Abstract
One of the key problems in upgrading information services towards knowledge services is to automatically mine latent topics, users’ interests and their evolution patterns from large-scale S&T literatures. Most of current methods are devoted to either discover static latent topics and users’ interests, or to analyze topic evolution only from intra-features of documents, namely text content without considering directly extra-features of documents such as authors. To overcome this problem, a dynamic users’ interest model for documents using authors and topics with timestamps is proposed, named as Author-Topic over Time (AToT) model, and collapsed Gibbs sampling method is utilized for inferring model parameters. This model is not only able to discover latent topics and users’ interests, but also to mine their changing patterns over time. Finally, the extensive experimental results on NIPS dataset with 1,740 papers indicate that our AToT model is feasible and efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: WWW 2006, pp. 727–736. ACM, New York (2006)
Kim, J., Jeong, D.H., Lee, D., Jung, H.: User-centered innovative technology analysis and prediction application in mobile environment. Multimed. Tools Appl. (2013)
Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., Steyvers, M.: Learning author-topic models from text corpora. ACM T. Inform. Syst. 28(1), 1–38 (2010)
McCallum, A., Wang, X., Corrada-Emmanuel, A.: Topic and role discovery in socail networks with experiments on enron and academic email. J. Artif. Intell. Res. 30(1), 249–272 (2007)
Mimno, D., McCallum, A.: Expertise modeling for matching papers with reviewers. In: KDD 2007, pp. 500–509. ACM, New York (2007)
Kawamae, N.: Author interest topic model. In: SIGIR 2010, pp. 887–888. ACM, New York (2010)
Kawamae, N.: Latent interest-topic model: Finding the causal relationships behind dyadic data. In: CIKM 2010, pp. 649–658. ACM, New York (2010)
Tang, J., Zhang, J., Jin, R., Yang, Z., Cai, K., Zhang, L., Su, Z.: Topic level expertise search over heterogeneous networks. Mach. Learn. 82(2), 211–237 (2011)
Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic author-topic models for information discovery. In: KDD 2004, pp. 306–315. ACM, New York (2004)
Wang, X., Mohanty, N., McCallum, A.: Group and topic discovery from relations and their attributes. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) NIPS18, pp. 1449–1456. MIT Press, Cambridge (2006)
Wang, X., McCallum, A.: Topics over time: A non-Markov continuous-time model of topical trends. In: KDD 2006, pp. 424–433. ACM, New York (2006)
Xu, S., Zhu, L., Qiao, X., Shi, Q., Gui, J.: Topic linkages between papers and patents. In: AST 2012. SERSC, pp. 176–183. Daejeon, South Korea (2012)
Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML 2006, pp. 113–120. ACM, New York (2006)
Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. In: UAI 2008, pp. 579–586 (2008)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. USA 101(suppl. 1), 5228–5235 (2004)
Owen, C.B.: Parameter estimation for the Beta distribution. Master’s thesis, Brigham Young University (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, S. et al. (2014). Author-Topic over Time (AToT): A Dynamic Users’ Interest Model. In: Park, J., Adeli, H., Park, N., Woungang, I. (eds) Mobile, Ubiquitous, and Intelligent Computing. Lecture Notes in Electrical Engineering, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40675-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-40675-1_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40674-4
Online ISBN: 978-3-642-40675-1
eBook Packages: EngineeringEngineering (R0)