all six positive examples and three negative ones. As it still covers some

negative examples, this serves as input for further specialization by adding more literals.

The default Aleph execution mode, described earlier, can be changed, adapted and configured for

many specific needs, for a wide range of learning problems, varying from decision trees to abductive

reasoning. These system settings are made through the set/2 Aleph built-in predicate, which can

be inserted in front of the mode declarations (modeh/2 and all modeb/2), as many times as needed,

one for each parameter to be configured. For our good graph example two system parameters were

set:

:- set(depth, 100).
:- set(clauselength, 10).

The first one specifies the upper bound on the proof depth in the process of the theorem-proving,

while the second setting specifies the maximum clause length in terms of literals admissible for the

induced rules.

One setting permits to determine the search strategy to be followed by Aleph in the clause-by-clause

search. The default is to prefer shorter clauses and this may be explicitly defined as:
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:- set(search, S).

with S variable set to "bf". Other search strategies are supported, like for example a heuristic best-

first (heuristic), or an iterative beam search (ibs), among others which may be consulted in Aleph

technical report (Srinivasan, 2000).

Another setting defines the evaluation function for evaluating the quality of the theory that is

being induced. This is similar to, for example what happens with the ID3 algorithm for decision

tree learning, where entropy and information gain is used to guide the step-by-step tree construc-

tion. In Aleph any evaluation function takes into account the number of positive (P) and negative

(N) examples covered at a given moment in the induction process. The default evaluation func-

tion is coverage, calculated as P − N. The setting of an evaluation function is made through:

:- set(evalfn, EvFunc) where

EvFunc may be accuracy as P
P+N , compression as P−N− L + 1, where L represents the number of

literals in the clause, coverage as P−N, entropy as p · log(p) + q · log(q) where q = 1− p and p =
P

P+N , gini as 2p(1− p) and p = P
P+N , laplace as p = P+1

P+N+2 , posonly (learning exlusively from

positive examples), user, among others (Srinivasan, 2000). This last one (i.e. user) is user driven,

meaning that the evaluation function is specified by the user through the Aleph's built-in cost/3 pred-

icate, which has the following syntax: cost(Clause, ClauseLabel, Cost) :- Body

where ClauseLabel is an input three element list [P,N,L] specifying the number of positive and

negative examples covered by the Clause and L represents the clause length. The Cost parame-

ter is the output cost value for that clause. The cost/3 predicate gives the user the possibility to

specify his own evaluation function to be used during the induction process. In the next chapter (see

in particular Subsection 6.2 and Figure 6.10) we present our defined cost function for the induction

process.

5.5 Final Remarks

In this chapter we have addressed a number of fundamental aspects involved in Inductive Logic

Programming. We started with a brief introduction on Machine Learning (Section 5.1), mentioning

propositional and relational learning, and remarking the knowledge representation power of the

latter. Then, in Section 5.2, we introduce the field of Logic Programming as the basic language

for ILP, mentioning the inference mechanisms as well. In Section 5.3 we have presented several

ILP key aspects, including a general description, the search in an ILP hypothesis space, and inverse

resolution. Afterwards, in Section 5.4, we present Aleph, the ILP implementation which we have

worked with. A number of times, throughout this chapter, we can find references to Mathematical

Logic concepts. These have been included in the Appendix A.

In the next chapter we focus on the application of this ILP paradigm on our problem of learning
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sentence reduction rules. One can find the particular engineerings we have implemented, using

Aleph and working with the data gathered from the previous steps - a corpus of aligned paraphrases,

automatically extracted from web news stories.
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Chapter 6

Induction of Sentence Reduction Rules

"If I have seen further it is by standing on the shoulders of giants."

Sir Isaac Newton, 1676

In the previous chapter we have given a brief overview of Inductive Logic Programming and the Aleph

system. This system has been used in our approach to the problem of sentence reduction. In this

chapter we describe the specifications and main settings used for this task.

In chapters 3 and 4, we have described the method for constructing a corpus of word-aligned para-

phrases, using a complete automatic procedure. First, paraphrase sentence pairs were collected

from comparable news stories corpora and afterwards an alignment process was carried out to align

the words of each paraphrase pair, following a dynamic strategy that chooses between global or local

alignment.

By examining aligned paraphrase corpus we perceived that there are different sentence, or phrase,

transformation patterns. For example, we can get common aligned sentence segments1, but certain

sentence portions get transformed into different sequences, or may even be omitted in the other sen-

tence. Therefore the subsequent natural idea was to investigate certain "regions" from these aligned

paraphrases, with the aim of providing learning instances for the induction of sentence reduction

rules. In our case, we have decided to use the Aleph system as it revealed more powerful than other

existing tools from the area of propositional learning. Aleph enables the induction of relational rules

(clauses), which is one of its main advantages. Hence our objective at this stage was to decide which

kind of aligned sentence portions we should select and conveniently transform them into learning

instances. This task is detailed in the following subsection.

6.1 Bubble Extraction

We note that the corpus of aligned paraphrases, contained several aligned sentence portions, worth

to be explored. These could serve in investigating of the existence of certain sentence transformation

1Both segments with exactly the same words.

107



6. INDUCTION OF SENTENCE REDUCTION RULES

regularities or patterns. Therefore, we have decided to focus our attention on one of such type of

aligned portions of a sentence pair, that we named as bubbles. To give a more precise comprehension

of what a bubble is, we introduce some definitions and provide some schematic representations of

these entities.

Definition 1 (Pair-sub-segment). A pair-sub-segment is constituted of two aligned word sequences,

extracted from an aligned sentence pair.

A B S G T _ _ _ G A B R A T A T _ P .
A _ S G T A B A G A C R B T _ _ V P .

Figure 6.1: Two word-aligned sentences. Each word is represented with a letter.

For example, the aligned sequence pair in Figure 6.1 gives rise to many examples of pair-sub-

segments, from which we show just seven possibilities in Figure 6.3. A special type of pair-sub-

segments is when both word sequences are exactly the same, as specified by this definition:

Definition 2 (EQsegment). An EQsegment is a pair-sub-segment having exactly the same words in

each sequence, written in the exact same order.

For example, in the alignment from Figure 6.1 there are six EQsegments, which are:

(1) A (2) S G T (3) G A
A S G T G A

(4) R (5) T (6) P
R T P

Figure 6.2: The only six EQsegments from the alignment of Figure 6.1.

Now we are able to define a bubble as a special kind of a pair-sub-segment, as in Definition 3.

Definition 3 (Bubble). A Bubble is a pair-sub-segment from a word aligned sentence pair, where

two heterogeneous word sequences are aligned, and are delimited by a left and right contexts of

EQsegments, with at least one equal and aligned word in each context.

(1) A B S G T (2) _ _ _ (3) P
A _ S G T A B A P

(4) T _ _ _ G (5) T A T _ P (6) A T A
T A B A G T _ _ V P B T _

(7) S G T _ _ _ G A
S G T A B A G A

Figure 6.3: Seven examples of pair-sub-segments containing four bubbles.
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From the previous definition, one may look at a bubble as a transformation of a sentence segment,

taking place within a given context. Therefore one may divide a bubble into three main components:

left context (L), right context (R), and the segment transformation or kernel, which may be repre-

sented by X. The next figure shows these three components, for the four bubbles present in Figure

6.3.

L | X | R L | X | R
-----|---------|------ -------|---------|-------

(1) A | B S | G T (5) T | A T _ | P
A | _ T | G T T | _ _ V | P

---------------|---- -------|---------|-------
(4) T | _ _ _ | G (7) S G T | _ _ _ | G A

T | A B A | G S G T | A B A | G A

Figure 6.4: The Bubble main components: L, X, and R.

As it can easily be seen, each kernel alignment forms an instance of a transformation of a sentence

portion, within a given context, determined by the left and right segments. Hence bubble (1)

provides evidence for the equivalence between sequence [B,S] and sequence [T], when the left

context is [A] and the right one [G,T]. Whenever the X sequences have different lengths, we use

the term transformation instead of equivalence, i.e. we interpret it as a transformation from the

longer sequence to the shorter one. The longer sequence is still labeled with the X letter and for the

shorter one we use letter Y. So in the previous example, we have a transformation from X = [B,S]

into Y = [T], within the mentioned contexts. Therefore, one may represent a bubble as 3-tuple (a

3-ary relation), as shown below:

bubble ≡ bub(L, X
trans f−→ Y, R) (6.1)

The bubble shown above respects a general pattern which can be specialized by substituting its

variables by terms. So, for the three bubbles shown in Figure 6.4 we obtain the following specialized

term representations:

bubble(1) ≡ bub([A], [B, S]
trans f−→ [T], [G, T])

bubble(4) ≡ bub([T], [A, B, A]
trans f−→ [], [G])

bubble(5) ≡ bub([T], [A, T]
trans f−→ [V], [P])

Figure 6.5: The bubble term representation.

Having the main objective of learning sentence reduction rules, we focus our attention on this struc-

ture - the bubbles - selected from the corpus of aligned sentences. We noticed that there exist other

pair-sub-segment types worth to be explored, however, due to the complexity revealed of those

structures, we decided to first concentrate our efforts towards this structure. In fact during this
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research we decided to work only with specific types of bubbles - those where the middle region of

one pair aligned sub-sequence is aligned with a void segment (X
trans f−→ ∅). In the future, more gen-

eral transformations could be investigated, including transformations of the form X
trans f−→ Y, where

Y ̸= ∅ and |X| > |Y|, with | • | being the segment size in terms of the number of words contained.

In the following Figure 6.6, we show some examples of bubbles extracted from real data - the corpus

of aligned paraphrases, created from web news stories:

(1) the situation here in chicago with the workers
the situation ____ in chicago with the workers

(2) obama talks exclusively with tom brokaw on meet
obama talks ___________ with tom brokaw on meet

(3) Ball and Arnaz were divorced in 1960
Ball and Arnaz ____ divorced in 1960

(4) america is in the exact same seat as sweigert and
america is in ___ _____ same seat as sweigert and

(5) after a while at the regents park gym , the president
after a while at ___ _______ ____ gym , the president

Figure 6.6: Examples of extracted bubbles

To extract a bubble, from a word aligned paraphrase, left and right contexts of equally aligned words

are required, according to Definition 3, and the probability of such extraction depends on these

contexts sizes as well as the size of the middle region aligned with the empty sequence. We noticed

that not all bubbles lead to useful rules and that performance improved when we further restricted

our attention to bubbles where the surrounding context is sufficiently large when compared with the

middle segment. Therefore, to decide whether a pair-sub-segment is a bubble the system computes

the segment sizes, according to the condition in Equation 6.2. If this condition is verified then a

bubble is extracted, giving rise to a new learning instance.

|L|+ |R| ≥ |X| (6.2)

For example, in the first example from Figure 6.6, we would have: 2 + 5 > 1. In the last example

we have 4 + 4 > 3. So on both cases this justifies the extraction of those bubbles. This condition

prevents the extraction of the bubbles shown in Figure 6.7. We note that in both cases the size of

the contexts is not large enough.

(6) To the horror of their fans , Miss Ball and Arnaz ...
__ ___ ______ __ _____ ____ _ ____ Ball and Arnaz ...

(7) ... vote __ ___ _______ ____ __ _____ __ friday .
... vote on the amended bill as early as friday .

Figure 6.7: Examples of two rejected bubbles
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With condition 6.2 we can define a normalized metric to calculate the value of a bubble, in order to

quantitatively compare different bubbles. Thus we define valβ(bubble) as follows:

valβ(bubble) = valβ

(
bubble

(L, X
trans f−→ Y, R)

)
= 1− |X|

|L|+ |R|+ 1
2

(6.3)

where |X|, |L|, and |R| are respectively the middle, left, and right segment sizes, in terms of the

number of words contained. This function has values in the [0, 1] interval as long as the condition 6.2

is preserved. If it is violated then we will have valβ(bubble) < 0, which is the case for the examples

in Figure 6.7 where valβ(bub6) = 1− 8
0+3+1/2 ≈ −1.286 and valβ(bub7) = 1− 7

1+1+1/2 ≈ −1.799.

Table 6.1 shows the bubble values for those shown previously in Figure 6.6.

Table 6.1: Bubble values for the previous five examples.

bub: (1) (2) (3) (4) (5)

valβ(bub): 0.867 0.867 0.846 0.765 0.647

Following this methodology, we obtained a huge set of instances in which relevant sentence trans-

formations occur. To give an idea about the amount of data involved, from a set of 30 days web news

stories, which corresponds to approximately 133.5 MB of raw text collected, the system identified

596 678 paraphrases that were selected and subsequently aligned, and from this set 143 761 bubbles

were extracted. These bubbles are then conveniently adapted to serve as learning instances for the

Aleph system, which will then "discover" sentence segment transformation patterns and codify them

as rules (clauses) that can be be applied in future for sentence simplifications.

6.2 System Execution

We will now detail a little bit the implementation and execution of the third module from the sys-

tem's scheme in Figure 1.2, comprehending the automatic generation of learning instances and the

execution of the induction process. First we present the main conceptual steps in this module, with

algorithms 3 and 4. From the set of aligned paraphrases, stored in an XML file (line 1), the next

execution towards the rule induction process consists in the extraction of bubbles and their trans-

formation in Aleph learning instances (line 6). This gives rise to the Aleph's "*.f" file of positive

examples (being generated in line 7).

6.2.1 Data Preparation

In terms of implementation, the bubble extraction process from a paraphrase list is executed through

the java class "ExtractBubbles", contained in the Factory.jar package, as follows:
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Algorithm 3 Bubble extraction.
1: apraphlist← LoadAlignedParaphrases(xml f ile)

2: bublist← ∅

3: for aparaph ∈ apraphlist do

4: bubbles← extractBubbles(aparaph)

5: for bub ∈ bubbles do

6: instance← learningInstance(bub)

7: saveInAlephFfile(instance)

8: bublist← bublist ∪ {bub}

9: end for

10: end for

11: saveInFile( f ilename, bublist)

Algorithm 4 Running the induction process.
1: bublist← loadFile( f ilename) ∨ loadLists(directory)

2: template← readAlephTemplate()

3: generateAlephFiles(template, bublists)

4: startInduction()

5: saveRules()

java -Xms32m -Xmx1024m ExtractBubbles -inp pac.xml -fdata lbub.dat

In particular, the -inp parameter specifies the input file containing the aligned paraphrases1, which

here is pac.xml and the -fdata parameter indicates the name of the output binary file in which the

list of extracted bubbles will be stored: lbub.dat, in this case2. This file will hold a binary instance

of an ListXBubble object, which contains a list of bubbles (XBubble class), that were populated

during the bubble extraction procedure, previously mentioned (Algorithm 3). Afterwards the Aleph

instances and all its associated files3 necessary to start an induction execution can be generated by

running the following command:

java hultig.sumo.ListXBubble -aleph dir

This will be done by executing a special mode (defined through the -aleph parameter) of the

ListXBubble class, which is also used to store a list of bubbles. In the previous execution com-

mand we are requesting to search the current directory for *.dat files containing binary lists of

bubbles, previously extracted from aligned paraphrases. It corresponds to take the "bublist ←

loadLists(directory)" branch in line 1, from Algorithm 4. A single directory may contain several bub-

1Related to algorithm's line 1.
2Related to algorithm's line 11.
3In our case files "*.f" and "*.b".
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ble lists, obtained from different bubble extraction execution moments. In this case all the existing

bubble lists will be gathered into a single list, before generating the Aleph's learning files.

For every bubble a learning instance is inserted in the *.b file, which is simply a Prolog term, similar to

the 3-ary term shown previously in formula 6.1 and Figure 6.5. For example, the list of bubbles from

Figure 6.6, is transformed in the five learning instances shown in Figure 6.8, listed in the same order.

Indeed, each bubble is represented by a 5-ary term (bub/5) where the first argument is a sequential

bub(1, t(1,0),
[situation/nn/np, the/dt/np],
[here/rb/advp] ---> [],
[in/in/pp, chicago/nn/np, with/in/pp]

).

bub(2, t(1,0),
[talks/nns/np, obama/nn/np],
[exclusively/rb/advp] ---> [],
[with/in/pp, tom/nn/np, brokaw/nn/np]

).

bub(3, t(1,0),
[arnaz/nnp/np, andcc/np, ball/nnp/np],
[were/vbd/vp] ---> [],
[divorced/vbn/vp, in/in/pp, 1960/cd/np]

).

bub(4, t(2,0),
[in/in/pp, is/vbz/vp, america/nn/np],
[the/dt/np, exact/jj/np] ---> [],
[same/jj/np, seat/nn/np, as/in/pp]

).

bub(5, t(3,0),
[at/in/pp, while/nn/np, a/dt/np],
[the/dt/np, regents/nns/np, park/nn/np] ---> [],
[gym/nn/np, ','/punct/punct, the/dt/np]

).

Figure 6.8: Bubbles converted in Aleph positive learning instances.

index. The second argument is a 2-ary term (t/2) indicating the kernel size transformation. For

instance the term t(2,0) means that two words were in effect dropped (substituted by zero words).

This second argument is related to the fourth one which represents such transformation through a

2-ary term, in the "X ---> Y" format, where X and Y are the lists of tagged words from the kernel

transformation. Term t(m,n) requires that m = lenght(X) and n = lenght(Y). Finally the third

and fifth bub/5 arguments are respectively the left and right contexts, which are also represented

using lists of tagged words. For the sake of convenience of algorithmic processing, the left context

list (third argument) is represented in a reversed order. These are the raw data to be used by the

learning system. Afterwards, the execution of the last shown command will also generate the rest

of the necessary Aleph configurations and preparations for starting an induction execution. Besides

the bubble instances included in the *.b file, we also need the header set configurations and all the

113



6. INDUCTION OF SENTENCE REDUCTION RULES

auxiliary predicates necessary to the induction execution. This complementary material is generated

from a pre-defined template file, since it is common to any inductive run.

The first part in the header section (see Figure 6.9) includes all the modes, determinations and types

involved, according to the description and examples given in Section 5.4.

%----------------------------------------------------------------------
% AUTOMATICALLY GENERATED BY:... "$PROG_NAME"
% INPUT FILE:................... "$INPUT_FILE"
% MOMENT:....................... $MOMENT
%----------------------------------------------------------------------
%
% ALEPH PARAMETERS
:- set(minpos, 5).
:- set(verbosity, 1).
:- set(evalfn, user).

%----------------------------------------------------------------------
% MODE DECLARATIONS
%----------------------------------------------------------------------
:- modeh(1, rule(+bub)).

:- modeb(1, transfdim(+bub, n(#nat,#nat))).
:- modeb(3, chunk(+bub, #side, #chk)).
:- modeb(*, inx(+bub, #side, #k, #tword)).

:- determination(rule/1, transfdim/2).
:- determination(rule/1, chunk/3).
:- determination(rule/1, inx/4).

%----------------------------------------------------------------------
% TYPE DEFINITIONS
%----------------------------------------------------------------------
side(left). side(right).
side(center:x). side(center:y).

k(1). k(2). k(3).

chk(np). chk(undefined). chk(np). chk(vp).
chk(pp). chk(prt). chk(advp). chk(multi).

nat(X) :- entre(X,0,20).

Figure 6.9: The *.b Aleph template header.

Predicate rule/1 is our goal head predicate and transfdim/2, chunk/3, and inx/4 the names of

the predicates that can be used in the rule body construction. The first one, transfdim/2, tries to

generalize over the dimension transformation, related with the t/2 term included inside the bubble

terms, as shown previously. The predicate chunk/2 seeks regularities over the chunk types and

inx/4 scans for lexical and syntactical (POS tags) regularities. The "Type Definitions" block clarifies

the domains of the predicate arguments just mentioned, which are briefly described in the following

list:
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• nat - defined as a natural number between 0 and 20.

• side - the segment type, among the four possibilities: left and right contexts and the bub-

ble's center X and Y components.

• k - a numeric value restricted just to the {1, 2, 3} set, which are the allowed segment positions

for scanning lexical and syntactical regularities.

• bub - the bubble's sequential index, also used as the rule/1 index connector.

• tword - represents either a word or a part-of-speech tag.

An example of an induced rule, expressed in the Aleph's Prolog language, is shown below:

rule(A) :- inx(A,left,1,the), chunk(A,center:x,np), inx(A,right,1,pos(nn)).

Note that this rule almost corresponds to the fifth rule presented in Figure 1.5. The only difference

is that there the rule explicitly states that the central X segment must have size equal to 2. As it

can be seen here, the first "inx" conditions states that the word "the" must occur in the first position

of the left context, while the second "inx" condition says that the first position of the right context

must contain a noun. The rule second condition imposes that the central X segment must be a noun

phrase chunk.

cost(_, [P,_,L], Cost) :-
value_num_literals(L, ValueL),
Cost is P/$DATA_SIZE * ValueL
.

value_num_literals(1, 0.10). % |
value_num_literals(2, 0.25). % 1.0 - _
value_num_literals(3, 0.50). % | _ _
value_num_literals(4, 1.00). % | _ _ _ .
value_num_literals(5, 0.60). % | _ _ _ _ _ .
value_num_literals(6, 0.40). % | _ _ _ _ _ _ _
value_num_literals(7, 0.20). % ----------------------------------------------->
value_num_literals(_, 0.00). % 1 2 3 4 5 6 7

Figure 6.10: Our rule evaluation function, defined in the *.b template file.

In the file general settings the minimum positive coverage defined is equal to five "set(minpos,5)",

which means that any induced rule must have at least five learning instances supporting it. The

"set(verbosity,0))" setting defines the verbosity level, which in this case is switched to minimum

verbosity, meaning that the output screen printings during the induction process should be minimalist.

The third template general setting, "set(evalfn,user)", establishes that rule evaluation is made

through a specially defined function ("user defined"), instead of using Aleph's predefined evaluation.

Usually this function is defined through the cost/3 predicate, which in our case is shown Figure 6.10.
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After several experiences related to our learning task, we have decided to implement our own rule

evaluation function, which combines positive coverage with rule length, defined in terms of the

number of body literals involved. The symbols P and L are input variables representing respectively

the number of positive examples covered and the number of rule literals. The variable Cost rep-

resents the output value of the rule that is being evaluated. The number of literals (L) is defined

with the value_num_literals predicate and as can be seen in Figure 6.10 we have decided to give

higher preference (i.e. higher L value) to rules having three to five literals, since we find this well

suited for our problem, where we aim at rules with at least one condition for each context segment,

plus one for the center X segment. To even ensure this last statement, for any inducted rule, we

have also defined Aleph constraints as shown in Figure 6.11. The first constraint rejects any learned

false :-
hypothesis(rule(_), Body, _),
num_literais(Body, N),
N < 2
.

false :-
hypothesis(rule(_), Body, _),
count_restr_zones(Body, NL, NX, NY, NR),
not_valid(NL, NX, NY, NR)
.

not_valid( 0, 0, 0, 0). %----> any zone without constraints.
not_valid( _, 0, _, _). %----> only in surrounding contexts.
not_valid( 0, _, _, _). %----> left context is free.
not_valid( _, _, _, 0). %----> right context is free.

Figure 6.11: Special Aleph constraints included in our *.b template file.

rule with less than two literals in the body, and the second one ensures that any induced rule will

have at least one literal ruling over each relevant bubble segment: left, right and center X. The

"count_restr_zones/5" predicate, takes as input the body of a rule being evaluated, and outputs

the number of literals found for each segment. Afterwards the "not_valid/4" imposes the desired

restrictions. The complete Aleph background knowledge file template (*.b), with all its components

may be consulted in Appendix C, in listings C.2, C.3, and C.4.

Both the rule evaluation function and the defined constraints, help to guide the induction process

toward obtaining more relevant rules with better characteristics. Here it remains to mention that

the ListXBubble command execution, shown previously, also generates the Aleph file of positive

examples "*.f", which will just contain a list of rule/1 terms, where their numeric argument is

exactly the bubble index value, defined in the bub/5 term.
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6.2.2 Exemplifying the Process of Induction

We include here tracing excerpts showing how the system proceeds in inducing sentence reduction

rules, accompanied by some comments in order to complement the description in the previous sub-

section.

The induction process is started on the command line by first invoking the Aleph program, which is a

program written in Prolog. In our case we have been working with its Yap (Santos Costa et al., 2002)

implementation ("yaleph").

1 [john@JPCMacBook#0 2010-11-08 15:13:03] /a/news@google/test3days/m
2 $ yaleph
3 % Restoring file /usr/local/lib/Yap/startup
4 YAP version Yap-5.1.2
5 % reconsulting /Users/john/bin/aleph.yap...
6

7 A L E P H
8 Version 5
9 Last modified: Sun Jun 4 10:51:31 UTC 2006

10

11 Manual: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/Aleph/index.html
12

13 % reconsulted /Users/john/bin/aleph.yap in module user, 102 msec 1127808 bytes
14 ?-

After launching Aleph we have to load the learning input files (*.b and *.f) through the command

"read_all(+BaseFileName)". In our case two additional files will be consulted (*.lgt, and *.yap),

containing several auxiliary Prolog predicates. It is convenient to start Aleph with a folder containing

these files.

1 ?- read_all(lxbub).
2 % reconsulting /a/news@google/test3days/m/lxbub.b...
3 % reconsulting /a/news@google/test3days/m/lxbub.yap...
4 % reconsulting /lib/prolog/utils.lgt...
5 % reconsulted /lib/prolog/utils.lgt in module user, 2 msec 10176 bytes
6 % reconsulting /lib/prolog/penpostags.lgt...
7 % reconsulted /lib/prolog/penpostags.lgt in module user, 1 msec 4400 bytes
8 % reconsulted /a/news@google/test3days/m/lxbub.yap in module user, 5 msec 35136 bytes
9 % reconsulting /a/news@google/test3days/m/lxbub.lgt...

10 % reconsulted /a/news@google/test3days/m/lxbub.lgt in module user, 992 msec 9804104 bytes
11 % reconsulting /usr/local/share/Yap/system.yap...
12 % reconsulting /usr/local/share/Yap/lists.yap...
13 % reconsulted /usr/local/share/Yap/lists.yap in module lists, 3 msec 22768 bytes
14 % reconsulted /usr/local/share/Yap/system.yap in module system, 10 msec 82912 bytes
15

16

17 DATA SET SIZE: 13140
18 % reconsulted /a/news@google/test3days/m/lxbub.b in module user, 1011 msec 9940192 bytes
19 [consulting pos examples] [lxbub.f]
20 [cannot open] [lxbub.n]
21 yes
22 ?-

Note that in the previous listing, in line 20, we have been informed that the system could not find

the corresponding file with negative examples. This is naturally in agreement with our previous

statement. At least for now we use just positive learning instances. Afterwards we start the induction

process by invoking the Aleph's "induce" command, which starts a greedy cover removal search

(Srinivasan, 2000), meaning that for any best clause found the covered examples are removed.
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1 ?- induce.
2 [select example] [1]
3 [sat] [1]
4 [rule(0)]
5

6 [bottom clause]
7 rule(A) :-
8 transfdim(A,n(39,0)), chunk(A,left,np), chunk(A,right,vp), chunk(A,center:x,multi),
9 inx(A,left,1,he), inx(A,left,1,pos(prp)), inx(A,right,1,has), inx(A,right,1,pos(vbz)),

10 inx(A,right,2,heard), inx(A,right,2,pos(vbn)), inx(A,right,3,so), inx(A,right,3,pos(rb)),
11 inx(A,center:x,1,proved), inx(A,center:x,1,pos(vbd)), inx(A,center:x,2,that),
12 inx(A,center:x,2,pos(dt)), inx(A,center:x,3,age), inx(A,center:x,3,pos(nn)).
13 [literals] [19]
14 [saturation time] [0.00800000000000001]
15 [reduce]
16 [best label so far] [[1,0,2,-inf]/0]
17 rule(A).
18 [constraint violated]
19 [13140/0]
20 rule(A) :-
21 transfdim(A,n(39,0)).
22 [constraint violated]
23 ... ... ...
24 ... ... ...

In this listing we can identify the initial bottom clause constructed (lines 6 to 12). The induc-

tion starts, by searching for generalizations (least general generalization) which entails this bottom

clause. It tries to cover the training data as much as possible, without violating the predefined con-

straints. For example, in lines 18 and 22 we can see that the system indicated constraint violation

for the two initial rules proposed, one in line 18, and the other one in lines 20 and 21.

The search for a good rule set will last a while, depending on the size of the training data. These

times are of the order of tens of minutes. The time complexity analysis is reported in Section 6.4.

During this search the system continues to output several items of information, including for example

good clauses found, as shown in the following excerpt:

1 ... ... ...
2 [good clause]
3 rule(A) :-
4 chunk(A,left,np), chunk(A,right,vp), inx(A,center:x,1,pos(nn)).
5 [user defined cost] [0.0240487062404871]
6 [clause label] [[316,0,4,-0.0240487062404871]]
7 [clauses constructed] [317]
8 ... ... ...

A good clause is any clause with utility above a certain predefined minimum score (Srinivasan, 2000).

It must also satisfying other parameters as well, like for example the minimum examples covered,

which in our case was set to 5 (:-set(minpos, 5).). A best clause is a good clause having an higher

score. For the final theory, clauses are chosen from the set of best clauses found. The [clause label]

information, in line 6, reports the value of 4 parameters for that clause, in the form of [[P,N,L,Val]],

where P and N are respectively the number of positive and negative examples covered, L is the number

o literals in the clause, and Val is the clause value.

In the end, the set of rules forming the theory is listed and saved in a file. The next excerpt shows

an induction process ending:

118



6.3 Learned Rules and their Applications

1 ... ... ...
2 [theory]
3

4 [Rule 1] [Pos cover = 5 Neg cover = 0]
5 rule(A) :-
6 chunk(A,left,np), inx(A,right,1,pos(vbz)), inx(A,center:x,3,pos(nn)).
7 ... ... ...
8 [Rule 2426] [Pos cover = 520 Neg cover = 0]
9 rule(A) :-

10 chunk(A,left,pp), chunk(A,right,np), inx(A,center:x,1,pos(dt)).
11

12 [Rule 2436] [Pos cover = 7 Neg cover = 0]
13 rule(A) :-
14 chunk(A,right,np), inx(A,left,2,pos(nns)), inx(A,center:x,1,but).
15

16 [Rule 2441] [Pos cover = 5 Neg cover = 0]
17 rule(A) :-
18 chunk(A,left,punct), inx(A,right,1,police), inx(A,center:x,1,and).
19

20 [Training set performance]
21 Actual
22 + -
23 + 12873 0 12873
24 Pred
25 - 267 0 267
26

27 13140 0 13140
28

29 Accuracy = 0.979680365296804
30 [Training set summary] [[12873,0,267,0]]

For any learned theory's rule, the positive and negative coverage are printed. In our case, the latter is

naturally always zero. Just for ilustration, the rule 2426 (lines 8 to 10) covers 520 examples and states

that if we have an propositional phrase (pp), followed by some segment starting with a determiner

(pos(dt)), and this one is followed by a noun phrase (np), then there is strong evidence that the

middle segment can be eliminated. One of the examples used for learning this rule is shown below:

bub(3883, t(3,0),
[between/in/pp],
[the/dt/np, start/nn/np, of/in/pp] ---> [],
[november/nn/np, '2006'/cd/np, and/cc/undefined]
).

The induction listing finishes by showing the confusion matrix for the generated rule set. We can see

that the theory covers 12873 examples, letting out 267 cases.

In this section we have presented some implementation issues, avoiding many rather specific details,

some of them can be consulted in appendixes B, C, and D. The next section presents some of the

learned rules and reflect on their quality.

6.3 Learned Rules and their Applications

The final output of our system is a set of sentence reduction rules, or more precisely, rules that

can be used to drop some sentence portions, normally having low information value. It is desirable

that our learned rules do not cut out relevant sentence portions and that our obtained sentence still

maintain its principal meaning as well as a syntactically acceptable structure. Initially, in Section

1.3 we have provided a small set of such induced rules as an illustrative example. However, the
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whole set is obviously much larger and it is important to stress out how can we apply such rule set

for practical purposes and subsequently make evaluations.

The work endeavored throughout this research project is far from being at a complete, final and

perfect stage, and by the contrary we look at it more as being the beginning of something very

promising and worth following, where these were just the first steps. As the research become more

and more developed and in order to avoid being lost inside many complex decision spaces, we found

ourselves in a position where we had to maintain simplicity at most, or at least decide to confine our

research aims to a more takable horizon. Therefore, after having decided to work only with bubbles,

another complexity confinement was made by deciding to work only with those having middle size

equal to one (|X| = 1), two (|X| = 2) or three (|X| = 3). One reason for that, was that the majority

of the extracted bubbles (83.46%) have their middle sizes within this range, as can be seen in Figure

6.12. We have also decided to induce separate rules for each bubble type. Consequently a specific

set of rules was learned for each size type. The generated rule set was quite large. For example, in

total 5806 reduction rules were induced from a set of 37271 "|X| = 2" bubbles.

Some examples of sentence reduction rules are provided in Table 6.2. The eliminated sentence

portion is marked in bold and the rule syntax follows the same as shown and explained previously in

Section 1.3.

However, the system is not perfect as it can lead to erroneous sentence reduction rules, by elimi-

nating wrong sentence portions, either by eliminating some key elements, or producing syntactically

incorrect sentences. Table 6.3 show six erroneous situations of reduction rules applied to sentences.

However, as our results show, the majority1 of rule applications produce good or acceptable results.

Here acceptable means that semantic key terms were preserved and that no major syntactical errors
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Figure 6.12: Bubble middle size distribution for a set of 143761 extracted bubbles.

1An ˆF0.5 value of 73.01% (Section 7.3.1, table 7.10)
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Table 6.2: Some examples of good sentence reduction rules showing the eliminated sentence portions in each

case.

N Sentence Reduction Rule

1
I want to move

:::
now to international affairs, the war

on terror.
Lc = VP ∧ X1 = RB ∧ R1 = to ∧ |X| = 1

2
Andrea Mitchell is

:::
also a very good reporter but she's

a lousy ...
Lc = VP ∧ X1 = RB ∧ R3 = JJ ∧ |X| = 1

3

My comment has
:::::::::
everything to do with the way the

media is covering Obama and nothing to do with

racism.

Lc = VP ∧ X1 = NN ∧ R1 = to ∧ |X| = 1

4
Wasn't his entire campaign

:::::::
therefore more a product

and function of greed than any before it?
L1 = NN ∧ X1 = RB ∧ R3 = NN ∧ |X| = 1

5

With
::::::::::
the financial crisis still worsening, obama said

his main goal is finding a remedy for the economic

woes.

Lc = PP ∧ Xc = PP ∧ R1 = NN ∧ |X| = 2

6

O b a m a c o n t i n u e d t o s a y t h a t t h e

:::::::::::::::::
domestic automotive industry must put an even

bigger emphasis than in the past on developing

fuel-efficient vehicles and hybrid vehicles.

L1 = the ∧ Xc = NP ∧ R1 = NN ∧ |X| = 2

7

He rallied support for an auto bailout and the

::::::::::::::
massive economic stimulus he announced this week-

end.

L1 = the ∧ Xc = NP ∧ R1 = NN ∧ |X| = 2

8
This is the

:::::
kind of behaviour any five-year-old child

could see through, and habitually does.
Lc = NP ∧ X2 = of ∧ Rc = NP ∧ |X| = 2

9

Complaining
::::::::::::::::
that and washington pols have done lit-

tle for people facing foreclosure or struggling to get

loans and jobs.

Lc = VP ∧ X1 = that ∧ Rc = NP ∧ |X| = 3

10

Despite
:::::::::
the nation's massive debt, Obama said he

won't be focusing on building a balanced budget at the

start of his administration.

Lc = NP ∧ X1 = the ∧ Rc = NP ∧ |X| = 3

11
As

:::::::::
a first time user, your comment has been submit-

ted for review.
Lc = PP ∧ X1 = a ∧ Rc = NP ∧ |X| = 3

12
Congressional leaders say

::::::::::::::::::
the emerging stimulus pro-

gram could cost between $400 billion and $700 billion.
Lc = VP ∧ X1 = the ∧ R1 = NN ∧ |X| = 3

were introduced in the final sentence.

At this stage, a practical safety procedure is suggested, in order to minimize the inappropriateness

of rule application to certain sentences that would result in syntactical errors and sentence discon-

tinuities, as can be seen from the examples shown in Table 6.3. In order to achieve that, we applied

part-of-speech n-gram models. First we have created the models from a large corpus of near 1 GB

of text. This corpus was transformed into a "corpus" of part-of-speech terms like for example:

"(...) NNP VBZ RB VBG IN NNP IN NNS WDT MD VB IN DT NN IN DT
JJ NN IN NNP NN NN . RBR DT NN NN NNP NNP NNP VBD NNS TO VB
NNP IN DT NNP CC NNP NNP NN TO NNS VBN IN NNP . (...)"
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Table 6.3: Six examples of bad sentence reduction rule applications.

N Sentence Reduction Rule

1
I want to move

:::
now to international affairs, the war

on terror.
Lc = VP ∧ X1 = RB ∧ R1 = to ∧ |X| = 1

2
Andrea Mitchell is

:::
also a very good reporter but she's

a lousy ...
Lc = VP ∧ X1 = RB ∧ R3 = JJ ∧ |X| = 1

3

My comment has
:::::::::
everything to do with the way the

media is covering Obama and nothing to do with

racism.

Lc = VP ∧ X1 = NN ∧ R1 = to ∧ |X| = 1

4
Wasn't his entire campaign

:::::::
therefore more a product

and function of greed than any before it?
L1 = NN ∧ X1 = RB ∧ R3 = NN ∧ |X| = 1

5

With
::::::::::
the financial crisis still worsening, obama said

his main goal is finding a remedy for the economic

woes.

Lc = PP ∧ Xc = PP ∧ R1 = NN ∧ |X| = 1

6

O b a m a c o n t i n u e d t o s a y t h a t t h e

:::::::::::::::::
domestic automotive industry must put an even

bigger emphasis than in the past on developing

fuel-efficient vehicles and hybrid vehicles.

L1 = the ∧ Xc = NP ∧ R1 = NN ∧ |X| = 2

This excerpt of POS tags corresponds to the text block shown below:

"(...) Apple is also working with Intel on microprocessors that will serve as the heart

of a new generation of Macintosh computer hardware. Earlier this year Apple CEO Steve

Jobs announced plans to change Macs from the IBM and Motorola-manufactured PowerPC

architecture to chips made by Intel. (...)"

Afterwards, we employ the CMU-Toolkit (Clarkson & Rosenfeld, 1997) to compute 2-gram and 4-gram

models and then use these models to ensure that the reduced sentence still maintains a "reasonable

expectable POS sequence", meaning that we still have a likely syntactical sequence of words in the

resulting sentence. To explain the method used, we first present it through Algorithm 5, which also

presents the main document summarization procedure.

Function "summarizeSentences" (line 4) contains the main conceptual summarization algorithm we

have implemented. It receives a document and for each one of its sentences tries to apply a reduction

rule, previously learned (line 9). If the rule (r) match the sentence (s) being considered, a secondary

test is performed in order to ensure that the resulting sentence (s′) will have a likely sequence of

POS tags (line 11). If so then the original sentence is updated to its reduced version (line 12), and at

the end it is concatenated1 to the summary being produced (line 16). Note that more than one rule

may be applied to a given document sentence.

1The ⊕ operator represents string concatenation.
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Algorithm 5 Summarization loop with model based safety procedure for avoiding bad rule application.

1: rules← LearnReductionRules(corpora)

2: model ← loadNGramModel()

3:

4: function summarizeSentences (document) : summary

5: summary← ∅

6: sentences← ListO f Sentences(document)

7: for s ∈ sentences do

8: for ρ ∈ rules do

9: if match(ρ, s) then

10: s′ ← applyRule(ρ, s)

11: if POSlikely(s′, model) then

12: s← s′

13: end if

14: end if

15: end for

16: summary← summary⊕ s

17: end for

18: end function

To explain the execution of the POSlikely(s′, model) test (line 11), consider a general sentence

scheme, tagged as shown below, where w stands for word and t for POS tag:

s = w1/t1 w2/t2 w3/t3 [w4/t4 w5/t5 w6/t6] w7/t7 w8/t8

Let us assume that there exist some reduction rule ρ specifying conditions such that the middle

bracketed sequence in s can be eliminated. According to the algorithm, this means that we would

have:

s′ = w1/t1 w2/t2 w3/t3 w7/t7 w8/t8

and s will be updated with s′ only if the "POSlikely" test is true. Since this test is based on POS tag

sequences, we must compare the likelihood of sequences ⟨t1, t2, t3, t4, t5, t6, t7, t8⟩ and ⟨t1, t2, t3, t7, t8⟩

in a balanced/normalized way, i.e. the comparison should be independent from the whole sequence

lengths. Therefore the middle sequence boundaries are considered for calculation. For example

if a 2-gram test is performed then we compare the likelihood of ⟨t3, t4⟩ and ⟨t6, t7⟩, with the one

obtained from ⟨t3, t7⟩, which would be a resulting subsequence if the rule is applied. In this case,

and weighting equally the middle sequence boundaries we would have the following test:

P{⟨t3, t7⟩} ≥
√

P{⟨t3, t4⟩} ∗ P{⟨t6, t7⟩}
2

(6.4)
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where "P{X}" stands for "the probability of X". The hypothesis here is that if the probability of the

resulting POS sequence (⟨t3, t7⟩) is relatively low, then it might e better to ignore this rule. So, if the

test from condition 6.4 holds then the rule is applied and the original sentence is updated to its new

reduced version. A similar calculation can be made for 3-grams and 4-grams and then the probability

values would be combined to make the best decision. In fact a 4-gram model was one of our first

experiments.

However, the results reported in Subsection 7.3.1, were obtained from a sample of a differently

generated dataset. In this case, instead of trying to apply all possible rules to a sentence, we

focused on just applying the best rule matching the sentence, if at least one exists. So, in this case

the previously shown algorithm (5) has become slightly different: Here ρbest and qbest represents

Algorithm 6 Summarization loop choosing the "best" rule to apply.
1: rules← LearnReductionRules(corpora)

2: model ← loadNGramModel()

3:

4: function summarizeSentences (document) : summary

5: summary← ∅

6: sentences← ListO f Sentences(document)

7: for s ∈ sentences do

8: ρbest ← ∅, qbest ← 0

9: for ρ ∈ rules do

10: if match(ρ, s) then

11: q← ruleQuality(ρ, s)

12: if q > qbest then

13: ρbest ← ρ, qbest ← q

14: end if

15: end if

16: end for

17: if ρbest ̸= ∅ then

18: s′ ← applyRule(ρbest, s)

19: if POSlikely(s′, model) then

20: s← s′

21: end if

22: end if

23: summary← summary⊕ s

24: end for

25: end function

naturally the "best" rule for sentence "s" and its "quality". So, the question that remains is how do we
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calculate the rule quality (line 12 in Algorithm 6)? We consider a combination of three parameters,

where one is a 2-gram model ratio, as shown in condition 6.4.

p =
P{⟨ti, ti+n+1⟩}√

P{⟨ti, ti+1⟩} ∗ P{⟨ti+n, ti+n+1⟩}
(6.5)

The second parameter for rule quality calculation is the number of words eliminated by the rule,

lets say n, to comply with the notation of Equation 6.5. The third parameter is the rule coverage,

represented by "c". Each induced rule generated by Aleph has a coverage value associated with it,

indicating the number of positive learning instances covered by the rule. Hence, the final rule quality

is calculated through a weighted geometrical mean involving these three parameters:

ruleQuality(ρ, s) = e
1
2 ·log(p)+ 1

4 log(n)+ 1
4 log(c) (6.6)

Thus, more importance is given to the n-gram model parameter (p) than the other two. This formula

and its parameter weights were the result of several experiments carried out, where values were

gradually tuned according to the obtained results.

6.4 Induction Time Complexity

In the earlier1 days of ILP, the computation time spent by the existing systems was a serious difficulty

and a critical bottleneck, disabling its implementation on real life problems. However, nowadays

these time efficiency issues have been overcome, through more efficient implementation techniques

and the steady growing of computational power, opening a wide range of application possibilities, for

many problems, ranging from Biology to Natural Language Processing. The graph in Figure 6.13, shows

that even with considerable big datasets, our Aleph based learning system evidences acceptable

feasible computation times. These computation measures were taken from a machine with an Intel

Core 2 Duo processor, working at 1.83Ghz, having 2GB of RAM, and running a POSIX2 operating system.

To give an idea about the size of an induced rule set, and taking as an example the learned rules with

|X| = 2, these were learned from a dataset containing 37271 t(2, 0) bubbles, and in the final 5806

sentence reduction rules were produced, through the induction process which took 53 minutes.

6.5 Final Remarks

In this chapter we focus on the work related with our last system's module - the induction of sentence

reduction rules. We describe the learning data preparation used, which includes the selection of

special structures from the aligned paraphrases called bubbles. These are transformed into learning

instances that are subsequently used for rule induction in an ILP based learning system - Aleph.

1In the 1990-2000 decade.
2In our case the Mac OS X.
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Figure 6.13: Time spent during the induction process, for datasets with size expressed in thousands of bubbles.

Although we have only considered bubbles with |X| ≤ 3, a sentence may have a compression length

greater than this value, since several compression rules may be applied to a single sentence. Even

compositional rule application is likely. One or more rules are initially applied to a sentence, trans-

forming it into a new (simpler) sentence where other reduction rules can fire and continue the

sentence reduction process until no more rules match the sentence. An experiment we have carried

out shows that for a collection of learned rules and a collection of sentences targeted for reduction,

we have on average three rules firing in the first level for each sentence.

For the future, we have a large set of directions to follow, within this particular issue. We let here

some ideas. Due to its complexity, we have not yet worked with bubbles where X
trans f−→ Y, with

Y ̸= ∅, and |X| > |Y| . These are likely to be relevant to induce rewriting rules. We also want to

explore other structures, obtained from the alignments, that we may call "extremes", in which one of

the paraphrasic sentences initial or final segment is aligned with an empty sequence. We also think

that a better chunker, capable of identifying subject-object relations will generate better rules and

improve correctness.

The work described in this chapter allow us to have another scientific contribution, published in pro-

ceedings of the ACL 2009 conference (Cordeiro et al., 2009). It was presented in workshop specially

dedicated to text generation and summarization, entitled Workshop on Language Generation and

Summarisation (UCNLG+Sum).

126



Chapter 7

Results

"Everything that can be counted does not necessarily count; everything that counts
cannot necessarily be counted."

Albert Einstein

This chapter gathers a set of results and main conclusions, from various experiments conducted

throughout the research work of this thesis. The main research subjects: paraphrase extraction,

paraphrase word alignment, and sentence reduction, were reported in chapters 3, 4, and 6 respec-

tively. In this chapter, sections 7.1, 7.2, and 7.3 discuss the corresponding experiments carried out

and provide the respective results obtained.

7.1 Paraphrase Extraction

In this work we have carried out an investigation concerning how to identify paraphrases. A set of

already known and used functions was tested and new functions proposed. Therefore an experimental

comparative study included nine functions in conjunction with three paraphrase corpora described

as follows.

Two standard corpora were used for comparative tests of different metrics: the Microsoft Research

Paraphrase Corpus (Dolan et al., 2004) and a paraphrase corpus supplied by Daniel Marcu that has

been used in many other experiments, namely for sentence compression (Knight & Marcu, 2002;

Nguyen et al., 2004). By making some adaptations in these two corpora, we have obtained three new

paraphrase corpora to serve as a benchmark for our comparative experimentations. In the following

subsections we give a more detailed description concerning the method used in this process.

7.1.1 The Microsoft Paraphrase Corpus

In 2005 Microsoft researchers (Dolan et al., 2004) published the first freely available paraphrase

corpus containing a total of 5801 sentences pairs, with 3900 annotated as "semantically equivalent"

or true paraphrases and the remaining 1901 with the opposite label, stored as negative paraphrase
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examples. Throughout the rest of our text we will refer to this corpus as MSRPC1.

This corpus was constructed by selecting paraphrases from massive parallel news sources using a

semi-automatic process, where first a shallow sentence similarity function was employed as well as a

heuristic permitting to pair initial sentences from different news stories as paraphrases. The shallow

function employed was the well-known Sentence Edit Distance (see Section 3.2.1). Afterwards human

1. The sentences have different content: prototypical example.

2. The sentences share content of the same event, but lacking details.

3. One cannot determine if sentences refer to the same event.

4. Shared content but different rhetorical structure.

5. The sentences refer to the same event but details different emphasis.

Figure 7.1: Guidelines used by human judges in the MSRPC paraphrase corpus construction to determine equiv-

alent pairs.

judges were included in the process to analyze and rate each automatically extracted pair. Three

human judges classified independently each pair as being "equivalent" (paraphrases) or "not equiva-

lent" pairs. To help them in the decision process, specially in the more difficult cases, a set of five

principles or guidelines was elaborated beforehand, stating essentially that a sentence pair should

not be marked as a paraphrase if one condition from the list in Figure 7.1 holds. These guidelines

were oriented towards the extraction of symmetrical paraphrases (see Section 3.3) and therefore do

not quite comply with our broader view of the types of paraphrases that should be considered. Since

our main research objective here is not paraphrasing, but sentence reduction or simplification, we

are also interested in sentence pairs of different generality or information content. In general such

pairs provide information about sentence reduction transformation that we wanted to explore. As

explained in Section 3.3, we are specially interested in asymmetrical paraphrases and so some of the

guidelines formulated for the MSRPC corpus construction conflict with this objective, in particular

the second and fifth directives from the list in Figure 7.1. For instance, although sentences (a) and

(b) below would be rejected as a paraphrase according to the MSRPC construction guidelines, they

form a relevant sentence pair for our research purposes.

(a) Researchers have identified a genetic pilot light for puberty in both mice and humans.

(b) The discovery of a gene that appears to be a key regulator of puberty in humans and mice

could lead to new infertility treatments and contraceptives.

Figure 7.2: An asymmetrical paraphrase pair likely to be rejected according to the MSRPC construction guideline.

1An abbreviation of Microsoft Research Paraphrase Corpus
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7.1 Paraphrase Extraction

Hence it can be expected that our proposed new functions for asymetrical paraphrase identification

(see Section 3.3) would yield a certain amount of disagreement over some MSRPC negative examples,

by identifying them as positive, i.e. true asymmetrical paraphrase cases. On the other hand, it

increases the number of false positives and this phenomenon was in fact experimentally confirmed

(see Table 7.3 in Section 7.1.5).

7.1.2 The Knight and Marcu Corpus

The corpus used by Knight & Marcu (2002) in their sentence compression work contains 1087 sentence

pairs, where for each pair one sentence is a compressed or summarized version of the other one.

Similarly to what we did for the Microsoft Paraphrase Corpus we also labeled this one and referred

to it as the KMC corpus. It was manually crafted by selecting related sentences from a collection of

⟨Text, Summary⟩ pairs, one sentence from each category the expanded one from the Text and its

compressed version from the Summary. This corpus was constructed to serve as a supervised learning

data set. Such a construction is very laborious and time consuming and even if the corpus has a

significant size it may always be incomplete in terms of linguistic diversity. By the time we started

this research and even during it, this was the only existing sentence reduction corpus available.

Despite its richer content, it was clearly not sufficient for our sentence reduction rule induction

objective, since we aimed at following an unsupervised approach and preferred to rely on massive

data gathered automatically, in order to capture a wide and relevant number of rules. However, even

if KMC is not our primary data source it is still very relevant to test paraphrase extraction functions,

consisting in a golden1 asymmetrical paraphrase test set. Furthermore, it helps balancing the overall

paraphrase test set, since on one hand we have the MSRPC containing exclusively symmetrical pairs,

and on the other hand the KMC corpus with only asymmetrical paraphrase types.

These two corpora were conveniently adapted and combined in order to provide relevant test sets

for the paraphrase identification functions.

7.1.3 The Evaluation Paraphrase Corpora

One major limitation with the KMC corpus is that it only contains positive examples and therefore it

should not be taken as such for evaluation. Indeed, it is necessary to add an equal number of negative

examples, pairs of sentences which are not paraphrases, in order to obtain balanced evaluation set

for the paraphrase detection. Even the MSRPC corpus is fairly unbalanced, having only 1901 negative

examples compared to the 3900 positive ones. To perform a fair evaluation, we decided to expand

both corpora by adding negative examples, randomly selected from web news texts, in a sufficient

number to balance the corpora, and so as to end up with the same number of positive and negative

examples. Finally we also decided to create a third corpus, which is a combination of both, MSRPC

1The KMC corpus was manually selected.
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and KMC, to which we added a new set of negative cases. In Figure 7.3, an example of a "random

negative pair" is depicted in order to clarify this point. It is evident that the previous example is in fact

(a) Running back Julius Jones is expected to return after missing the last three games with a

sprained left ankle.

(b) Economists closely watch the performance of consumer spending since it accounts for

two-thirds of total economic activity.

Figure 7.3: An example of a negative paraphrase pair, randomly selected from Web News Texts

a negative paraphrase case with sentences having nothing in common. On the other hand, one may

expect that among a set of news stories talking about a given event it is likely to encounter sentence

pairs that are almost equal (quasi-equal), even coming from different texts. Such pairs are naturally

irrelevant for our research purposes (see the discussion in the beginning of Section 3.3). Hence, our

objective is that our proposed paraphrase identification functions should be immune to these kind of

pairs, by deciding to reject them. Therefore in order to test this feature one may consider to include

a low percentage of such negative cases, like the one shown in Figure 7.4. In Subsection 7.1.7, we

(a) "I don't think my age matters during competitions", said Nadal.

(b) I don't think my age matters during the competitions, said Nadal.

Figure 7.4: An example of a quasi-equal negative paraphrase pair.

present a discussion and some evaluation based on this issue of adding at random selected sentence

pairs consisting of quasi-equal sentences as negative examples. We show that it does not affect

the performance of our method, as the performance differences between symmetrical paraphrase

(SP) and asymmetrical paraphrase (AP) function types are not affected by the existence of negative

random pairs.

7.1.3.1 The MSRPC ∪ X−1999 Corpus

This new derived corpus contains the original MSRPC collection of 5801 pairs (3900 positives and 1901

negatives) plus 1999 extra negative examples (symbolized by X−1999), selected from web news stories.

So we end up with 3900 positive pairs and 3900 negatives.

7.1.3.2 The KMC ∪ X−1087 Corpus

From the KMC corpus we derived a new corpus that contains its 1087 positive pairs plus a set of

negative pairs, in equal number, selected from web news stories. We named this new corpus as

KMC ∪ X−1087, where the X−1087 represents the extra negative paraphrase examples, resulting once

again in a balanced test set with an equal number of positive and negative cases.
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7.1 Paraphrase Extraction

7.1.3.3 The MSRPC+ ∪ KMC ∪ X−4987 Corpus

Finally, we decided to build a larger corpus that gathers the positive MSRPC part, with 3900 sym-

metrical positive examples and 1087 positive asymmetrical paraphrase pairs from the KMC corpus,

summing up to a total of 4987 positive pairs, of which 21.8% are asymmetrical. To balance the

corpus, an equal number of negative pairs was added, obtained in the same fashion as described

previously for the other two corpora. We labeled this larger corpus as MSRPC+ ∪ KMC ∪ X−4987.

In this corpus, we decided to exclude the MSRPC negative pairs, according to what is discussed in

Subsection 7.1.1.

The data components needed to reconstruct these corpora are available in the following website:

http://www.di.ubi.pt/∼jpaulo/competence/1. The MSRPC corpus may be obtained directly from its

source2. The KMC corpus was not publicly available by the time we have conducted our experiences

and it was directly provided by Knight & Marcu (2002). Therefore, we only provide the negative

examples that were used in our tests which were joined with the positive sets to derive the three

main test sets: X−1999 joined with MSRPC, the X−1087 set joined with KMC, and the X−4987 set for the

third one. These data will enable any future reader to reconstruct each paraphrase corpus described,

and make comparative experiments.

7.1.4 How to Classify a Paraphrase?

As in many machine learning problems, in paraphrase identification/extraction a system makes deci-

sions taking into account certain parameters, which are called thresholds and are pre-set by someone:

the user, the programmer, the researcher or even others. In our paraphrase extraction task, which

involves a classification problem, the evaluation of the performance for any paraphrase identification

function, is dependent of a given predefined threshold θ, which conditions the classification. That is,

for a given sentence pair the system computes a proximity or dissimilarity value, which determines

whether the pair is or is not a paraphrase. For example, assuming that we are evaluating the function

paraph(., .), which calculates the likelihood that any two sentences Sa and Sb, are a paraphrase pair,

and also assuming that θ = 0.6, then the pair ⟨Sa, Sb⟩ would be classified as a paraphrase if and only

if we had paraph(Sa, Sb) > 0.6.

Thresholds are parameters that make the process of a fair evaluation more difficult. Indeed the best

possible threshold parameter should be determined first for a given function. However, this is not

always the case and, very often, wrong experimental set-up is used.

In order to avoid this mistake, and since we are comparing the performance of our proposed para-

phrase identification functions with other already existing ones, our evaluation process, does not

1Link available on October 2010.
2http://research.microsoft.com/nlp/ [October 2010].
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pre-define any threshold. Instead, the evaluation procedure will first automatically set the best

threshold function value for a given training corpus. Afterwards the function is tested in the test

corpus. We made this by using 10-fold cross validation. For each run, we divide a given paraphrasic

corpus in two parts: 9
10 of data for training and 1

10 for testing. Therefore any function is tested with

its best threshold, the one that maximizes the function performance in the training corpora. This

is equivalent to stating that the paraphrase extraction functions are compared at their maximum

possible performance.

Figure 7.5: Threshold performance curves for 4 paraphrase identification functions, tested on the MSRPC+ ∪

KMC ∪ X−4987 corpus.

The pre-scanning of the best threshold is a typical problem of function maximization or optimization

(Polak, 1971), and in order to efficiently find a good approximation to the global maximum, a golden

section search method was employed (Anita, 2002), which progressively divides and narrows a func-

tion interval towards the location of a function extreme. It is guaranteed to converge to the global

maximum, if the function is unimodal. We noticed that the performance function graphs are smooth

curves and almost all reveal the unimodal characteristic1, that is a kind of inverted concavity with a

unique global maximum point. In Figure 7.5 we present four of such curves, for the N-Gram, BLEU,

Sumo and Entropy paraphrase classifiers. These four graphs were produced through an exhaustive

point drawing where nearly 1000 threshold values were sequentially taken in the ]0, 1[ interval and

their respective classifier performance computed for a specific corpus, which in this case was the

1At least all that we have tested and reported here.
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Table 7.1: Threshold means and standard deviations, obtained using a 10-fold cross validation procedure.

thresholds MSRPC ∪ X−1999 KMC ∪ X−1087 MSRPC+ ∪KMC ∪ X−4987

Edit 17.003± 0.0000 18.800± 1.1353 17.000± 0.0000

Simo 0.1668± 0.0000 0.2096± 0.0138 0.1298± 0.0008

Simexo 0.5000± 0.0000 0.7205± 0.0382 0.5000± 0.0000

Bleu 0.6887± 0.0015 0.0204± 0.0051 0.6369± 0.0077

Sumo 0.0718± 0.0033 0.0049± 0.0010 0.0070± 0.0001

Trignom 0.2889± 0.0803 0.2685± 0.0000 0.3421± 0.0000

Parabolic 0.5091± 0.0146 0.3242± 0.0001 0.3255± 0.0048

Entropy 0.6166± 0.0065 0.3851± 0.0011 0.4455± 0.0319

Gaussian 0.5250± 0.0095 0.3670± 0.0006 0.3986± 0.0105

largest one used - the MSRPC+ ∪ KMC ∪ X−4987 corpus.

Given this, the golden section search algorithm was used to quickly find the low error approximation

for the best function threshold, on the training corpus. Afterwards a test was run with that threshold

in the test corpus. To provide evidence that we are computing a good approximation of the global

optimum, we show in Table 7.1 the means and standard deviations of all function thresholds, obtained

in each corpus. Each threshold mean is obtaining by averaging the ten results coming from a 10-fold

cross validation. As already mentioned, a given paraphrasic corpus is divided in ten folds, where nine

of them are used to tune the best threshold through the golden section search method. Then the

paraphrase extraction function is tested with that threshold, on the left out fold.

The obtained thresholds (Table 7.1) and their variation range is almost negligible, supporting the

fact that for these functions the golden section search method provides a good approximation of the

global optimum.

7.1.5 Experiments and Results

In order to make a comparative evaluation of all paraphrase identification functions, a 10-fold cross-

validation (cv) method was followed for each function and each paraphrase test set. The performance

was judged using the well known F-Measure1 and Accuracy, as shown in equations 7.3 and 7.4. As

1Which is also known as Fβ.
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usual, precision and recall were calculated as shown in Equation 7.1 and 7.2

precision =
TP

TP + FP
(7.1)

recall =
TP

TP + FN
(7.2)

where TP, FP, and FN are the True Positive, False Positive and False Negative values respectively,

obtained from the confusion matrix. In a classification problem this matrix confronts the predicted

Table 7.2: The confusion matrix for a binary classification problem.

Positive Negative

Positivepredict TP FP

Negativepredict FN TN

outcomes with the actual classifications obtained by the system. Usually the rows refer to the pre-

dictions and the columns to the actual values. The general structure of a confusion matrix for a

binary classification problem is shown in Table 7.2.

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
(7.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(7.4)

We took the Fβ evaluation measure with β = 1 meaning that precision and recall are equally

weighted:

F1 =
2 ∗ precision ∗ recall

precision + recall
(7.5)

The following tables 7.3 and 7.4, provide a summary of the F-Measure and the Accuracy values

obtained for each function and each paraphrase test set. We have three test sets and nine functions,

with five of these specially defined to identify symmetrical type paraphrases (Edit, Sima, Simexo,

Bleu.). The Edit function is the sentence edit distance, while Simo and Simexo are the simple ant

the exclusive N-gram overlap functions, respectively. Detailed description about these functions are

given in Section 3.2. The three paraphrase corpora cover a wide range of paraphrase types, from

a "pure" symmetrical type (MSRPC ∪ X−1999) to an asymmetrical type (KMC ∪ X−1087), and also a

larger corpus including both types (MSRPC+ ∪ KMC ∪ X−4987).
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Table 7.3: F1 evaluation results obtained (in %).

Type Function MSRPC ∪ X−1999 KMC ∪ X−1087 MSRPC+ ∪KMC ∪ X−4987

Edit 74.42 71.06 80.97

SP Simo 78.94 95.34 94.72

Simexo 76.54 91.06 86.27

Bleu 78.72 69.26 85.86

average: 77.16 81.68 86.96

Sumo 80.93 98.29 98.52

Trignom 77.12 61.40 87.02

AP Parabolic 80.18 97.55 98.40

Entropy 80.25 97.50 98.35

Gaussian 80.20 97.56 98.37

average: 79.74 90.46 96.13

Table 7.4: Accuracy obtained (in %).

Type Function MSRPC ∪ X−1999 KMC ∪ X−1087 MSRPC+ ∪KMC ∪ X−4987

Edit 67.68 69.26 79.27

SP Simo 73.85 95.16 94.48

Simexo 70.51 90.36 84.49

Bleu 74.00 57.88 86.18

average: 71.51 78.17 86.11

Sumo 78.18 98.29 98.52

Trignom 71.63 69.22 87.99

AP Parabolic 75.74 97.58 98.39

Entropy 75.88 97.24 98.34

Gaussian 75.92 97.56 98.37

average: 75.47 91.98 96.32

The results show that, in general, the AP-functions outperform the SP-functions on all paraphrase

corpora, except for the trigonometric function (defined in 3.10), which does not behave very well

and is worse than the majority of the AP-functions on asymmetrical corpora KMC ∪ X−1087 and

MSRPC+ ∪ KMC ∪ X−4987. For instance, on the largest corpus MSRPC+ ∪ KMC ∪ X−4987, the AP-

functions correctly classified, on average, 96.32% out of all (9974) sentence pairs, which include both

positive or negative examples, being near 10% better than the SP-functions.

As we expected, the AP-functions performed better on corpora containing asymmetrical pairs, like
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in KMC ∪ X−1087 and MSRPC+ ∪ KMC ∪ X−4987, revealing an Accuracy difference of 12.02%, by

considering the average performance of each type (SP and AP) on both corpora and an equivalent F-

Measure difference of 8.98%. Nevertheless, even in the MSRPC ∪ X−1999 corpus, which is exclusively

symmetrical, the performance of the AP-functions is surprisingly better than that of the SP-functions,

revealing an average differential of 2.58% in terms of F-Measure and 3.96% in terms of Accuracy.

Within the SP-function class, the simple word N-gram overlap (simo) and the exclusive LCP N-gram

overlap (simexo) metrics always obtain the first and the second place respectively, whereas the Bleu

metric and the Edit Distance obtain the worst results on all paraphrase corpora. Within the AP-

function class our proposed Sumo function obtained the best results. Note that the performance

differences among the functions in this class is very small, with one exception, which is the trigono-

metric function.

7.1.6 The (SP type) Bleu Function - A Special Case

By looking at the Bleu function, in Subsection 3.2.2.2, it is clear that this function should indeed be

interpreted as a set of functions that depends on the upper sum limit (N) chosen. It was set to 4

in our experiments, following indications in literature, as for example Barzilay & Lee (2003). They

propose to use N = 4 for overlap n-grams, that is consider n-grams with length 1, 2, 3 and 4. By

choosing different values for the N limit, a question arises wheter this would imply any significant

difference in performance. We have carried out such tests and observed that for values greater than

4 the performance starts to decrease rapidly. It seems that the main reason for this lays in the fact

that the Bleu function makes a product of N factors (see Equation 3.6). So if just one of these is

a near zero then the overall function performance will be affected. As shown in Table 7.5, when N

decreases from 4 to 1 the Bleu performance tends to improve. We note that in these experiments

Table 7.5: The BLEU results (in %), with N decreasing.

Fβ MSRPC ∪ X−1999 KMC ∪ X−1087 MSRPC+ ∪KMC ∪ X−4987

N=4 76.62 69.32 84.68

N=3 77.82 69.33 87.86

N=2 78.77 68.88 90.18

N=1 79.39 77.45 91.15

the best performance was achieved for N = 1, when only unigram lexical links were counted. We

followed this strategy for our proposed AP-functions, such as Sumo, which relies only on the number

of words from each sentence and the number of exclusive lexical links (see Figure 3.5). Therefore

counting 2-gram, 3-gram, ..., n-gram overlaps would not bring any benefit, but only increase the

computational cost.
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7.1.7 The Influence of Random Negative Pairs

In Section 7.1.3 we described a method to artificially add sentence pairs, randomly picked from

Web News Texts as negative paraphrase pairs, to balance1 the corpora. We also mentioned that it is

likely that quasi-equal pairs could be inserted too as negative examples, depending on from where

we obtained our texts. This last option may naturally be criticized, since these quasi-equal pairs

can be seen as symmetrical paraphrases artificially labeled as negatives, and for such pairs the SP-

functions would likely return true, whereas the AP-functions would give false as an answer. This type

of examples will be counted as True Negatives by the AP-functions, but as False Positives by the SP-

functions, and so one may say that the evaluation is biased towards AP-functions. However, our intent

was simply to have a test corpora resembling, as near as possible, to real data, where such functions

would be applied to identify and select instances that facilitates the construction of asymmetrical

paraphrase corpora. On the other hand, these quasi-equal pairs were inserted randomly with very

low probability, and at the end their number in the corpus was less than 1%.

Indeed, to acknowledge this situation and confirm that the performance differences are independent

of the presence of quasi-equal pairs, we performed another experiment with a corpus similar to the

MSRPC+ ∪ KMC ∪X−4987, but without such pairs. We named this new corpus here as the "BigPure".

Tables 7.6 and 7.7 present the results for both paraphrase identification function types, which confirm

our claim that the performance difference between AP and SP type functions is independent of the

presence of a small amount of quasi-equal pairs.

Table 7.6: SP-functions on a corpus without quasi-equal negative pairs

BigPure edit simo simexo bleu

F-measure 80.97% 94.72% 86.25% 85.86%

Accuracy 79.27% 94.48% 84.49% 86.18%

Table 7.7: AP-functions on a corpus without quasi-equal negative pairs

BigPure Sumo Trignom Parabolic Entropy Gauss

F-measure 98.51% 87.02% 98.40% 98.35% 98.37%

Accuracy 98.50% 87.99% 98.40% 98.35% 98.37%

For this last experiment, the magnitude of the test data ensures us that at least with 99% sta-

tistical confidence2 (1% significance) we have Accuracy(AP- f unctions) > Accuracy(SP- f unctions) and

F-Measure(AP- f unctions) > F-Measure(SP- f unctions).

1Equal number of positive and negative examples.
2By making a statistical test for Accuracies: H0 : accuracyap = accuracysp against H1 : accuracyap > accuracysp, and a

similar one for the F-Measure.
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7.2 Paraphrase Alignment

In this section we report the results obtained for the alignment algorithms presented in Chapter

4. Algorithms for word alignment between paraphrasic sentences were conveniently adapted from

Bioinformatics and a new method to dynamically choose between a global and local alignment were

also proposed. In order to assess the accuracy of these alignment methods for our domain, we

designed a test involving human manual evaluation.

7.2.1 Paraphrase Corpora

Automatic evaluation of sequence alignment requires a gold standard data test set. As far as we are

aware of, such data is unavailable for our type of problem, since we are proposing a new alignment

method, specially adapted to our specific domain of word alignment between sentences. Although

sequence alignment is not our main research line, it is part from the whole process, aim to automat-

ically learn sentence reduction rules from text. We decided to carry out a manual evaluation of a

sample of aligned paraphrases in order to get a quantitative measure of the quality of the alignments.

We tested our alignment method by using two sets of aligned paraphrases obtained from different

text sources. One was obtained from the raw text material we are working with - web news sto-

ries. A random sample of 200 extracted aligned paraphrases were gathered as one test set and

for representation convenience we will refer to it as the WNS. This dataset represents the type of

alignments obtained from our working data, from which mainly asymmetrical paraphrases were ex-

tracted. However, in certain cases some symmetrical pairs could also be extracted. Therefore we

also considered the possibility to test our alignment method in a different dataset, with exclusively

asymmetrical paraphrase pairs. For that purpose we decided to use texts from the series of the

Document Understanding Conference (DUC). The DUC series are competitions holding once a year

which aim is to compare the performance of different sentence reduction systems on a wide range of

specific tasks. After each competition, a scientific conference takes place where the main compar-

isons and conclusions are reported. Thus it was relatively easy to select a corpus containing solely

asymmetrical paraphrase pairs from the DUC corpora. We decided to pick the DUC 2002 dataset of

text pairs, where each pair is formed by a text and its corresponding summary. From these text pairs,

405 asymmetrical paraphrases were extracted and aligned. A random sample of 220 pairs1 was then

chosen to constitute the second evaluation test set. This test set is referred here simply as the DUC.

Both for the WNS and the DUC, paraphrases were extracted using the Sumo function (see Subsection

3.3.1) and their words aligned using the proposed methodology described in Chapter 4. A difference

between the WNS and the DUC is that in the latter dynamic alignment was used, while in the former

only global alignment was performed.

1Composed of 200 globally aligned and 20 locally aligned.
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7.2.2 Quality of Paraphrase Alignment

For each dataset, selected as previously described, a human judge evaluated the quality of each

paraphrase alignment using four labels, two positive ones and two negative ones: excellent, good,

flawed, and bad. Label excellent was assigned to alignments without any error at all. These are

the perfect cases which are most useful for the subsequent rule induction step. Below are three

examples of aligned pairs that were marked with this label (alignments 1, 2, and 3).

Excellent:

(1) ____ He has helped the Police Department make hundreds of arrests and has " apprehended "
Nero __ ___ helped the police __________ make hundreds of arrests and ___ _ apprehend _

more than 50 felons .
more than 50 felons .

(2) _____ ____ _______ __ ___ ___ ___ " That's the lowest pressure ever ________ measured
Winds were clocked at 175 mph and _ ______ the lowest pressure ever recorded ________

in the Western Hemisphere ___ ________ __ ___ ______ , " Zimmer said .
in the Western Hemisphere was measured at its center _ _ ______ ____ .

(3) kenya ____ has also claimed that the ________ ___ arms are destined for its ___ military .
kenya says ___ ____ _______ ____ the weaponry was ____ ___ ________ for its own military .

The good label is used for alignments with at most two misalignments without having major impli-

cations on the overall quality of the alignment. Below we show two examples of such alignments

(alignments 4 and 5).

Good:

(4) fossett , 63 , vanished in his ___ ____ ____ _____ __ ____ airplane after taking off
fossett _ __ _ ________ __ has not been seen since he took ________ _____ ______ off

from a private air strip in northern nevada on september 3 , 2007 .
from a private ___ airstrip in ________ nevada in september _ _ 2007 .

(5) Checkpoint Charlie , the Berlin Wall border post ______ ______ __ that symbolized the
Checkpoint Charlie , the ______ ____ ______ most famous symbol of ____ __________ the

Cold War , was ______ hoisted into history today .
Cold War _ was lifted _______ into history today .

The negative label flawed is assigned to those cases where several misalignments were made. Despite

the fact that good matches are present, the amount of wrong word alignments has an overall negative

effect. Two examples of such cases are shown below, in alignments 6 and 7.

Flawed:

(6) _______ __ ____ _ With ___ tropical storm force winds extending 250 miles north and
Massive in size , it had ________ storm _____ winds extending 250 miles north and
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200 miles south of the hurricane's center , Gilbert also was one of the largest .
200 miles south of ___ ___________ ______ _ _______ ____ its ___ __ eye _______ .

(7) honda _____ _____ _____ _______ __ _______ ___ _______ ______ ____ _ reported a
honda motor co.'s sales dropped 24 percent and general motors corp . reported a

____ _______ 24 percent drop .
15.8 decline __ _______ ____ .

And finally the second negative label bad is obviously assigned to completely erroneous alignments,

as exemplified with the next two examples (alignments 8, and 9).

Bad:

(8) The __ best America could do was six medals , its worst Winter _______ Games
The US ____ _______ _____ __ had ___ ______ _ its worst Winter Olympic _____

showing in 52 years ___ ____ _____ .
showing in 52 years the 1988 Games .

(9) there is so far no sign of the single-engine aircraft in which fossett , 63 , ________
_____ __ __ mr __ ____ __ ___ _____________ ________ __ _____ fossett , 63 , vanished

__ _________ ____ ____ _____ __ _ ____ ______ ____ took off from ____________ a nevada
in september last year while on a solo flight that took off from neighbouring _ nevada

ranch in september 2007 .
_____ __ _________ ____ .

Even here some tokens got well aligned. However, the overall quality of the alignment is poor and

misleading for our next step of induction of sentence reduction rules. It is noteworthy that we are

comparing alignment qualities in a deeper and more semantic level than comparisons based on our

previously defined lexical "algval(A2×n)" function (Equation 4.9). For instance this function seems

to misevaluate some of these harder examples (Table 7.8), where in fact we have relatively less

words aligned, yet still making sense as alignments between paraphrases (alignments 2 and 3). On

Table 7.8: The algval(A2×n) values for the previous nine examples shown.

ID: algval(A2×n) ID: algval(A2×n) ID: algval(A2×n)

1excel 0.847 4good 0.643 7 f law 0.429

2excel 0.588 5good 0.743 8bad 0.638

3excel 0.581 6 f law 0.676 9bad 0.495

the other hand, there are situations where a great number of words are aligned with few yet critical

errors for the overall alignment semantics (specially in alignments 6 and 8).

In the case of the DUC corpus, dynamic alignment was used yielding several local alignments. We

asked the judge to classify these alignments as adequate or inadequate. We were interested in finding

out whether the decision concerning the choice of the local alignment algorithm was adequate,
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whenever such choice was made by the system. The results obtained are shown in Table 7.9. The

Table 7.9: Accuracy obtained in the alignments .

Global Local

Dataset excellent good flawed bad adequate

DUC 67% 22% 7% 4% 80%

200+20 134 44 14 8 16/20

WNS 46% 28% 9% 17% -

200 92 56 18 34 -

DUC ∪ WNS 56.5% 25.0% 8.0% 10.5% 80%

420 226 100 32 42 16/20

last column contains information concerning the adequacy of local alignments. There are 16 adequate

ones from a total of 20 local alignments. As it can be seen the results from each dataset are related,

being better on DUC data. We suppose that the main reason for this is that WNS data are somewhat

more noisy, containing more erroneous cases, including errors coming from the previous steps, like

for example sentences wrongly divided. On the other hand, with respect to DUC data, the text has

been manually pre-selected, ensuring higher quality at the beginning of the process. The overall

performance (DUC ∪ WNS) of the alignment method is quite satisfactory, since it achieved 81.5%

of positive (excellent & good) alignment classifications. This provided us with confidence about the

usage of these alignment techniques and the corresponding alignments obtained to be used in the

next step, where machine learning techniques for sentence reduction rule induction were explored.

7.3 Application of Reduction Rules

The automatic evaluation of a system is always the best way to perform it, due to its objectivity and

scalability. However, in many cases such evaluation is unfeasible for several practical reasons, like

for example the unavailability of data or the huge difficulty to prepare it appropriately. In supervised

learning, manually labeled test sets are used to evaluate the systems. However, these tend to be

relatively small, affecting adversely the statistical significance of the obtained results. For example

in Knight & Marcu (2002) a set of 1035 sentences was used to train their sentence compression system

and only 32 sentences were used to test it, which is indeed a quite small test set. It is also important

to propose many different evaluation techniques. In order to assess well the performance of our

methodology on large datasets, we propose a set of qualitative and quantitative evaluations based

on three different measures: estimated precision (prêcision), estimated recall (reĉall), and syntactic

N-gram simplification (ngσ). These parameters are explained next together with the evaluations
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carried out.

7.3.1 Evaluation Measures

The first evaluation measure carried out was based on human judgments of the quality of the ap-

plication of sentence reduction rules. For a random sample of compressions, resulted from the ap-

plication of sentence reduction rules, two human judges rated each rule application with an integer

value ranging from 1 up to 5, where 1 means a total erroneous rule application, and 5 a perfect rule

application. So, averaging human ratings, we have obtained a qualitative evaluation expressed quan-

titatively in the [1, 5] interval, which we call correctness. The weighed Cohen's kappa coefficient

(Cohen, 1968) for inter-rater agreement obtained was equal to 64.89%, which means "substantial

agreement", according to the guidelines of Landis & Koch (1977). The ratings were aggregated in

three main categories: negative (1, 2), neutral (3), and positive (4, 5).

Precision and recall are evaluation measures normally employed in supervised learning, where for

a given test set we know exactly how many elements belong to each class. These two measures

are calculated from a confusion matrix as described previously in Subsection 7.1.5. In our case of

sentence reduction rule application, we are evaluating an unsupervised approach where precision

and recall can not be exactly calculated. Nevertheless, we decided to use an approximation of

these measures. Precision is a measure of exactness calculating the percentage of correct positive

classifications made from the total of instances positively classified by the system. For example in

information retrieval precision is the number of relevant documents obtained from the total number

of documents retrieved. In our specific problem here we approximate precision by normalizing cor-

rectness as proposed in Equation 7.6, where n is the number of sentences for which a rule is applied.

precision ≈ prêcision = ∑n
k=1 rate(reductionk)

5 · n =
correctness

5
(7.6)

The recall measure is a measure of completeness, calculating the percentage of positive classifica-

tions effectively made from the total of all positive classifications that the system could have made.

In the example of information retrieval, this is the number of relevant documents found divided by

the number of relevant ones existing in the collection. In order to have an approximation for recall

too, we considered the number of sentences for which at least one reduction rule was applied, in a

given text sentence collection being used for evaluation. This number is divided by the collection

size. Let us assume that we are using a collection of m sentences S = {s1, ..., sm} for evaluating a

given ruleset R. Then recall is approximated as in Equation 7.7.

recall ≈ reĉall =
# reductionsR(S)

m
(7.7)

where "# reductionsR(S)" is the number of reduced sentences obtained from S through R.
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The F-Measure (Equation 7.3) combines precision and recall in a single evaluation metric. By varying

the β parameter, we are able to increase the importance of precision (β < 1) or recall (β > 1). For

our F-Measure approximation we decided to give more relevance to prêcision than reĉall. We think

that our defined reĉall is a less accurate approximation than prêcision, because not all S sentences

are eligible to be summarized. We may already have a subset of quite simple sentences contained in

S, for which any further simplification is no more possible without wiping out necessary fundamental

components/information. Therefore, we decided to use an F-Measure approximation with β = 0.5

(F0.5):

F0.5 ≈ ˆF0.5 =
1.25 ∗ prêcision ∗ reĉall
0.25 ∗ prêcision + reĉall

(7.8)

The syntactic n-gram simplification methodology is an automatic extrinsic test performed in order

to perceive how much a given set of sentence reduction rules would simplify sentences in terms

of syntactical complexity. The answer is not obvious at first sight and smaller sentences are not

necessarily simpler, because even smaller sentences can contain more improbable syntactical se-

quences. In terms of syntactical analysis we are just working with shallow techniques, in particular

here we are only considering the part-of-speech tags (POS)1. To compute the syntactical complexity

of a sentence, we used a 4-gram model and computed a normalized2 sequence probability as defined

in Equation 7.9 where W⃗ = [t1, t2, ..., tm] represents the POS sentence sequence, with size m of any

sentence of length m

complex(W⃗) =
( m

∏
k=n

P{tk | tk−1, ..., tk−n}
) 1

m−n+1
(7.9)

where P{tk | tk−1, ..., tk−n} means the conditional probability of tag tk given the tag sequence

tk−1, ..., tk−n. For example, for the sentence:

"The/DT passage/NN of/IN the/DT bill/NN by/IN an/DT overwhelming/JJ majority/NN."

we will have W⃗1 = [DT,NN,IN,DT,NN,IN,DT,JJ,NN], and assuming a simplified version of this

sentence to be:

"The/DT passage/NN of/IN the/DT bill/NN by/IN majority/NN."

its corresponding W⃗2 sequence would be equal to [DT,NN,IN,DT,NN,IN,NN]. As such, we can com-

pare the POS sequence complexities of W⃗1 and W⃗2 through Funtion 7.9 and take note if complex(W⃗2) <

complex(W⃗1) or not. It is naturally expected that simplified sentences will result in less complex POS

sequences, i.e. with lower P(W⃗) value, meaning naturally a more likely sequence. This computation

is based on a n-gram model of POS sequences and the n variable in Function 7.9 corresponds exactly

to the n-gram used, in our case n = 4. The parameters of the POS 4-gram model were trained over a

corpus of web news stories with approximately 1GB text size. In our particular example complex(W⃗2)

1For POS tagging the Penn Treebank Tag Set was employed.
2Because it is raised to the inverse power of m− n + 1, which is the number of factors being multiplied.
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would be equal to

(
P(DT|DT,NN,IN) ∗ P(NN|NN,IN,DT) ∗ P(IN|IN,DT,NN) ∗ P(NN|DT,NN,IN)

) 1
4
.

As usual in these cases, the log probability is taken to avoid round-offs to zero, since calculating

the exact values is irrelevant, and the most important is to compare the complexity of different

sequences. Thus instead of applying directly Function 7.9, we propose its log transformation as in

Function 7.10.

Lcomplex(W⃗) =
1

m− n + 1
∗

m

∑
k=n

Log(P{tk | tk−1, ..., tk−n}) (7.10)

The third evaluation is qualitative. We measured the quality of the learned rules when applied to

sentence reduction. The objective is to assess how correct the application of the reduction rules is.

This evaluation was made through manual cross annotation for a statistically representative random

sample of compressed sentences. Two human judges evaluate the adequacy and correctness of each

reduction rule to a given sentence segment, in a scale from 1 to 5, where 1 means that it is absolutely

incorrect and inadequate, and 5 that the reduction rule fits perfectly to the situation (sentence) being

analyzed.

7.3.2 Evaluation Results

In the evaluation, a sample of 300 sentences was randomly chosen, where at least one compression

rule had been applied. This evaluation set was subdivided into three subsets, where 100 instances

came from rules with |X| = 1 (BD1), 100 from rules with |X| = 2 (BD2), and the other 100 from

rules with |X| = 3 (BD3). Another random sample, also with 100 cases was chosen to evaluate our

baseline (BL), which consists in the direct application of bubbles to make compressions, meaning

that no learning process is performed at all, but instead, we store the complete bubble set as if they

were rules, in a similar way as Nguyen et al. (2004), using them directly for sentence compressions.

For any sentence, if there exists a bubble match then simplification is made in an identical format

as specified by that bubble.

Table 7.10 shows the comparative results for correctness, prêcision, reĉall, F1, and n-gram simpli-

fication, for all datasets. The precision is simply a normalized correctness, obtained from dividing

it by five which is the maximum correctness mark. The percentage values for n-gram simplification

are the proportion of counted test cases where P{reduced(W⃗)} ≥ P{W⃗} is verified.

Table 7.10 provides evidence of the improvement achieved with the induced rules in comparison

with the baseline BL, on each measure. Considering the three experiences, BD1, BD2, and BD3,

as a unique evaluation run, we can see the obtained results in the last line of the table (BD). For

each evaluation parameter the average results on these three datasets are shown. Comparing these

values with the baseline (BL) we can see improvements on every evaluation parameter.
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Table 7.10: Results with four evaluation parameters.

correctness prêcision reĉall ˆF0.5 ngσ

BL 2.97 59.40% 8.65% 27.33% 47.39%

BD1 3.43 68.60% 32.67% 56.23% 89.33%

BD2 3.52 70.40% 85.72% 73.01% 90.03%

BD3 3.49 69.80% 26.86% 52.89% 89.23%

BD 3.48 69.60% 48.42% 60.71% 89.53%

Moreover, best results overall are obtained for BD2 with 70.4% prêcision, 85.72% reĉall, which gives

an ˆF0.5 value of 73.01%. For the N-gram simplification parameter (ngσ) we still obtain the best result

of 90.03%, on BD2. This means that we can expect a reduction of two words with high quality for a

great number of sentences. Some examples of compressed sentences using our induced rules can be

found in tables 6.2 and 6.3.
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Chapter 8

Conclusion and Future Directions

"There is nothing as to begin, to see how hard it is to conclude."

Victor Hugo

Sentence Reduction continues to be an active research topic, where several relevant contributions

have been achieved. The pursuit of better sentence simplification systems, resembling more to what

humans do has motivated many to follow this line of research. We see Logic, and especially ILP

systems, as useful strategies to achieve further advances, since they are able to represent better

the human knowledge. The work presented here describes the first research step, with recourse to

powerful computing tools, in which knowledge in the form of rules was obtained from a huge set of

news articles, electronically available nowadays.

The core of our system, as schematized earlier in Figure 1.2, consists of an ILP learning system able to

induce relational rules from learning instances. Obviously, as any leaning system, it depends on the

amount and quality of learning instances supplied. Therefore we spent a considerable effort on the

issue of data preparation, aiming to automate this process. Despite the difficulties and challenges

of such automation, it was worthwhile and yielded the possibility to obtain relatively large amounts

of learning examples, enabling a more reliable rule induction.

This chapter concludes our work, giving a final overview about what we did (Section 8.1), highlighting

the innovative aspects proposed, as well as related scientific contributions. We conclude this chapter

by pointing out to some relevant future directions worth to be explored.

8.1 Conclusions

After several years of research while preparing this thesis, we have finally reached the point where

it is important to look back and observe the directions we followed, as well as look forward, to see

how to propose possible future research issues. A research work is certainly never linear and direct,

but includes many slopes, curves, and valleys, involving a combination of methodic work, sometimes

with unpredictable outcomes, leading many times to dead ends. In several cases one must stop and

backtrack to choose new directions, and our work was no exception.
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In our quest for a more effective and autonomous process for simplifying sentences, we have designed

a system constituted by several independent and interconnected modules, organized in a pipeline

fashion. On one side web news stories enter and on the other side we obtain the sentence reduction

rules, as it was initially schematized in Figure 1.2. Related web news stories are automatically col-

lected on a daily basis, and from such corpora, specific functions are used to automatically identify

and extract paraphrases, which is our first module (Chapter 3). In our second module (Chapter 4),

classical Bioinformatics algorithms for DNA sequence alignment are conveniently adapted for word

alignments of paraphrase sentence pairs. These sentence alignments are important for exploring

related dissimilarities between paraphrasic sentences, enabling the learning of sentence equivalen-

cies and transformational rules. In our third module, specific sentence aligned sequences, named

bubbles, are automatically extracted from the set of aligned paraphrase pairs, and converted into

learning instances, which are then used for the induction of sentence reduction rules. This is done in

our fourth module (Chapter 6), by using an Inductive Logic Programming system (Aleph). Finally our

fifth module is responsible for applying induced rules to new sentences, included in new web texts

(Section 6.3).

Comparing our work to previous ones in the field of Sentence Reduction/Compression described in

Chapter 2, it can be noted that our work follows an innovative approach to the problem of sentence

simplification, by including several new techniques and much more automation, which provide our

system with the capability to process large amounts of real text. Contrarily to several relevant ap-

proaches in this area, which are exclusively based on linguistic knowledge (Clarke & Lapata, 2006;

Jing, 2000; Jing & McKeown, 2000), our work is almost completely independent of it. The only re-

sources used are a POS tagger and a shallow syntactical analyzer from the OpenNLP1 project. In

particular, both exploit machine learning techniques, which means that they can be adapted to new

languages, by providing convenient training examples to generate new language models. Besides

these two linguistic tools, our system is automatic and does not require any human intervention,

which is relevant for a possible migration to other languages, not requiring specific linguistic knowl-

edge or resources.

Other approaches found in the literature that exploit machine learning, use supervised learning

(Knight & Marcu, 2002; Turner & Charniak, 2005; Witbrock & Mittal, 1999), or a combination of this

with linguistic knowledge (predefined rules), as in Vandeghinste & Pan (2004). However, we saw a

great difficulty in using supervised learning for our problem, since we are dealing with rich linguistic

varieties, containing many complex cases. Even with a considerable amount of manually crafted

training examples, such systems are likely to fail to capture the whole phenomena by only inducing

a relatively small number of reduction rules. For example, the Knight & Marcu (2002) system was

trained with a very small dataset, and so in this case the learned rules when used in new unseen

1URL: http://opennlp.sourceforge.net/ [November 2010]
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documents may only apply to relatively few sentences. On the other hand, the migration of such a

system to other languages would require a huge amount of human labour, to provide new training sets.

Our implemented system is based on unsupervised learning techniques, and the training examples

are automatically mined and constructed from web texts. Thus, a language migration would not

imply any major difficulty, provided that texts were electronically available for that language.

One other tendency in the literature is inspired by automatic machine translation methods, where

the main procedure consists essentially of observing a large number of translation cases, named as

templates, and "memorizing" them, so that they can be applied in the future (Nguyen et al., 2004).

However, this approach acquires rules ("sentence simplification templates") lacking in generalization

power. This is again due to the reduced size of the learning set, since it is again based on supervised

learning. While in automatic machine translation, high volumes of parallel texts are electronically

available, this is not the case for sentence reduction, where these texts must be directly supplied

by humans, which is a serious bottleneck. Our system does not require this work, since a kind of

simplification templates, named bubbles, are automatically extracted in a very large number. Then

an induction process, with the recourse to Inductive Logic Programming, is carried out, yielding a

generalized set of sentence reduction rules.

With respect to our main scientific achievements, this work resulted into five relevant publications,

one in a scientific journal and the others in the proceedings of important scientific conferences.

The first article (Cordeiro et al., 2007a) is concerned with our initial proposed function - the Sumo

function - for paraphrase identification in corpora (Subsection 3.3.1). The second published article

(Cordeiro et al., 2007d) discusses word alignments in paraphrasic sentences, described in Chapter

4. Our third publication (Cordeiro et al., 2007c) starts with our Sumo function and goes a bit fur-

ther, by proposing a new family of functions sharing several common characteristics appropriate

for asymmetrical paraphrase identification in corpora. This work contains also a comparative study

with the conventional existing functions for shallow symmetrical paraphrase identification (section

3.3). Our last publication (Cordeiro et al., 2009) is related to the induction process using Inductive

Logic Programming for learning sentence reduction rules, presented in Chapter 6. Our second and

fourth publications were made at workshops of the Association for Computational Linguistics con-

ferences, and this last one in a specific workshop about language generation and summarization.

Several adapted/improved versions of some of the techniques presented in this thesis have already

been incorporated in new research tasks beyond the scope of this thesis. This has produced a recent

publication in the proceedings of the COLING's 2010 conference (Grigonyté et al., 2010). A more

detailed list of these articles is given in Section 1.4.
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8.2 Future Trends

Any PhD research work is certainly never definitely concluded, since many research issues, related to

the initial problem still remain open and even new ones are unfold. Therefore, it is important to look

into the future and consider what seems worthy to be continued. There are research opportunities in

each one of our three main research lines: extraction, alignment and induction. Several suggestions

have been already made in the final sections of the corresponding chapters.

Paraphrase Extraction. For paraphrase extraction deeper linguistic techniques could be experi-

mented with. However, these would necessarily require significantly more computation time, since

huge amounts of texts need to be processed during paraphrase mining. The complexity is O(n2) in

the number of processed sentences. However, as results indicate, the performance could not be

much improved, since the performance achieved with the proposed lexically-based techniques al-

ready reads a satisfactory level in terms of F-Measure for the AP-functions (Table 7.7). A shallower

technique that can be experimented consists in the introduction of multiword units (Dias et al., 2000)

for enhancing the quality of the paraphrases extracted. In this case the paraphrase identification

function can be adapted to account for different word/multiword lengths, where longer overlapping

terms would get proportionally heavier weights in the final calculation of the sentence pair connec-

tion strength. In fact, we have recently made a first experiment with this for two specific domains

(computer security and medic domain). This was included in the publication (Grigonyté et al., 2010).

Paraphrase Alignment. In terms of paraphrase word alignments, we see several issues worth explor-

ing, such as trying new word alignment functions, thereby introducing some semantic relations, or by

trying to improve the dynamic method that chooses at run-time between global and local alignment.

Another possibility is to start dividing longer sentences into their main thematic components, in par-

ticular long sentences having several conjunctions. In these cases, one may split the initial sentence

and work with each part separately. We think that this could decrease significantly the alignment

errors reported in Subsection 7.2.2. Another idea worth experimenting, either for paraphrase extrac-

tion or alignment, is to use a thesaurus and work with synonyms. We may have terms representing

synonymy classes of words or even multiwords. For example, the word speak may represent "spoke",

"talk", "chat", and "speak up", among other possibilities.

Rule Induction. The induction component of our system is the one which contains much "unexplored

territory", and a possibility exists of using different paraphrasic text structures, besides bubbles. We

can observe that bubbles are more appropriate to induce a kind of local sentence simplification,

i.e. small sentence segments having at most five or six words. In fact, bubbles with larger kernels

are hard to find in corpora, implying fewer data is available for induction and consequently less

accurate theories are learned. By looking at the aligned paraphrase data it is possible to observe

certain regularities in longer aligned segments, different from bubbles, at the extremes ends - at
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the beginning and at the end of sentences. Such structures are more complex but could probably

yield richer and more effective reduction rules. So far, we have only worked with X
trans f−→ ∅ type

bubbles (see Section 6.1), while more general X
trans f−→ Y types could also be experimented with.

That is, instead of only looking at conditions in which a sentence segment can be dropped, we may

also investigate those in which it can be substituted by an equivalent shorter segment.

Active Learning. Another possibility to improve the learned rules is to use active learning to incre-

mentally refine the induction in subsequent learning cycles. We can for example manually collect

cases of negative rule applications to sentences1 and then use them as negative feedback to be added

to the learner, that initiates a new learning cycle. As mentioned, we do not use negative examples

in our first learning cycle. However, we think that the inclusion of negative evidence in the learner

would yield more specialized and accurate rules.

Rule Application. In terms of rule application, we see a newly open question that needs to be

addressed in the future: what is the best strategy to apply rules to sentences? In Algorithm 6, we

have presented the general procedure for rule application, in which a rule is only applied if the

resulting reduction complies with a syntactical statistical model previously trained. Indeed, we only

applied one rule - the most promising one, based on Function 6.6. However, in many cases there

are several rules applicable to a given sentence. Furthermore, we can also have compositional rule

applicability. That is, the application of one rule can transform the sentence into another one for

which new rules, which were not applicable before, become applicable. With a sufficiently large

rule set this poses the problem of finding the best solution in a search space.

Finally, we think that our work can be combined with the so called edmundson paradigm (Subsec-

tion 1.1.1) in which a text summary is created solely by selecting a number of relevant sentences.

Combining this extractive approach with ours of sentence reduction can improve the final quality of

summary, aiding more naturally the user's required compression level as well as the abstractiveness

of the generated summaries.

1As those shown on Table 6.3.
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Appendix A

Mathematical Logic

The discipline of Mathematical Logic is the direct foundation for many other scientific disciplines and

methodologies, including Mathematics, Logic Programming (LP), and Inductive Logic Programming

(ILP). This last one was a key element used in our work, as shown throughout chapters 5 and 6, where

there are some logic concepts and terminations employed. Therefore we have decided to include

here some relevant notes from Mathematical Logic, namely Propositional Logic (PL) and First Order

Logic(FOL), which, among other things, defines rigorously the notion o deduction, which can be seen

as the induction "inverse mechanism".

A.1 Propositional Logic

Propositional Logic (PL) can be seen as a simpler version of First Order Logic (FOL), presented in the

next section. It gives a synthesized preview for several topics extended in FOL. The main fundamental

difference between PL and FOL consists in the absence or presence of variables. In PL we do not

have variables and the theory is much more simpler. The presence of these entities requires the

existence of other elements, in particular the quantifiers. The paradigm of FOL contains a wider

range of possibilities that have to be proved. The theoretical frame set of PL is much more simpler.

In this section we present a quick overview of PL since some concepts are further developed in

the next section of FOL. We do not pretend to have here a complete formalization of the field

but present only the key elements and main theoretical results. To dive into a more formally and

complete presentation several well known text books on Mathematical Logical are available, for

example Mendelson (1997) and Enderton (2001).

The whole idea in Propositional Logic is to know in which conditions their expressions are true or

false, and how to ensure the validity (true) of new expressions derived from already known valid

ones (the concept of deduction). PL is a language with syntactical rules, in which expressions are

constructed and evaluated into one of their two logical values - true or false.

The language of PL, LPL, is formed by parenthesis "(" and ")", the negation symbol "¬" as the unique

unary operator, a set of binary operators and an infinite set of propositional symbols represented here
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with uppercase letters, e.g. A, B, P, Q, P1, P2, etc. Each propositional symbol may assume only

two possible values - true or false. The four principal binary operators used in any PL expression are

∧ (conjunction), ∨ (disjunction), ⇒ (implication) and ⇔ (equivalence). There are other operators

but they can be reduced to a combination of these four. Furthermore, any LPL expression can be

replaced by an equivalent one that uses combinations of only the ¬ and the ∧ operators. However,

it is usual to work with the aforementioned four operators as they simplify expression readings.

We can construct syntactical correct expressions in LPL, named as propositions , by following a

small set of procedures, as explained next. First, any propositional symbol is syntactically correct

in LPL, as well as their negation. Second, any expression constructed from two correct expressions

through a binary operator result in a correct expression. For example, P1 ⇒ P2 is correct because

P1 and P2 are correct (propositional symbols). Parenthesis can be found in PL expressions in a similar

form as in elementary algebra to change operation priorities. Naturally, for any opening parenthesis

there must exist only one corresponding closing parenthesis. Here are some PL correct expressions

(propositions):

P1 ⇒ (P2 ∧ P3) (A.1)

P1 ∧ P2 ⇒ P1 (A.2)

¬(P1 ∧ P2)⇔ (¬P1 ∨ ¬P2) (A.3)

We name the set of all syntactical correct expressions in LPL, as SPL.

One of the main objectives in logic is to know in which conditions a given proposition is true, also

named as valid, and also in which conditions a set of formulae gives rise to a new formula, defined

as the consequent. For example, P2 is clearly a consequent of P1 ∧ P2, since whenever the latter is

true, so it is the former. This concept can be rigorously defined by using a true assignment function,

also known as a valuation function, which considers all possible (true, false) combinations, for every

propositional symbol in the formula and computes the overall true value.

Definition 6 (valuation). A valuation is a function v from the set of all correct expressions SPL into

the {true, f lase} boolean set, such that for every α ∈ SPL and β ∈ SPL we have:

• v(α) ̸= v(¬α), i.e. if one is true the other must be false.

• v(α ∨ β) = true iff v(α) = true or v(β) = true

• v(α ∧ β) = true iff v(α) = true and v(β) = true

• v(α⇒ β) = f alse iff v(α) = true and v(β) = f alse

• v(α⇔ β) = true iff v(α) = v(β)

154



A.1 Propositional Logic

Table A.1: A true table for the formula A ⇒ (B ∧ C), for all possible combination of values assumed by their
propositional symbols.

A B C α = "A⇒ (B ∧ C)"

true true true true

true true false true

true false true true

true false false true

false true true true

false true false false

false false true false

false false false false

An example of a true table for the proposition A⇒ (B ∧ C) is shown in table A.1.

Whenever a proposition is true for all the possible combinations of their propositional symbol values

we say that we have a tautology. That is, for α ∈ SPL we have v(α) = true, and it is written as

"|= α". Formulae A.2 and A.3 are two examples of tautologies.

Now we can define an important issue in PL, which is the meaning of the statement "a set of propo-

sitions gives rise to a new proposition". This was already mentioned previously and can be defined

as a logical implication.

Definition 7 (Logical implication). A proposition α ∈ SPL is said to imply logically another proposi-

tion β ∈ SPL, typed as α |= β, if and only if α ⇒ β is a tautology: |= α ⇒ β. A set of propositions

{α1, ..., αn} from SPL logically implies another proposition β if and only if |= α1 ∧ ...∧ αn ⇒ β.

Another notion related to the previous definition is the notion of logical equivalence between two

well formed formulae, which holds whenever one implies logically the other one and vice-versa, as

stated in definition 8

Definition 8 (Logical equivalence). Any proposition α ∈ SPL is said to be logically equivalent to

another proposition β ∈ SPL, typed as α ≡ β, if and only if |= α⇒ β and |= β⇒ α.

In PL it is important to know whether a proposition β is implied by a set of other propositions, lets

say Σ, according to definition 7. However, assuming that β might be a quite long expression and

Σ can contain many propositions, it may be very difficult to prove that Σ |= β. Hopefully, there

exist an equivalent way to prove this by using natural deduction, which is based on modus ponens,

presented in section A.2, in A.13 and A.14. As in FOL, in PL there are theoretical results ensuring

us that deduction and logical implication are in fact equivalent, though in FOL it involves a more

complex theoretical formulation, as it is shown in the following section.

155



A. MATHEMATICAL LOGIC

A.2 First Order Logic

The Inductive Logic Programming (ILP) learning paradigm, used in our work and presented in section

5.3, is based on Logic Programming which in turn is based on Mathematical Logic. One big subject in

this scientific fundamental discipline, directly related to the ILP theoretical frameset, is First Order

Logic (FOL). In order to provide some explanations about the ILP operationality and foundation, sev-

eral necessary FOL terminology and related propositions will be introduced here. We do not pretend

to have here a complete and exhaustive FOL theoretical chapter and it is assumed that the reader

has already been in contact with this subject. It is included here as a terminological complement for

the issues presented in chapters 5 and 6. Good bibliographic material about Mathematical Logic can

easily be found, two good references for an interested reader are Mendelson (1997) and Enderton

(2001).

FOL is an extension of the propositional calculus, in which the concept of variable and relationship

is introduced. The L language alphabet is made of logic symbols and parameters. In the first class

we have punctuation, connectives, and variables. The second one contains quantifiers, constants,

predicate symbols, and functional symbols. These two last ones are alphanumeric sequences repre-

senting the names for predicates and functions. All these elements are synthetically described and

exemplified in table A.2.

Table A.2: The L language fundamental components.

Type Description Examples

punctuation The comma, left and right parenthesis. "," "(" ")"

connectives Unary and binary operators for connecting other el-
ements.

¬, ∨, ∧,⇒,⇔

variables An alphanumeric sequence representing a range of
possible values in the universe.

X, Y, Velocity,
Temperature

quantifiers The universal and the existential quantifiers. ∀, ∃

constants An alphanumeric sequence representing concrete
entities in the universe.

a, b, 7, 23, π, new_york,
john

predicates An alphanumeric sequence followed by an n-ary tu-
ple representing a relation.

less(X, 3), prime(7),
parent(john, albert).

functions An alphanumeric sequence followed by an n-ary tu-
ple representing a transformation.

square(3), sin(X),
weight(john).

The constants are also named as atoms, and some authors consider them as 0-ary functions (En-

derton, 2001). Following a Logic Programming convention, we use names starting in upper case for

representing variables while constants, function, and predicate names always start in lower case.

In FOL the universe concept does not refer to any set in particular. It is purely an abstraction, a meta-

concept representing any possible universe. An instantiation of the universe to a concrete entity is

made through an interpretation (definition 10). For example, such interpretation may instantiate
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the universe into the set of all natural numbers (N), or even into a set like "all the sentences written

in English".

Predicates and functions define respectively relations and transformations for the elements in the

universe. For example, if our universe is interpreted as N, then the shown examples of predicate

"less(X, 3)", and function "square(3)" may represent respectively an order relation (X < 3) and the

arithmetic square function (X2), in this case applied to the constant 3.

In FOL terms represent the nouns and pronouns of the L language. A term can be either a constant,

a variable, or be obtained from these two by applying zero or more times functional composition,

like for example: square(X), maximum(weight(john), weight(mary))1.

Finally, another fundamental concept in FOL is an atomic formula, which is the most basic well

formed expression in the L language. An atomic formula has the form of P(t1, t2, ..., tn), where

"P" is an n-ary predicate symbol and for any i, ti is a term. Examples of atomic formulae are

parent(anne, john) and less(0, square(X)).

Similarly to what happens in any human natural language, a number of syntactical rules must be

obeyed to correctly construct valid expressions in L. After presenting the FOL main fundamental

entities, we have now all the necessary elements to define the set of well formed expressions, in the

L language.

Definition 9 (Well Formed Formula (wff)). In a FOL language L a well formed formula (wff) is either

an atomic formula or the composition of atomic formulae by applying connectives and quantifiers,

i.e. if we know that P and Q are well formed formulae then ¬P, ∀XP, ∃YP, and P ⊙ Q, with

⊙ ∈ {∨,∧,⇒,⇔}, are also well formed formulae.

The set of all wffs is designated here as F . A few examples of wffs are:

less(0, 3) ∧ less(3, 0) (A.4)

mother(anne, mary) (A.5)

∀X∃Y divide(Y, X)⇒ ¬prime(X) (A.6)

∀X∀Y∀Z less(X, Y) ∧ less(Y, Z)⇒ less(X, Z) (A.7)

In FOL validity and proof is more difficult to verify than in PL, due to a number of more complex

entities like variables, terms, and quantifiers. To define the validity of a given formula ϕ ∈ F we

need first to introduce the interpretation and model concepts. From here on until the rest of this

section we present several theoretical key points, to be used for ensuring validation and proof in

FOL.

1Assuming naturally that maximum and weight are respectively 2-ary and 1-ary functional symbols.
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In general the FOL universe and all its fundamental components are considered in a pure abstract

form. We designate this meta-universe as LUniverse. However, frequently it is important, for illus-

trative and practical reasons, to specify a particular universe where we are able to give meaning

(interpret) to quantifiers, variables, predicates, and functions. Therefore an interpretation is a

mapping from this abstract meta-universe into a concrete universe. This is what is defined next, in

definition 10.

Definition 10 (Interpretation). In FOL an interpretation I is a mapping from the LUniverse to a

particular set |I| referred simply as "the universe", giving a concrete meaning to any variable,

predicate and function, such that:

• I(∀) = |I|

• For any n-ary predicate P, PI is an n-ary relation with each component being a member of

|I|, i.e we have PI ⊆ |I|n.

• For any n-ary function f , I( f ) = fI is an n-ary operation in |I|, i.e we have fI : |I|n → |I|

• Each constant symbol c will be a member of the universe, i.e cI ∈ |I|

Note that |I| represents a set, possibly infinite and uncountable, and that the assertion I(∀) = |I|

specifies the universal quantifier range, meaning that when we have for example "∀X" in a formula

it really means "∀X∈|I|". In order to illustrate this definition, let us consider the following wff about

which in general (in the LUniverse) we can not say much about it:

∀X∀Y∀Z P(X, Y) ∧ P(Y, Z) ⇒ P(X, Z) (A.8)

However, if we have an interpretation I defined as:

• I(∀) = |I| = N, the set of all natural numbers.

• PI = "≤", the partial order in N, meaning that for m ∈ N and n ∈ N, the pair ⟨m, n⟩ ∈ PI ,

also typed as PI (m, n), iff m ≤ n.

• Having a function f interpreted as the sucessor function, i.e fI = S such that S(n) = n + 1

and S(0) = 1.

• Having a constant c interpreted as cI = 0

We can see that the formula A.8 has now a particular clear meaning with this interpretation, repre-

senting the transitivity property of the partial order relation (≤) in N. We can say that this formula

is true for that interpretation, or that the chosen interpretation satisfies the formula. We could also

easily think about another different interpretation that would not satisfy formula A.8. Whenever a

formula ϕ is satisfied through an interpretation I it is said to be a model for ϕ, typed as |=I ϕ.
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In formula A.8 all variables are quantified, however, we may have formulae containing variables that

are not under the scope of any quantifier. These are called free variables. For example, in formula

A.9, V0 is a free variable.

∀V1 P(V0, V1) (A.9)

A wff without any free variable is called a sentence. An interpretation must also address free

variables in formulae. This requires the additional definition of a function that maps all free variables

to concrete entities in the interpreted universe, otherwise the formula would remain ambiguous.

Thus, being V the set of all variables we define s as a function mapping V into the interpreted

universe, that is s : V → |I|. For example, if we define s(Vk) = k (k ∈ N), then we are able

to complete the interpretation shown in the previous example, in order to give meaning to formula

A.9. It will now state that ∀V1 P(s(V0), V1) or equivalently that ∀V1 0 ≤ V1 which is true in N.

The formula is valid for that interpretation, which includes the definition of s. In this case we type

|=I ϕ [s]. There are further technical details involved in the definition of s that we will ignore here.

They may be consulted in Enderton (2001).

We can now present a definition of logical implication for FOL formulae, equivalent to definition 7,

made for PL.

Definition 11 (Logical implication). A set of wffs Γ logically implies another wff ϕ, written as Γ |= ϕ,

iff for any interpretation I and any function s : V → |I|, such that I and s satisfies every member

of Γ, they also satisfies ϕ.

Note that when Γ contains only sentences the reference to the s function is not necessary, as stated

by the following corollary.

Corollary 1. A set of sentences Σ implies logically a sentence σ, written as Σ |= σ, iff every model

of Σ is also a model of σ. A sentence σ is valid iff it is true in every interpretation and in this case

it is written as |= σ.

In FOL validity is the equivalent concept of tautology in PL. Naturally, for a wff with free variables

saying that |= ϕ means un indeed that |= ϕ [s] for any function s.

Definition 11 ensures us a theoretical method to know whether we have or not logical implication and

validity in FOL. However, it would be unpractical to verify it in a given case, since we have to check it

for every interpretation! Hopefully logicians from the twentieth century provided us with systematic

methods to verify validity and logical implication. In the reminder of this section we present a

number of results allowing us to verify Σ |= σ, without having to check every interpretation. One

first relevant theorem is the Compactness theorem ensuring that we may search for a proof in a set

of finite sentences and it will at most be finitely long.

Theorem 4 (Compactness). We have Γ |= ϕ if and only if there exists a finite set of formulas Γ0 ⊆ Γ
such that Γ0 |= ϕ. In particular a set Σ of sentences has a model iff every finite subset of Σ has a

model.
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In FOL we often consider a special kind of wffs called axioms, which are assuming to be valid a priori,

without having to prove them. They represent the kind of knowledge that are widely accepted to be

true in a given theoretical field, being the foundation elements upon which a theory is constructed.

For example, for the natural numbers there are the Peano Axioms from which we show the first three

of them, establishing the reflexive, symmetric and transitive properties for the "equal" predicate.

∀X X = X (A.10)

∀X∀Y X = Y ⇒ Y = X (A.11)

∀X∀Y∀Z X = Y ∧Y = Z ⇒ X = Z (A.12)

Being FOL also a theory, it also contains their own axioms, named here as the set of logical axioms

and represented by the letter Λ. In fact we have rather a set with six axiom families, shown in

definition 12.

Definition 12 (Logical axioms). In FOL, a wff is a logical axiom if it complies with one of the following

cases:

1. Any FOL generalization of a PL tautology is an axiom.

2. ∀X φ⇒ φX
t , where term t is substitutable for variable X in formula φ.

3. ∀X (α⇒ β) ⇒ (∀Xα⇒ ∀X β), where X is a variable and α and β are wffs

4. φ ⇒ ∀X φ , where variable X does not occur free in formula φ

5. X = X

6. X = Y ⇒ (φX ⇒ φY) , where φX is an atomic formula and φY is obtained from φX by

replacing X in zero or more places by Y.

The majority of these axioms are quite obvious and for the rest of them a more detailed description

is made in Enderton (2001). For example, the first axiom states that any FOL formula with the same

structure as a propositional logic tautology is a logical axiom. The "same structure" means that it

was obtained from a PL formula just by replacing its propositional symbols. For example, formula

P1 ⇒ (P2 ⇒ P1) is a PL tautology, and so the following three formulae are logical axioms in FOL.

• less(0, 3) ⇒ (less(1, 0)⇒ less(0, 3))

• ∃X prime(X) ⇒ (∀Ynatural(Y)⇒ ∃X prime(X))

• ∃Acreator(A)⇒ (∀H∀Thuman(H) ∧ theory(T) ∧ believe(H, T)⇒ ∃Acreator(A))

These formulae were obtained from the same PL tautology, and besides calling them logical axioms

in FOL, we still call them tautologies to.
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One of the most hardwired and relevant mechanism in FOL, originally conceived and employed by

the classical greek philosophers and rigorously formalized by the twentieth century logicians, is de-

duction. In general, deduction states that if we know that a given rule is true and we also know that

its preconditions (premises) are satisfied, then we may conclude its consequent. A classical example

is the well known syllogism: "All men are mortal", "Socrates is a man", then "Socrates is mortal". That

is, given formulae α and β, if we know that α ⇒ β and α are true then we conclude that β is also

true. This mechanism is also known as modus ponens, the main inference rule used in FOL. In a more

schematic form, it can be represented as in proposition A.13.

α ∧ α⇒ β

∴ β
(A.13)

or just as:

α, α⇒ β

β
(A.14)

The following definition defines deduction in a more formal way.

Definition 13. A deduction of a wff φ from a set of wffs Γ is a sequence [ϕ0, ..., ϕn−1, φ] off wffs

such that for each k < n, we have either:

• ϕk ∈ Λ ∪ Γ

• ϕk is obtained by modus ponens from two earlier formulae in the sequence, i.e there are i < k
and j < k, such that ϕi and ϕj are in the sequence and ϕj is equal to ϕi ⇒ ϕk.

We say that φ is deduced from Γ, written as Γ ⊢ φ if there exists a deduction of φ from the formulae

in Λ ∪ Γ. A formula deduced from Γ is called a theorem of Γ. To exemplify a deduction, suppose

that we have:

Γ = {∀X(α⇒ β), ¬α⇒ ρ, ¬ρ}

with α, β, and ρ being wffs, and X a variable that does not occur free in α. Then we are going to

show that Γ ⊢ ∀X β, by presenting a deduction using the formulae in Γ, some tautologies, and modus

ponens (MP). In each deductive step (each line) the justification is given in the right hand side. So,
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we have:

(1) (¬α⇒ ρ)⇒ (¬ρ⇒ α) is a tautology

(2) ¬α⇒ ρ formula in Γ

(3) ¬ρ⇒ α MP (1) and (2)

(4) ¬ρ formula in Γ

(5) α MP (3) and (4)

(6) ∀X(α⇒ β)⇒ (∀Xα⇒ ∀X β) instance of axiom 3

(7) ∀X(α⇒ β) formula in Γ

(8) ∀Xα⇒ ∀X β MP (6) and (7)

(9) α⇒ ∀Xα instance of axiom 4

(10) ∀Xα MP (5) and (9)

(11) ∀X β MP (8) and (10)

therefore we can say that Γ ⊢ ∀X β, or that ∀X β is deducible from Γ, or even that it is a theorem

obtained from Γ.

The deduction mechanism is clearly a useful practical method conveying a systematic reasoning

search, though not deterministically, in theorem proving. At this point two pertinent theoretical

question rises:

1. Does a theorem from a given set still be logically implied by it, according to definition 11?

2. Can a logically implied formula be deduced?

Note that the deduction mechanism was presented without any reference to a particular interpre-

tation nor any s function. So, one may wonder if a deduced formula still be logically valid, and

reversely if any valid or logically implied formula has a deduction.

These two questions have indeed positive answers through two of the most important theoretical

results in Logic: the soundness theorem and well known Gödel's completeness theorem, with which

we conclude our theoretical notes on FOL.

Theorem 5 (Soundness). For a set of wffs Γ and a wff φ, if we have Γ ⊢ φ then Γ |= φ holds.

Theorem 6 (Completeness - Gödel, 1930). For a set of wffs Γ and a wff φ we have:

(a) If Γ |= φ then Γ ⊢ φ

(b) Any consistent set of formulae is satisfiable.
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From the previous two theorems we know now that Γ |= φ if and only if Γ ⊢ φ, which is a remarkable

result. On one hand it says that deductions will lead only to correct conclusions (valid formulae),

and on the other hand that a valid formula must have a deduction. This equivalence gives deduction

a higher theoretical value, worth to be employed in theorem proving. Now we do not need to

worry about interpretations and variable-universe mapping functions to show that Γ |=I φ [s]. It is

sufficient to find a deduction of φ from Γ. The fields of logic programming and automatic theorem

proving are mainly based on these two theoretical results.
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Appendix B

Relevant Code Fragments

This appendix contains a selection of several code fragments relative to some implementation key

aspects. The presentation and description about the Java class hierarchy we have implemented was

made in subsection 6.2 and the material provided here will complement a bit further that general

overview.

/**
 * The Sumo-Metric for calculating similarity
 * among sentences.
 *
 * 2006-03-25
 *
 * @param s The other sentence to compare to.
 * @return double The similarity value.
 */
public double dsumo(Sentence s)
{
    if ( s == null )  return 0.0;
 
    int[] u= this.getCodes();
    int[] v= s.getCodes();
    int n, m;
    if (u.length > v.length) {
        n = v.length; m = u.length;
    }
    else {
        n= u.length; m= v.length;
    }
 
    //count the number of matches
    int NL= 0;
    for (int i=0; i<u.length; i++)
        for (int j=0; j<v.length; j++)
            if ( v[j] >= 0  &&  u[i] >= 0  &&  Math.abs(u[i]-v[j]) == 0 )  {
                NL++;
                v[j]= -1*v[j];
                u[i]= -1*u[i];
                break;
            }
 
    //reset link marks
    for (int i=0; i<u.length; i++) if ( u[i] < 0 )  u[i]= -1*u[i];
    for (int i=0; i<v.length; i++) if ( v[i] < 0 )  v[i]= -1*v[i];
 
    //proceed to final calculations
    double pm= (double)NL/m;
    double pn= (double) NL/n;
    double alfa= 0.5;
    double beta= 1.0 - alfa;
 
    double similarity= - alfa*log2(pm) - beta*log2(pn);
    if ( similarity > 1.0 )  similarity= 1.0/Math.exp(3*similarity);
 
    return similarity;
}

Figure B.1: The Sumo-Metric method for computing sentence similarity.

The first code snippet is about the calculation of the Sumo function for two sentences, represented
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by the class "Sentence" (see the class diagram in Figure 4.14). Like other implemented sentence

similarity measures, it calculates the proximity of two sentences and returns a value in the [0, 1]

interval. For efficiency reasons the getCodes() method returns the array of word indexes repre-

senting the sentence words. Hence, all the calculations are performed by using integer comparisons

between two arrays: u and v. Whenever a link is discovered among two positions, lets say i and j

their content are switched to negative values in order to avoid any further connections of this already

assigned positions. That is exactly what the v[j]=-1*v[j] and u[i]=-1*u[i] instructions make.

An example of a paraphrasic pair alignment is made inside the printAlignments(*,*,*) method,

from the GenAlignParaphCorpus class, listed in Figure B.2. We can see the issues of global, local,

/**
 * Compute and print alignments for a paraphrase sentence pair. The output format
 * comply with an XML syntax.
 * @param st One of the paraphrase sentences.
 * @param su The other paraphrase sentence.
 * @param dx The proximity value under which parphrases were selected. To be printed.
 */
private void printAlignments(Sentence st, Sentence su, double dx) {
    double px = -1.0;
    if (ALIGNTYPE == DYNAMIC) {
        px = Sentence.countNormIntersectLinks(su, st);
    }
 
    if (ALIGNTYPE == SWATERMAN || (ALIGNTYPE == DYNAMIC && px > 0.4)) {
        SWaterman sw = new SWaterman(st.getCodes(), su.getCodes(), dictionary);
        Vector<String[]> vs = sw.getParaAlignsHoriz();
        if (vs == null || vs.size() < 1) {
            return;
        }
        outfile.printf(Locale.US, "   <paraph id=\"%d\" alg=\"SW\" prc=\"%f\">\n", ++IDPAIR, dx);
        outfile.printf(Locale.US, "      <nx>(%d, %d, %f)</nx>\n", st.cod, su.cod, dx);
        outfile.printf("      <s1>%s</s1>\n", st);
        outfile.printf("      <s2>%s</s2>\n", su);
        for (int k = 0; k < vs.size(); k++) {
            String[] as = vs.get(k);
            outfile.printf("      <subalgn id=\"%d\">\n", k + 1);
            outfile.printf("         <sa1>%s</sa1>\n", as[0]);
            outfile.printf("         <sa2>%s</sa2>\n", as[1]);
            outfile.print( "      </subalgn>\n");
        }
        outfile.printf("   </paraph>\n\n");
    } else { //---> NWunsh - Global Alignment.
        NWunsch nw = new NWunsch(st.getCodes(), su.getCodes());
        nw.setDic(dictionary);
        nw.buildMatrix();
        String[] as = nw.getAlignmentH();
        outfile.printf("   <paraph id=\"%d\" alg=\"NW\">\n", ++IDPAIR);
        outfile.printf(Locale.US, "      <nx>(%d, %d, %f)</nx>\n", st.cod, su.cod, dx);
        outfile.printf("      <s1>%s</s1>\n", st);
        outfile.printf("      <s2>%s</s2>\n", su);
        outfile.printf("      <sa1>%s</sa1>\n", as[0]);
        outfile.printf("      <sa2>%s</sa2>\n", as[1]);
        outfile.printf("   </paraph>\n");
    }
}

Figure B.2: The "printAlignments" method for computing and printing paraphrase sentence alignments to an XML

file.

and dynamic alignment being involved here to choose the best algorithm for aligning a given sentence

pair, indicated by the first two parameters ("st" and "su").

If the ALYGNTYPE is DYNAMIC, the number of crossings between two sentences, as discussed in Subsec-

tion 4.2, and in particular illustrated in Figure 4.7, is calculated and based on this result the decision

for one algorithm is made, as presented in Algorithm 2. The "SWaterman" and "NWunsch" classes hold
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the data items and the processing methods to compute the alignment algorithms, respectively the

Smith-Waterman and the Needleman-Wunsch, as suggested by the corresponding class names.

The implementation of the crossings calculation, as described in Subsection 4.2, is shown in the code

listing from Figure B.3.

 
package hultig.sumo;
 
public class NewClass
{
 
/**
 * Counts te number of link intersections existing between the two sentences.
 * <p>Purpose: help in the choosing of the alignment algorithm:
 * SWaterman or NWunsch</p>
 * <p>Date: 2007/03/23</p>
 * @param s1 Sentence
 * @param s2 Sentence
 * @return int
 */
public static int countIntersectLinks(Sentence sa, Sentence sb) {
    if ( sa == null || sb == null || sa.length() < 1 || sb.length() < 1 ) return -1;
 
    int[] va= sa.getCodes();
    int[] vb= sb.getCodes();
 
    int[][] A= readLinks(va, vb);
    if ( A == null) {
        Text t= new Text();
        t.add(sa);
        t.add(sb);
        t.codify();
        va= t.get(0).getCodes();
        vb= t.get(1).getCodes();
        A= readLinks(va, vb);
    }
    if ( A == null )  return -101;
 
    int counter= 0;
    for (int i=0; i<A[0].length-1; i++) {
        for (int j = i+1; j < A[0].length; j++) {
            //compare ai =<x,a> with aj=<y,b>
            int x= A[0][i], y= A[0][j];
            int a= A[1][i], b= A[1][j];
            if ( (x-y)*(a-b) < 0 ) {
                counter++;
            }
        }
    }
    return counter;
}
 
 
 
}

Figure B.3: Count the relative number of crossings between two sentences. Method from the Sentence class and

related to the previous listing.
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Appendix C

Relevant Aleph Elements

This appendix contains several Aleph data elements, some illustrative and some employed in our

research, both referred in the thesis. The first listing contains the background knowledge file for the

good graph example, presented in Section 5.4, and directly related with Figure 5.5.

1 :- set(depth, 100).
2 :- set(clauselength,10).
3

4

5 :- modeh(1, goodgraph(+gname)).
6

7 :- modeb(1, numvertex(+gname, -int)).
8 :- modeb(1, numedges(+gname, -int)).
9 :- modeb(1, maxdegree(+gname, -int)).

10 :- modeb(*, diff(+int, +int, #int)).
11 :- modeb(*, odd(+int)).
12 :- modeb(*, even(+int)).
13 :- modeb(*, prime(+int)).
14

15

16 :- determination(goodgraph/1, numvertex/2).
17 :- determination(goodgraph/1, numedges/2).
18 :- determination(goodgraph/1, maxdegree/2).
19 :- determination(goodgraph/1, diff/3).
20 :- determination(goodgraph/1, odd/1).
21 :- determination(goodgraph/1, even/1).
22 :- determination(goodgraph/1, prime/1).
23

24

25 %--------------------------------------------
26 % TYPES
27 %--------------------------------------------
28 gname(a). gname(b). gname(c). gname(d).
29 gname(e). gname(f). gname(g). gname(h).
30 gname(i). gname(j). gname(k). gname(l).
31 %------------------------------------------------------
32 % ALL 12 GRAPHS
33 %------------------------------------------------------
34 % POSITIVES %
35 graph(a, [1-2, 2-3, 3-1]).
36 graph(c, [1-2, 1-3, 1-4, 1-5, 4-5, 5-3, 3-2]).
37 graph(e, [1-2, 1-7, 1-6, 1-5, 7-6, 4-5, 4-2, 2-3]).
38 graph(g, [1-2, 2-3, 1-5, 5-4]).
39 graph(i, [1-4, 1-5, 5-4, 4-2, 4-3, 2-3]).
40 graph(k, [1-2, 3-2, 1-9, 1-8, 1-6, 6-7, 1-5, 1-4]).
41

42 % NEGATIVES %
43 graph(b, [1-3, 1-4, 4-3, 3-2, 3-5, 5-6, 2-6]).
44 graph(d, [1-3, 3-2, 2-4, 4-1]).
45 graph(f, [1-5, 1-6, 1-2, 1-3, 4-5]).
46 graph(h, [1-2, 2-4, 4-3, 4-7, 4-5, 4-6, 5-8, 5-9]).
47 graph(j, [1-2, 1-3, 1-4, 3-5, 4-5]).
48 graph(l, [1-2, 2-3, 3-5, 4-1, 4-5, 4-6, 6-5, 6-7, 7-1]).
49 %------------------------------------------------------
50

51

52 %------------------------------------------------------
53 % ARITHEMETIC DEFINITIONS.
54 %------------------------------------------------------
55 odd(N) :- N mod 2 =:= 1.
56

57 even(N) :- N mod 2 =:= 0.
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58

59 diff(X,Y,YX) :- YX is Y-X.
60

61

62 %------------------------------------------------------
63 % LIST OF ALL DISTINCT VERTICES, FROM A GRAPH
64 %------------------------------------------------------
65 vertices(ID, LVert) :-
66 graph(ID, G),
67 vertices(G, [], LVert)
68 .
69

70 vertices([], LVert, LVert).
71 vertices([X-Y|R], V, LVert) :-
72 union([X,Y], V, VXY),
73 vertices(R, VXY, LVert)
74 .
75

76

77 %------------------------------------------------------
78 % NUMBER OF VERTEXES IN A GRAPH
79 %------------------------------------------------------
80 numvertex(ID, N) :-
81 vertices(ID, V),
82 length(V, N)
83 .
84

85

86 %------------------------------------------------------
87 % NUMBER OF EDGES IN A GRAPH
88 %------------------------------------------------------
89 numedges(ID, N) :-
90 graph(ID, G),
91 length(G, N)
92 .
93 %------------------------------------------------------
94 % MAXIMUM VERTEX DEGREE FOR A GIVEN GRAPH
95 %------------------------------------------------------
96 maxdegree(ID, Max) :-
97 graph(ID, G),
98 vertices(ID, V),
99 maxdegree(V, G, 0, Max)

100 .
101

102 maxdegree([], _, M, M).
103 maxdegree([A|R], G, M, Max) :-
104 degree(A, G, N),
105 (N > M ->
106 maxdegree(R, G, N, Max)
107 ;
108 maxdegree(R, G, M, Max)
109 )
110 .
111

112

113 %------------------------------------------------------
114 % DEGREE OF A VERTEX.
115 %------------------------------------------------------
116 degree(A, G, N) :- degree(A, G, 0, N), !.
117

118 degree(_, [], N, N).
119 degree(A, [X-Y|R], K, N) :-
120 (X == A ; Y == A),
121 K1 is K+1,
122 degree(A, R, K1, N)
123 .
124 degree(A, [_|R], K, N) :-
125 degree(A, R, K, N)
126 .
127

128

129 %------------------------------------------------------
130 % REUNION OF TWO LISTS.
131 %------------------------------------------------------
132 union([], Set, Set) :- !.
133 union([X|R], Set, USet) :-
134 orput(X, Set, SetX),
135 union(R, SetX, USet).
136

137

138 orput(X, [X|R], [X|R]) :- !.
139 orput(X, [Y|R], [Y|RX]) :-
140 X \== Y,
141 !,
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142 orput(X, R, RX)
143 .
144

145 orput(X, [], [X]).
146

147

148

149 %------------------------------------------------------
150 % TEST IF A GIVEN INTEGER IS PRIME.
151 %------------------------------------------------------
152 prime(1).
153 prime(2).
154 prime(N) :-
155 N > 2,
156 divisor(K,N,_),
157 K == 1
158 .
159

160

161 %------------------------------------------------------
162 % K DIVIDES N GIVING Q AS THE QUOTIENT: N = K*Q.
163 %------------------------------------------------------
164 divisor(K,N,Q) :-
165 N>0,
166 SN is sqrt(N),
167 divisor__(K, 2, N:SN, Q)
168 .
169

170 divisor__(1, Kx, N:SN, N) :-
171 Kx > SN,
172 !
173 .
174 divisor__(K, K, N:_, Q) :-
175 N mod K =:= 0,
176 Q is N//K,
177 !
178 .
179 divisor__(K, Kx, N:SN, Q ) :-
180 Kx < SN+1,
181 Kx1 is Kx+1,
182 divisor__(K, Kx1, N:SN, Q)
183 .

Listing C.1: The good graph background knowledge file.

The next listing contains the template file used to generate Aleph's background knowledge file for a

given set of examples (bubbles).

1 %
2 %-------------------------------------------------------------------------------
3 % AUTOMATICALLY GENERATED BY:... "$PROG_NAME"
4 % INPUT FILE:................... "$INPUT_FILE"
5 % MOMENT:....................... $MOMENT
6 %-------------------------------------------------------------------------------
7 %
8 %
9 % ALEPH PARAMETERS

10 :- set(evalfn,user).
11 :- set(minpos, 5).
12 :- set(verbosity, 0).
13

14

15 %-------------------------------------------------------------------------------
16 % MODE DECLARATIONS
17 %-------------------------------------------------------------------------------
18 :- modeh(1, rule(+bub)).
19

20 :- modeb(1, transfdim(+bub, n(#nat,#nat))).
21 :- modeb(3, chunk(+bub, #side, #chk)).
22 :- modeb(*, inx(+bub, #side, #k, #tword)).
23

24 :- determination(rule/1, transfdim/2).
25 :- determination(rule/1, chunk/3).
26 :- determination(rule/1, inx/4).
27

28

29 %-------------------------------------------------------------------------------
30 % YAP FILE
31 %-------------------------------------------------------------------------------
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32 $YAP_FILE
33

34

35 %-------------------------------------------------------------------------------
36 % DATA FILE
37 %-------------------------------------------------------------------------------
38 numero_instancias($DATA_SIZE).
39

40 $DATA_FILE
41

42

43 %-------------------------------------------------------------------------------
44 % COSTS | CONSTRAINTS | REFINEMENT
45 %-------------------------------------------------------------------------------
46

47 cost(_, [P,_,L], Cost) :-
48 value_num_literals(L, ValueL),
49 Cost is P/$DATA_SIZE * ValueL
50 .
51

52 value_num_literals(1, 0.10). % |
53 value_num_literals(2, 0.25). % 1.0 - _
54 value_num_literals(3, 0.50). % | _ _
55 value_num_literals(4, 1.00). % | _ _ _ .
56 value_num_literals(5, 0.60). % | _ _ _ _ _ .
57 value_num_literals(6, 0.40). % | _ _ _ _ _ _ _
58 value_num_literals(7, 0.20). % ----------------------------------------------->
59 value_num_literals(_, 0.00). % 1 2 3 4 5 6 7
60

61

62 false :-
63 hypothesis(rule(_), true, _)
64 .
65

66 false :-
67 hypothesis(rule(_), Body, _),
68 num_literais(Body, N),
69 N < 2
70 .
71

72

73 num_literais(Body, N) :- num_literais(Body, 0, N).
74

75 num_literais((_,Resto), K, N) :-
76 K1 is K+1,
77 num_literais(Resto, K1, N),
78 !
79 .
80

81 num_literais(_, K, N) :-
82 N is K+1
83 .
84

85

86 /**/
87 false :-
88 hypothesis(rule(_), Body, _),
89 contar_restr_zonas(Body, NL, NX, NY, NR),
90 nao_valido(NL, NX, NY, NR)
91 .
92 /**/
93 /**/
94 nao_valido( 0, 0, 0, 0). %----> nenhuma zona restrita.
95 nao_valido( _, 0, _, _). %----> só contextos laterais definidos.
96 nao_valido( 0, _, _, _). %----> left sem restrições.
97 nao_valido( _, _, _, 0). %----> right sem restrições.
98 /**/
99

100

101 contar_restr_zonas(Body, NL, NX, NY, NR) :-
102 contar_restr_zonas__(Body, 0:NL, 0:NX, 0:NY, 0:NR)
103 .
104

105 contar_restr_zonas__((G,GR), KL:NL, KX:NX, KY:NY, KR:NR) :-
106 arg(2, G, Zona),
107 incrementa_zona(Zona, KL:KL1, KX:KX1, KY:KY1, KR:KR1),
108 contar_restr_zonas__(GR, KL1:NL, KX1:NX, KY1:NY, KR1:NR),
109 !
110 .
111 contar_restr_zonas__(G, KL:NL, KX:NX, KY:NY, KR:NR) :-
112 arg(2, G, Zona),
113 incrementa_zona(Zona, KL:NL, KX:NX, KY:NY, KR:NR)
114 .
115
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116

117 incrementa_zona(left, KL:KL1, KX:KX, KY:KY, KR:KR ) :- KL1 is KL+1, !.
118 incrementa_zona(center:x, KL:KL, KX:KX1, KY:KY, KR:KR ) :- KX1 is KX+1, !.
119 incrementa_zona(center:y, KL:KL, KX:KX, KY:KY1, KR:KR ) :- KY1 is KY+1, !.
120 incrementa_zona(right, KL:KL, KX:KX, KY:KY, KR:KR1) :- KR1 is KR+1, !.
121 incrementa_zona( _, KL:KL, KX:KX, KY:KY, KR:KR).
122

123

124 false :-
125 hypothesis(rule(_), Body, _),
126 contem(chunk(_,center:x,vp), Body)
127 .

Listing C.2: Our template for background knowledge generation - file "bub-b.lgt"

This template file from Listing C.2 is used by a Java program to generate the final background knowl-

edge file for Aleph. Therefore some Prolog extraneous elements are contained in it, specially meta-

variables which start with the "$" character. These are meant to be replaced by concrete elements,

during a given background knowledge file generation. For example: $PROG_NAME, $INPUT_FILE, and

$MOMENT, in lines 3, 4, and 5. The $DATA_FILE meta-variable will be replaced by a Prolog directive to

load the file containing the set of training examples - the codified bubbles. Similarly the $YAP_FILE

will include a file containing common Prolog utilities, employed in the "*.b" file being generated,

and presented in Listing C.3.

1 %-------------------------------------------------------------------------------
2 % IMPORTS & AUXILIAR DEFINITIONS.
3 %-------------------------------------------------------------------------------
4 import(File) :-
5 atom_concat('/lib/prolog/', File, PathFile),
6 reconsult(PathFile)
7 .
8

9

10 :- import('utils.lgt').
11

12 bub(X) :- entre(X, 0, $DATA_SIZE).
13

14

15 :- import('penpostags.lgt').
16

17 tag(X) :- penpost(_, X, _).
18

19

20 %-------------------------------------------------------------------------------
21 % TYPE DEFINITIONS
22 %-------------------------------------------------------------------------------
23 side(left).
24 side(right).
25 side(center:x).
26 side(center:y).
27

28

29 k(1). k(2). k(3).
30

31 chk(np). chk(undefined). chk(np). chk(vp).
32 chk(pp). chk(prt). chk(advp). chk(multi).
33

34

35 nat(X) :- entre(X,0,20).
36

37

38 %-------------------------------------------------------------------------------
39 % DOMAIN KNOWLEDGE
40 %-------------------------------------------------------------------------------
41 :- op(250, xfx, --->).
42

43 % DIMENSIONS
44 dimension(ID, left, Ln) :- bub(ID, t(_,0), L, _--->_, _), length(L, Ln).
45 dimension(ID, right, Rn) :- bub(ID, t(_,0), _, _--->_, R), length(R, Rn).
46 dimension(ID, center:x, Xn) :- bub(ID, t(_,0), _, X--->_, _), length(X, Xn).
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47 dimension(ID, center:y, Yn) :- bub(ID, t(_,0), _, _--->Y, _), length(Y, Yn).
48

49 dimLeft(ID, Ln) :- dimension(ID, left, Ln).
50 dimRight(ID, Rn) :- dimension(ID, right, Rn).
51

52

53 %-------------------------------------------------------------------------------
54 % Definitions of a dimensional transformation
55 %-------------------------------------------------------------------------------
56 transfdim(ID, n(Xn,Yn)) :-
57 dimension(ID, center:x, Xn),
58 dimension(ID, center:y, Yn)
59 .
60

61

62 %-------------------------------------------------------------------------------
63 % In lexicon-syntactic context
64 %-------------------------------------------------------------------------------
65 inx(ID, Side, K, TWord) :-
66 side(Side),
67 context(ID, Side, Context),
68 k(K),
69 inKpos(Context, K, TWord)
70 .
71

72 inKpos(Context, K, Word) :- inKLEX(Word, K, Context).
73 inKpos(Context, K, pos(Tag)) :- inKPOS(Tag, K, Context).
74

75 context(ID, left, L) :- bub(ID, t(_,0), L, _--->_, _).
76 context(ID, right, R) :- bub(ID, t(_,0), _, _--->_, R).
77 context(ID, center:x, X) :- bub(ID, t(_,0), _, X--->_, _).
78 %context(center:y, Y) :- bub(ID, _, _--->Y, _).
79

80

81 %-------------------------------------------------------------------------------
82 % Lexical scan
83 %-------------------------------------------------------------------------------
84 inLEX(ID, center:x, Word) :- bub(ID, t(_,0), _, X--->_, _), inLEX(Word, X).
85 inLEX(ID, left, Word) :- bub(ID, t(_,0), Context, _, _), inLEX(Word, Context).
86 inLEX(ID, right, Word) :- bub(ID, t(_,0), _, _, Context), inLEX(Word, Context).
87 inLEX(ID, center:y, Word) :- bub(ID, t(_,0), _, _--->Y, _), inLEX(Word, Y).
88

89 inLEX(Word, [Word/_/_|_]).
90 inLEX(Word, [_|Tail]) :- inLEX(Word, Tail).
91

92

93 %-------------------------------------------------------------------------------
94 % Positional lexical scan
95 %-------------------------------------------------------------------------------
96 inKLEX(ID, left, K, Word) :-
97 bub(ID, t(_,0), Context, _, _),
98 k(K),
99 inKLEX(Word, K, Context)

100 .
101 inKLEX(ID, right, K, Word) :-
102 bub(ID, t(_,0), _, _, Context),
103 k(K),
104 inKLEX(Word, K, Context)
105 .
106

107 inKLEX(ID, center:x, K, Word) :-
108 bub(ID, t(_,0), _, CX--->_, _),
109 k(K),
110 inKLEX(Word, K, CX)
111 .
112

113 inKLEX(ID, center:y, K, Word) :-
114 bub(ID, t(_,0), _, _--->CY, CY),
115 k(K),
116 inKLEX(Word, K, CY)
117 .
118

119 inKLEX(LEX, 1, [LEX/_/_|_]).
120 inKLEX(LEX, K, [_|Tail]) :-
121 K > 1,
122 K1 is K-1,
123 inKLEX(LEX, K1, Tail)
124 .
125

126

127 %-------------------------------------------------------------------------------
128 % Syntactical scan
129 %-------------------------------------------------------------------------------
130 inPOS(ID, center:x, Tag) :- bub(ID, t(_,0), _, X--->_, _), inPOS(Tag, X).
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131 inPOS(ID, left, Tag) :- bub(ID, t(_,0), Context, _, _), inPOS(Tag, Context).
132 inPOS(ID, right, Tag) :- bub(ID, t(_,0), _, _, Context), inPOS(Tag, Context).
133 inPOS(ID, center:y, Tag) :- bub(ID, t(_,0), _, _--->Y, _), inPOS(Tag, Y).
134

135 inPOS(POS, [_/POS/_|_]).
136 inPOS(POS, [_|Tail]) :- inPOS(POS, Tail).
137

138

139 %-------------------------------------------------------------------------------
140 % Positional syntactical scan
141 %-------------------------------------------------------------------------------
142 inKPOS(ID, left, K, Tag) :-
143 bub(ID, t(_,0), Context, _, _),
144 k(K),
145 inKPOS(Tag, K, Context)
146 .
147 inKPOS(ID, right, K, Tag) :-
148 bub(ID, t(_,0), _, _, Context),
149 k(K),
150 inKPOS(Tag, K, Context)
151 .
152

153 inKPOS(ID, center:x, K, Tag) :-
154 bub(ID, t(_,0), _, CX--->_, _),
155 k(K),
156 inKPOS(Tag, K, CX)
157 .
158

159 inKPOS(ID, center:y, K, Tag) :-
160 bub(ID, t(_,0), _, _--->CY, CY),
161 k(K),
162 inKPOS(Tag, K, CY)
163 .
164

165 inKPOS(POS, 1, [_/POS/_|_]).
166 inKPOS(POS, K, [_|Tail]) :-
167 K > 1,
168 K1 is K-1,
169 inKPOS(POS, K1, Tail)
170 .
171

172

173 %-------------------------------------------------------------------------------
174 % Chunking scan
175 %-------------------------------------------------------------------------------
176 chunk(ID, left, TAG) :-
177 bub(ID, t(_,0), Left, _, _),
178 inKCHK(TAG, 1, Left)
179 .
180

181 chunk(ID, right, TAG) :-
182 bub(ID, t(_,0), _, _, Right),
183 inKCHK(TAG, 1, Right)
184 .
185

186 chunk(ID, center:x, TAG) :-
187 bub(ID, t(_,0), _, CX--->[], _),
188 struct_chunk(CX, TAG)
189 .
190

191

192 %-------------------------------------------------------------------------------
193 % Positional chunking scan
194 %-------------------------------------------------------------------------------
195 inKCHK(TAG, 1, [_/_/TAG|_]).
196 inKCHK(TAG, K, [_|Tail]) :-
197 K>1,
198 K1 is K-1,
199 inKCHK(TAG, K1, Tail)
200 .
201

202

203 %-------------------------------------------------------------------------------
204 % Structural chunks in a sequence.
205 %-------------------------------------------------------------------------------
206 struct_chunk([_/_/CHK|Tail], Tag) :- struct_chunk(Tail, CHK, Tag).
207

208 struct_chunk([], CHK, CHK) :- !.
209 struct_chunk([_/_/CHK|Tail], CHK, Tag) :- struct_chunk(Tail, CHK, Tag), !.
210 struct_chunk([_/_/_|_], _, multi).

Listing C.3: File with common Prolog utilities to be included in any generated background knowledge file.
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The "utils.lgt" file, imported in the previous listing's line 10, is another Prolog file with more general

utilities and it can be seen next, in our last listing.

1 % ------------------------------------------------------------------------------
2 % General Utilities
3 %
4 % JPC, since May 2005
5 % ------------------------------------------------------------------------------
6

7

8 % ------------------------------------------------------------------------------
9 % Write a line with N characters indicated in CH.

10 % ------------------------------------------------------------------------------
11 linha(N, CH) :-
12 linha(user_output, N, CH)
13 .
14

15

16 linha(Stream, N, CH) :-
17 N > 0,
18 linha_(N, CH, Lista:[]),
19 atom_concat(Lista,Linha),
20 write(Stream, Linha)
21 .
22

23

24 linha_(0, _, L:L).
25 linha_(N, C, L:LAcc) :-
26 N > 0,
27 N1 is N-1,
28 linha_(N1, C, L:[C|LAcc])
29 .
30

31

32 % ------------------------------------------------------------------------------
33 % Defines the membership of a literal, in a list of literals:
34 % example:
35 % ?- contem(p(X), (q(t), p(a), s(u))).
36 % ?- X = a
37 % ------------------------------------------------------------------------------
38 contem(Literal, (Literal,_)) :- !.
39 contem(Literal, ( _, Resto)) :- contem(Literal, Resto), !.
40 contem(Literal, Literal).
41

42

43 % ------------------------------------------------------------------------------
44 % Operating system utilities.
45 % ------------------------------------------------------------------------------
46 :- op(100, fx, $).
47 $(Command) :- system(Command).
48

49 :- op(95, fx, say).
50 say(Message) :-
51 atom_concat('say ', Message, Command),
52 $(Command)
53 .
54

55

56 % ------------------------------------------------------------------------------
57 % Left padding - example:
58 % ?- lpad(75, 0, 5, A).
59 % A = '00075'
60 %
61 % ?- lpada(ubi, '|', 5, A).
62 % A = '||ubi'
63 % ------------------------------------------------------------------------------
64 lpad(Atom, CH, M, CHMAtom) :-
65 ( number(Atom) ->
66 number_chars(Atom, AC)
67 ;
68 atom_chars(Atom, AC)
69 ),
70 length(AC, N),
71 ( N >= M ->
72 CHMAtom = Atom
73 ;
74 DMN is M-N,
75 list_expand(CH, DMN, List),
76 atomic_concat(List, CHM),
77 atomic_concat([CHM, Atom], CHMAtom)
78 )
79 .
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80

81

82 list_expand(_, 0, []).
83 list_expand(X, N, [X|Tail]) :-
84 N > 0,
85 N1 is N-1,
86 list_expand(X, N1, Tail)
87 .
88

89

90 % ------------------------------------------------------------------------------
91 % Reverse a list of elements.
92 % ------------------------------------------------------------------------------
93 reverse(List, RList) :- reverse(List, [], RList).
94

95 reverse([], LACC, LACC).
96 reverse([X|R], LACC, RList) :- reverse(R, [X|LACC], RList).
97

98

99 % ------------------------------------------------------------------------------
100 % Outputs all list elements. The second argument is the separator, which is
101 % meant to be written between any two list elements.
102 % ------------------------------------------------------------------------------
103 output([], nl) :- nl, !.
104 output([], _) :- !.
105 output([X|R], nl) :-
106 write(X), nl,
107 output(R, nl),
108 !
109 .
110 output([X|R], Separator) :-
111 write(X), (Separator \== void -> write(Separator) ; true),
112 output(R, Separator)
113 .
114

115 output(Lista) :- output(Lista, void).
116

117

118 % ------------------------------------------------------------------------------
119 % Test if X is a number satisfying A =< X =<B. If X is a variable and A, and B
120 % are numbers in entre/2, then X will be instantiated with each element between
121 % A, and B, in H steps, i.e: X = A, A+H, A+2H, ..., until A+nH > B
122 % ------------------------------------------------------------------------------
123 entre(X,A,B) :- entre(X,[A,B]:1).
124

125 entre(X,[A,B]) :- entre(X,[A,B]:1).
126

127 entre(X,[A,B]:_) :- number(X), !, A=<X, X=<B.
128 entre(A,[A,B]:_) :- A=<B.
129 entre(X,[A,B]:H) :-
130 AH is A+H,
131 AH =< B,
132 entre(X,[AH,B]:H).
133

134

135 % ------------------------------------------------------------------------------
136 % Instantiates a list of variables with numbers ranging in the [A,B] interval,
137 % with H increments.
138 % ------------------------------------------------------------------------------
139 instanciar([],_).
140 instanciar([X|R], [A,B]:H) :- entre(X,[A,B]:H), instanciar(R, [A,B]:H).
141

142

143 % ------------------------------------------------------------------------------
144 % Membership test
145 % ------------------------------------------------------------------------------
146 member(X, [X|_]).
147 member(X, [_|R]) :- member(X, R).

Listing C.4: The "utils.lgt" file with general Prolog utilities, used and inported in the file from listing C.3.
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Appendix D

System Execution Example

Previously, on Section 6.2, we have already presented the key issues related to the execution of each

one of our system modules. This appendix is a kind of complement for that section, where not only

the complete set of execution procedures are shown but also their necessary pre-configurations to

make it possible, like for example the operating system settings and third part necessary modules.

Therefore we will focus on a concrete example, comprehending a set of web news stories collected

during 15 days. All the necessary files, for settling this execution example in a machine, may be

downloaded from the following address:

http://www.di.ubi.pt/∼jpaulo/competence/ [November 2010]

These 15 days of news stories corresponds to 15 files, one per day, obtained by running our news

extractor program "GoogleNewsSpider.java" in a POSIX machine. A small Bash script launched

daily by the Unix cron tool, start the news extractor, as shown in Listing D.1.

1 #!/bin/bash
2 #
3 # JPC, SEP 2008
4 #
5 FILE=$(date "+n%Y%m%d-%0Hh.xml")
6 CP='/home/jpaulo/bin/HultigJPCLib.jar:/home/jpaulo/bin/GNewsSpider.jar'
7 java -cp $CP GoogleNewsSpider > /dev/null

Listing D.1: Google News Spider, launched by a shell script.

Note that the generated file name will be relative to the moment of creation, including year, month,

day and hour, as specified in line five of listing D.1.

The subsequent programs for paraphrase extraction, alignment and bubble selection is also per-

formed by using a shell script, as shown in listing D.2.

1 #!/bin/bash
2

3 # GENERATE A CORPUS OF ALIGNED PARAPHRASES, AUTOMATICALY EXTRACTED FROM
4 # A FOLDER WITH WEB NEWS STORIES FILES.
5 java -Xms32m -Xmx1024m GenAlignParaphCorpus -dir "./fnews" -out pac.xml
6
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7 # FROM A CORPUS OF ALIGNED PARAPHRASES, EXTRACTS A LIST OF BUBBLES, WHICH
8 # IS SAVED IN A BYNARY FILE.
9 java -Xms32m -Xmx1024m ExtractBubbles -inp pac.xml -fdata lbub.dat mute

10

11 # GENERATE ALEPH DATASET, FROM BINARY "ListXBubble" FILES, IN THE
12 # CURRENT DIRECTORY, TAKING INTO ACCOUNT THE DEFINED ALEPH TEMPLATE
13 # FILES bub-b.lgt and bub-yap.lgt, STORED IN THE /lib/prolog FOLDER.
14 java hultig.sumo.ListXBubble -aleph dir

Listing D.2: A script launching various system modules.

The commented lines1 in this script describe briefly each corresponding command. The input folder

for the first program (line 5) is naturally the "fnews" folder, contained in the current execution

folder. Here the output file is "pac.xml", which is used as the input for the second program execution

concerning bubble selection (line 9). This execution produces the lbub.dat binary file which in turn

is used as input in the third execution command (line 14). In this "ListXBubble" execution the "dir"

parameter specifies that the current folder will be searched for input files, since more than one

bubble binary file, coming from different origins, can be loaded. In such cases repeated learning

instances are removed from the final list.

As a result of executing the script from Listing D.2, in a folder containing only the "fnews" data folder,

six files are generated, where besides "pac.xml" and "lbub.dat" already mentioned, we also obtain

"lxbub.b", "lxbub.f", "lxbub.lgt", and "lxbub.yap", which are the Prolog and Aleph files that will

be used in the induction process. To start the induction process an ISO Prolog interpreter must be

installed2 and also the Aleph system (Srinivasan, 2000), which in essence is also a program written in

Prolog. After having these elements installed, one should first start the Prolog interpreter and the

Aleph system. Then it is possible to load the learning data files for Aleph and start induction.

1 [john@jpcmacbook#0 2010-07-30 23:00:05] /a/news@google/test14days (85.197 Mb)
2 $ ls
3 fnews lxbub.b lxbub.lgt pac.xml
4 lbub.dat lxbub.f lxbub.yap rset20100723233854.txt
5

6 [john@jpcmacbook#0 2010-07-30 23:00:11] /a/news@google/test14days (85.197 Mb)
7 $ yap
8 % Restoring file /usr/local/lib/Yap/startup
9 YAP version Yap-5.1.2

10 ?- ['~/bin/aleph.yap'].
11 % consulting /Users/john/bin/aleph.yap...
12

13

14 A L E P H
15 Version 5
16 Last modified: Sun Jun 4 10:51:31 UTC 2006
17

18 Manual: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/Aleph/index.html
19

20 % consulted /Users/john/bin/aleph.yap in module user, 99 msec 1126832 bytes
21 yes
22 ?- read_all(lxbub).
23 % reconsulting /a/news@google/test14days/lxbub.b...

1Those starting with the "#" character.
2Preferably the "Yap Prolog" (Santos Costa et al., 2002), for efficiency reasons.
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24 % reconsulting /a/news@google/test14days/lxbub.yap...
25 % reconsulting /lib/prolog/utils.lgt...
26 % reconsulted /lib/prolog/utils.lgt in module user, 2 msec 10176 bytes
27 % reconsulting /lib/prolog/penpostags.lgt...
28 % reconsulted /lib/prolog/penpostags.lgt in module user, 0 msec 4400 bytes
29 % reconsulted /a/news@google/test14days/lxbub.yap in module user, 5 msec 35136 bytes
30 % reconsulting /a/news@google/test14days/lxbub.lgt...
31 % reconsulted /a/news@google/test14days/lxbub.lgt in module user, 2862 msec 27844696 bytes
32 % reconsulting /usr/local/share/Yap/system.yap...
33 % reconsulting /usr/local/share/Yap/lists.yap...
34 % reconsulted /usr/local/share/Yap/lists.yap in module lists, 3 msec 22768 bytes
35 % reconsulted /usr/local/share/Yap/system.yap in module system, 9 msec 82792 bytes
36

37

38 DATA SET SIZE: 39323
39 % reconsulted /a/news@google/test14days/lxbub.b in module user, 2877 msec 27981472 bytes
40 [consulting pos examples] [lxbub.f]
41 [cannot open] [lxbub.n]
42 yes
43 ?- induce.
44 ...
45 ...

Listing D.3: Starting Aleph and loading the learning datasets.

In Listing D.3 we can see the command line interaction taken to start Aleph, loading its learning data

files and starting induction. Line one shows the bash prompt, indicating, among other things, the

current directory location. First we list the directory's content, through "ls" command and then start

the YAP interpreter (line 7). Afterwards Aleph is started (line 10) and all learning data files are loaded

through the Aleph's "read_all/1" predicate (line 22). Among the loaded data files, we can also find

several specific Prolog files, some from YAP, and some from our Prolog library "/lib/prolog". Namely

we are loading "utils.lgt" and "penpostags.lgt" files, which contains a set of auxiliary predicates

used in the Aleph learning data files. After loading the data we can finally initiate the induction

process by evoking the Aleph's "induce/0" predicate (line 43).

In this particular case with 15 days of news data, from where 39323 learning instances were ex-

tracted, the induction process took approximately 97 minutes and generated 6673 reduction rules.

The machine used was a MacBook with a 2 GHz Intel Core 2 Duo CPU, having 4 GB of RAM. The final

lines of this induction execution are shown in Listing D.4.

1 ...
2 ...
3 [Rule 6978] [Pos cover = 165 Neg cover = 0]
4 rule(A) :-
5 chunk(A,left,np), chunk(A,right,vp), inx(A,center:x,1,pos(cc)).
6

7 [Rule 6979] [Pos cover = 35 Neg cover = 0]
8 rule(A) :-
9 chunk(A,right,np), inx(A,left,3,pos(nn)), inx(A,center:x,1,pos(cc)).

10

11 [Rule 6982] [Pos cover = 24 Neg cover = 0]
12 rule(A) :-
13 [Rule 6984] [Pos cover = 25 Neg cover = 0]
14 rule(A) :-
15 chunk(A,right,np), inx(A,left,1,x), inx(A,center:x,1,and).
16

17 [Training set performance]
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18 Actual
19 + -
20 + 39001 0 39001
21 Pred
22 - 322 0 322
23

24 39323 0 39323
25

26 Accuracy = 0.991811408081784
27 [Training set summary] [[39001,0,322,0]]
28 [time taken] [5192.898]
29 [total clauses constructed] [2949018]

Listing D.4: Final lines from the 15 days data induction process.
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Appendix E

The Penn Treebank Tag Set

We include here the Penn Treebank Tag set (Marcus et al., 1993) that we have used in our work for

part-of-speech tagging. All the 48 tags are briefly described in the following tables:

Table E.1: The Penn Treebank Tag Set (1-36).

1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative

10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NP Proper noun, singular
15. NPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PP Personal pronoun
19. PP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb
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Table E.2: The Penn Treebank Tag Set (37-48: punctuation marks).

37. # Pound sign
38. $ Dollar sign
39. . Sentence-final punctuation
40. , Comma
41. : Colon, semi-colon
42. ( Left bracket character
43. ) Right bracket character
44. " Straight double quote
45. ` Left open single quote
46. `` Left open double quote
47. ' Right close single quote
48. '' Right close double quote
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