Versatile XQuery Processing in MapReduce

Caetano Sauer, Sebastian Béchle, and Theo Héarder

University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany
{csauer,baechle,haerder}@cs.uni-kl.de

Abstract. The MapReduce (MR) framework has become a standard
tool for performing large batch computations—usually of aggregative
nature—in parallel over a cluster of commodity machines. A signifi-
cant share of typical MR jobs involves standard database-style queries,
where it becomes cumbersome to specify map and reduce functions from
scratch. To overcome this burden, higher-level languages such as HiveQL,
Piglatin, and JAQL have been proposed to allow the automatic gener-
ation of MR jobs from declarative queries. We identify two major prob-
lems of these existing solutions: (i) they introduce new query languages
and implement systems from scratch for the sole purpose of express-
ing MR jobs; and (ii) despite solving some of the major limitations of
SQL, they still lack the flexibility required by big data applications. We
propose BrackitMR, an approach based on the XQuery language with
extended JSON support. XQuery not only is an established query lan-
guage, but also has a more expressive data model and more powerful
language constructs, enabling a much greater degree of flexibility. From
a system design perspective, we extend an existing single-node query
processor, Brackit, adding MR as a distributed coordination layer. Such
heavy reuse of the standard query processor not only provides perfor-
mance, but also allows for a more elegant design which transparently
integrates MR processing into a generic query engine.

1 Introduction

MapReduce [4] arose as a key technology in the context of big data, a term whose
definition depends not only on the subjective interpretation of “big”, but also on
the problem context. Most big-data technologies consist of systems which are
designed from scratch to fulfill technical requirements imposed by the large size
of the data, which in a particular point in time are not fulfilled by prevalent
technologies. In the case of MR, the related prevalent technology to which it is
usually compared consists of parallel database systems for analytics and data
warehousing. In contrast to such systems, MR hits an “abstraction sweet spot”,
because it only abstracts the distribution and fault tolerance aspects of the
execution, leaving data formats and operations performed on individual items
under complete responsibility of the developer. Furthermore, MR is concerned
solely with the execution of tasks and not the management of stored data—
a key difference to database systems, which exclusively control all read and

B. Catania, G. Guerrini, and J. Pokorny (Eds.): ADBIS 2013, LNCS 8133, pp. 204 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Versatile XQuery Processing in MapReduce 205

write operations on the data. Because it is only focused on task execution, a
large portion of the query processing logic present in a DBMS must in fact be
implemented from scratch by the programmer.

A significant share of typical MR jobs consists of a composition of traditional
database query operations such as filtering, grouping, sorting, aggregating, and
joining. Therefore, it makes sense to push the abstraction further and introduce
query languages that allow expressing such tasks in a declarative manner. A great
advantage of this approach is that it allows the reuse of existing data processing
operators as well as query rewrite and optimization logic.

It is clear that database systems and SQL can be used for that end, but
the requirements of big data applications make them prohibitive for two main
reasons: First, large-scale data warehouse systems are complex, expensive, and
hard to customize towards specific end-user needs, especially for applications
outside the traditional business domain. Second, and perhaps most critical, they
make use of SQL, which enforces a flat, normalized representation of data. This
restriction is significant for application domains like scientific computing and
the Web 2.0. What is even worse for such scenarios, which often involve ad-hoc
analysis procedures, is that the exact schema must be specified upfront, which
contributes further to the inflexibility and high setup costs of such systems.

1.1 Related Work

One of the earliest proposals for a query language for MapReduce was from Hive
[11], a data warchouse system with an SQL-like interface. Its evaluation engine
represents the basic mechanism for converting a computational model based on
query operators into that of MR. However, being designed to resemble traditional
relational systems, it suffers from all the major limitations of SQL and the rela-
tional model. Its main focus is to provide a relational data warehouse as similar
as possible to existing systems, but relying on MR for the execution layer. Pig
[7] introduces a dataflow-oriented language, which aims to be easier to use than
SQL for users accustomed with imperative programming. It allows computations
to be described using variables which hold references to collections of data items.
Operations are then applied to these variables and stored on a new variable. By
collecting data dependencies of such variables, a directed acyclic graph (DAG)
of operators is built, which serves essentially the same purpose as a query plan.
JAQL [3] came up as a more advanced approach, relying heavily on functional-
programming features such as higher-order functions. JAQL offers a very elegant
solution from the language perspective, it provides a flexible JSON-based data
model with support for partial schema specifications. The performance of the
three related systems was measured in [I0].

The work in [9] provides more detailed qualitative analysis of the four query
languages, presenting basic language requirements for flexible query processing
in the big data domain. As the authors observe, HiveQL and PigLatin do not
fully overcome the deficiencies of SQL, and although no query language leads in
all criteria, JAQL and XQuery clearly provide a higher degree of flexibility.

206 C. Sauer, S. Béchle, and T. Hérder

1.2 Contribution

We present BrackitMR, an XQuery processor extended with MR, capabilities.
XQuery is a wide-spread, generic data-processing language which can be used
in a vast range of applications, from traditional DBMS processing to document
management, data integration, and message processing. It supports the process-
ing of untyped data, allowing schema information to be added at later stages,
as well as partial schema definitions, which enable gradual schema refinement.
Furthermore, it provides a hierarchical data model with support for path-based
queries, allowing efficient storage and processing of denormalized data. Our pro-
totype extends the XQuery data model with JSON, thereby providing concise
representation and efficient processing not only for XML, but also for relational
datasets. The main advantage of our approach is that it provides a more flexi-
ble data model while still reaching the same performance as the state-of-the art
approaches for strictly relational data.

BrackitMR is also a flexible tool for large-scale query processing, because it
builds upon an existing single-core query processor, Brackit, adding MR as a
distributed coordination layer. This means that all available query rewrite and
optimization techniques are simply reused, which is a big advantage, because
virtually all “sequential” optimizations also hold on the distributed setting (e.g.,
push selective operations to the beginning, exploit existing sort orders, etc.).
Furthermore, the execution of query fragments within nodes of a cluster is carried
out entirely by the Brackit engine. This approach transparently integrates MR
into an existing data-processing environment, giving the flexibility to choose
which parts of a computation are shipped to MR and which are executed locally,
in the standard query engine.

A further advantage of Brackit is that it provides an extensible framework
for specifying storage modules. The query processing logic is decoupled from
specific storage implementations, and a well-defined interface is offered for com-
munication between these two components. This interface allows storage-specific
optimizations such as index scans and predicate push-down to be implemented
and integrated transparently in the optimizer.

The flexibility provided by BrackitMR, both at the query language and system
architecture levels, also contributes for filling the gap between MapReduce and
database systems, moving towards a unified solution which embraces the best
from both worlds.

The remainder of this paper is organized as follows. Section 2] introduces our
extended version of the XQuery data model and describes our generic collection
framework, which enables the integration of various kinds of data sources into a
single query processing environment. Section [l describes the process of mapping
an XQuery plan into the MR programming model. Section [l provides an experi-
mental performance evaluation of BrackitMR. We demonstrate that BrackitMR
is as fast as the competing approaches when it comes to relational processing.
Finally, Section [concludes this paper.

Versatile XQuery Processing in MapReduce 207

2 Data Model

2.1 Motivation

One of the major complaints of users against XQuery is that its XML-based
data model, albeit optimal for document-centric scenarios, is too cumbersome
for data-centric applications. The flexibility of the XML format for representing
data, and of XQuery for processing it, comes with a heavy impact on query con-
ciseness and evaluation performance in scenarios where data is purely or partially
relational. Such limitations contributed to the adoption of JSON as a format for
representing simple collections of objects, trimming away the complexities of
document-centric XML. JSON was quickly adopted in Web 2.0 applications,
which often interact with relational databases or external service APIs using
asynchronous HTTP requests (i.e., Ajax applications).

The major drawback of the JSON data model is that there is currently no
standard query language that supports it. Driven by the popularity of NoSQL
databases, established techniques of database query processing are mostly ig-
nored in such systems, and complex queries are often implemented from scratch
in the application layer. To overcome this drawback, several NoSQL products
like MongoDB currently provide rather primitive query constructs. For complex
analytical queries, developers must implement ad-hoc glue code to integrate such
databases with MapReduce-based query engines like Pig and Hive.

Another obvious drawback of such JSON-based approaches is the lack of sup-
port for XML, which is fundamental for Web applications. Brackit overcomes
these problems by simply extending the XQuery data model with support for
JSON objects and arrays, an approach which is also proposed in the JSONiq
specification [§]. The integration of JSON values in an XQuery engine is very
simple, but it results in a tremendous practical value, as it integrates document-
and data-centric query processing in a single environment.

A further advantage that contributes to the versatility of BrackitMR is its
collection framework. It defines a common interface for the communication be-
tween query engine and different storage modules, thus enabling the transparent
processing of several data sources using a unified language. The interface not
only allows data to be read from and written into various data sources, but
also supports basic storage-related optimizations such as filter and projection
push-down in a generic manner.

2.2 JSON Support

The XQuery data model (XDM) is centered around sequences, which are or-
dered collections of items. Items can be either XML nodes or atomic values,
but they cannot be sequences again, which means that nested sequences are not
supported. A fundamental property of XQuery, which is the basis of its compos-
ability, is that an item is indistinguishable from a singleton sequence containing
it. This means that all values in XQuery are sequences, and that every expression
returns a sequence when evaluated.

208 C. Sauer, S. Béchle, and T. Hérder

To integrate JSON in our data model, we simply add two new kinds of items:
objects and arrays. Objects are simple record structures which map attribute
names into values. In XDM, such values are themselves sequences, thus enabling
nested data structures. Like SQL, JSON defines a special NULL value, which
has no equivalent concept in XQuer, and therefore we also define a special
null value. Arrays are similar to sequences in which they are ordered collections
of items, but because arrays are a kind of item, they can therefore be nested.

Note that our scheme simply “reuses” the atomic and XML values from the
original data model. This means that our objects and arrays are more powerful
than those of the original JSON specification, which support only numbers (with
no distinction between integer, decimal, double, etc.), strings and Boolean val-
ues. XQuery, on the other hand, provides the complete type hierarchy of XML
Schema, which also includes user-defined types. This also implies that XML
nodes can be embedded inside objects and arrays, which gives great flexibility
for mixed document- and data-centric workloads.

Figure [l illustrates a query over two relational tables from the TPC-H bench-
mark, which are accessed as collections of JSON objects. For comparison, we
show the equivalent SQL query on the right-hand side.

for $1 in collection('lineitem') SELECT l.returnflag AS retflag,
for $o in collection('orders"') avg(o.totalprice) AS avg_price
where $l=>orderkey = $o=>orderkey FROM lineitem 1, orders o

and $l=>shipdate >= '1995-01-01" WHERE 1.orderkey = o.orderkey
let $rf := $l=>returnflag AND 1.shipdate >= '1995-01-01'
group by $rf GROUP BY 1l.returnflag

return { retflag: $rf,
avg_price: avg($o=>totalprice) }

Fig. 1. Example of XQuery expression with JSON support and equivalent SQL query

The query performs a join between the tables lineitem and orders, whereas
the former is filtered by a predicate on its shipdate attribute. The tuples are then
grouped by the returnflag attribute, which according to XQuery semantics must
first be extracted into its own variable $rf before grouping. Finally, each return
flag is returned together with the average of its associated order prices. In this
query, the use of the JSON data model is demonstrated in expressions accessing
object attributes with the => operator. Furthermore, the query returns JSON
objects using a constructor syntax that is equivalent to the string representation
of JSON objects.

For brevity, we rely on this simple example to demonstrate the basic capabil-
ities of JSON support in XQuery. For a more precise specification, we refer to
the JSONiq language [8], which is implemented in the Zorba XQuery processor.

! In XQuery, the empty sequence is usually employed to denote the absence of a value,
but this is not semantically equivalent to NULL. An empty sequence is an empty,
but existing value, while NULL indicates the absence of a value.

Versatile XQuery Processing in MapReduce 209

2.3 Collection Framework

The main design goal of the Brackit? query engine is to provide a common frame-
work for query compilation, optimization, and execution, abstracting away from
specific storage modules. This abstraction is realized in the collection frame-
work, which provides a Java interface that is implemented by specific storage
modules. The query evaluation engine interacts with collection instances when
the function collection is invoked, as in the example of Figure[Il In the XQuery
specification, this function must return XML elements, but our implementation
relaxes this constraint by allowing general XDM items to be returned. An item
is represented by a Java interface as well, and hence storage modules are free
to represent items in an efficient manner. A relational tuple, for instance, would
be best represented internally as an array of atomic values, but it would still
behave transparently, from the query engine perspective, as a JSON object.

In order to be found by the query engine, a collection must be registered in
the metadata catalog, which in XQuery is modelled by the static context [12].
Because XQuery provides no standard mechanism for registering collections, our
implementation introduces the declare collection primitive. It takes four pa-
rameters: the collection name as a string, the name of the class which implements
the collection interface, and an optional URI for locating the collection within
the implemented module, and the type of its items. Consider, for example, the
following declaration of the collection lineitem of Figure [It

declare collection lineitem of CSVCollection
at hdfs://lineitem.csv as object(type:lineitem)x;

It declares a collection called lineitemn, which is instantiated using the class
CSVCollection, an implementation for CSV files where each line is treated as
a JSON object. The at keyword specifies a path, in this case in HDFS (i.e.,
Hadoop distributed file system), where the file can be located. The as keyword
specifies the sequence type which is returned by the collection. The object key-
word specifies that the items returned are JSON objects, each having the type
type:lineitem, which is declared separately. The * symbol indicates that the
collection contains zero or more items[Because the original XQuery does not
support JSON types, we must extend it with a type declaration primitive or
schema import mechanisms. For brevity, we abstract the declaration of JSON
types from our discussion. We refer to JAQL [3], which served as inspiration for
JSON type declaration in our system.

Note that the type argument can be any valid sequence type, and thus we can
use abstract types like item()* to leave the schema unspecified. Partial schema
specifications can be implemented in XML Schema using complex types, and in
JSON using the JAQL notation with wild-card markers like * and ?.

2 http://www.brackit.org

3 The use of such cardinality symbols may seem unnecessary, but it is part of the
universal sequence-type syntax of XQuery, which is also used in function arguments
and results.

http://www.brackit.org

210 C. Sauer, S. Béchle, and T. Hérder

3 Compilation and Execution

3.1 Query Plans

A query is compiled in Brackit into a tree of expressions which is evaluated
in a bottom-up manner. A FLWOR expression is the standard construct used
for processing bulk data, and hence we focus on the compilation of FLWOR
expressions only. When compiled, a FLWOR expression is represented by a tree
of operators, just like a relational query plan. For an overview of how such plans
are evaluated, we refer to the plan on the left-hand side in Figure Bl which is
generated for the query in Figure [Il

HadoopExpr

/ GroupBy\
Pha;eIn
i Shuffle

LetBind * PhaseOut

A
GroupBy

FLWORExpr
Phase 2

GroupBy

Join LetBind Phase 1

ER

PostJoin
Select

‘ForBind‘ A
Phaseln

B —
ForBind § _ Shuffle

PhaseOut PhaseOut

&

A A
lineitem Select ForBind Phase 0

ForBind
o

Fig. 2. Example of a query plan and its translation into task functions

At the top, we have a FLWOR expression node, which is responsible for
evaluating the operators under it and delivering the final expression in the return
clause as a result. Each operator in the plan consumes and produces a tuple of
bound variables, in accordance to the semantics of FLWOR clauses [12]. These
tuples, however, are not part of the XQuery data model, but internal structures
which serve the exclusive purpose of evaluating operators. The FLWORExpr node,
therefore, serves as a bridge between the iterator-based, set-oriented model of
operators (i.e., the traditional model of relational query processing) and the
sequence-based model of XQuery expressions.

The query starts with ForBind operators, which evaluate the collection func-
tion and bind each delivered item to a given variable, generating the initial tu-
ples. Its functionality resembles that of a relational table scan. The input tuple of

Versatile XQuery Processing in MapReduce 211

an operator contains the currently available variable bindings, whose values are
used to evaluate expressions attached to each operator. Depending on the result
of the evaluation, tuples are modified, discarded, grouped, or reordered. This
corresponds to the classical mechanism used for query evaluation in relational
systems, as established by the iterator model [5].

Each operator in the query plan is basically derived from a corresponding
clause in the FLWOR expression. The Join operator is derived by our query
rewrite engine from a sequence of two ForBind operators followed by a predicate
on both their inputs. For a detailed description of each operator’s semantics, we
refer to the FLWOR expression specification in the XQuery standard [12].

3.2 Generalized MapReduce Model

The generation of MR jobs from query plans follows the same basic mechanism
used in Hive, Pig, and JAQL. In previous work, we have discussed general mech-
anisms for compiling query languages into the MR programming model [9]. Our
discussion of the mapping from XQuery to MR thus relies on the Generalized
MapReduce model (GMR) introduced there. Nevertheless, we provide a brief ex-
planation of the GMR model for completeness. It is derived from the original MR
model by generalizing a few aspects of a job specification. Despite being a gen-
eralization, we emphasize that the model can be fully implemented in Hadoop,
and therefore it is the same basic model used in Hive, Pig, and JAQL. The goal
of our generalizations is simply to provide a more concise model for discussing
the mapping of query plans into MR jobs.

The first, and most important, generalization of GMR is the use of task func-
tions instead of the original map and reduce functions. As noted in [0], the
Mapper and Reducer tasks—which iterate over the input key-value pairs and in-
voke the map or reduce function on each of them—are both implementations of
the traditional map higher-order function of functional programming languages.
The only difference between the map and reduce functions is that a reduce is
applied on a list of values rather than on a single value, but if we consider a list
as a proper value, the functions are essentially the same. Thus, we can specify a
job as a sequence of Mapper-Shuffle-Mapper stages. Furthermore, we allow the
user to specify the function which is executed by a task for each partition of the
input, which we refer to as task function. This is in contrast to the original map
and reduce functions, which are called for each key-value pair in an input parti-
tion. With this generalization, MR jobs can be specified as a pair of generalized
task functions—one executed before and the other after the Shuffle stage.

The further generalizations enable the specification of jobs as arbitrary trees
of task functions. First, we allow jobs to contain multiple map functions and
a single reduce, or, equivalently in our generalization, multiple task functions
before a Shuffle stage. The intermediate Shuffle keys are then grouped regardless
of which task function produced them, and a tag is appended to allow separating
the key-value pairs again on the reduce side. This is a standard technique for
performing joins in Hadoop, discussed in mored detail in [I3]. Furthermore, we
can allow arbitrarily long sequences of task functions interleaved with Shuffle

212 C. Sauer, S. Béchle, and T. Hérder

stages. This is necessary to implement complex operations that require multiple
MR jobs. In the original MR model, this can be simulated by executing jobs with
empty map functions, which simply propagate the key-value pairs generated by a
preceding reduce to another Shuffle stage. In our GMR model, this finally allows
the specification of trees of task functions, where between each level of the tree
there is a Shuffle stage.

The GMR model provides an ideal level of abstraction for discussing query
processing in MR, because it has greater resemblance to the model of query plans
and the iterator model. On the other hand, the model is not over-generalized,
such that the MR nature would be lost. It can be fully implemented in Hadoop,
and it also applies to query compilation in Pig, Hive, and JAQL. For further
details on GMR, we refer to [9].

3.3 Mapping Query Plans to GMR

The use of the GMR model makes it very natural to map query plans into MR
jobs. The process is based on the classification of operators into blocking and
non-blocking, and it is illustrated in Figure [2] for our example query. The idea is
to convert all blocking operators (in our case Join, GroupBy, and OrderBy) into an
MR Shuffle, which is the only blocking operation provided by the MR framework.
The Shuffle performs a grouping operation on multiple inputs, followed by a
repartition of the key-value pairs across the worker nodes in the cluster. It is
generic enough to implement all standard blocking operations, but it requires,
in some cases, special non-grouping post-processing operators which restore the
semantics of the original operator after a Shuffle.

A sequence of non-blocking operators, on the other hand, is “packed” into
a task function, as illustrated in Figure 2l Therefore, the execution of a task
function across worker nodes, which we refer to as a phase, consists of compiling
and executing the operators using the standard Brackit query processor, based on
the iterator model. In order to generate proper key-value pairs from tuples and to
build tuples back after shuffling, the special operators PhaseOut and Phaseln are
used. A key in this case is simply a subset of the tuple’s fields (i.e., a sub-tuple),
whereas a value is composed of the remaining fields.

To clarify the compilation and execution process, we make use of the example
in Figure 2] starting at the root node FLWORExpr. The FLWOR expression itself
is compiled into a HadoopExpr, which executes the contained query plan in the
MR framework and then brings the generated results back to the client machine,
serving as a “bridge” between local and distributed evaluation. Note that this
approach allows a hybrid query evaluation mechanism in which only the heavy
parts of an XQuery program—namely those that access collections on distributed
storage—are shipped for execution in MR. This means that a HadoopExpr may,
for example, compute aggregations on a large dataset and return the results as a
sequence to the parent expression, which may generate an XML report or store
the results in a local database.

The evaluation of the plan starts at the leaf task functions, which must start
with a ForBind operator. MR jobs usually exploit the data parallelism of the

Versatile XQuery Processing in MapReduce 213

input datasets, by processing each key-value pair independently. This is exactly
the functionality of the for clause in a FLWOR expression, namely to iterate
over a sequence of items, bind it to a variable, and execute the following clauses
once for each operator. The non-blocking operators are then evaluated until a
PhaseOut is reached. It extracts specific fields of the input tuple into a sub-tuple
which will be used as key in the Shuffle stage. The fields to be extracted depend
of course on the blocking operator being executed. In the example, the two leaf
task functions serve as input to a Join, and hence the keys extracted are the join
keys, namely the orderkey attribute. Note that the variables $1 and $o contain
the whole JSON objects, so their orderkey attributes have to be extracted into
their own variables using a LetBind, which we omitted here for space reasons.

The task function in the second phase of our example starts with a Phaseln
operator, which will rebuild the original tuples from the key and value sub-tuples.
The PostJoin separates the input tuples based on the tag value and joins them
locally. Our implementation is based on a hash-join algorithm, and so the tuples
are repartitioned by the Shuffle based on a hash value of the keys. Furthermore,
tuples within each partition are sorted by the tag value, so that all tuples from
the right input come first and are used to build the hash table.

After the Join, the LetBind operator is executed and its outputs are fed into
a GroupBy operator. Note, despite being a blocking operator, the GroupBy is
executed inside the task function. It pre-aggregates values locally before the
global grouping that occurs in the Shuffle. This functionality corresponds to the
MR combine function, but instead it reuses the GroupBy operator provided by
the Brackit engine. The local GroupBy is a partition-wide blocking operator [9],
meaning that it blocks the evaluation of a single partition only. In general, non-
blocking as well as partition-wide blocking operators can be executed inside a
task function. Note that the PostJoin operator also belongs to this class.

The last task function then groups the pre-aggregated tuples to compute the
global aggregations, and another GroupBy is used for that end. Because it is the
last operator in the evaluation, its results are written to distributed storage and
retrieved by the HadoopExpr instance. It is also possible to directly transmit the
output tuples back to the client, but this would require some synchronization
mechanism in order to keep the sort order of the output.

Note, because Hadoop does not directly implement the GMR model, the task
function tree of Figure 2 requires one MR job for the execution of phases 0 and 1,
inside Mapper and Reducer tasks, respectively, and a second job with an empty
Mapper is then required to process phase 2.

3.4 Processing XML Data

So far, we have discussed examples based only on relational datasets modelled
as JSON collections. However, one major advantage of BrackitMR towards the
related approaches is its native support for XML data. This feature is primor-
dial in scenarios like Web page crawling, generation of HTML reports or SVG
graphs, and many other typical scenarios in the Web 2.0. Our generic collection
framework combined with the transparent integration of JSON in XDM enables

214 C. Sauer, S. Béchle, and T. Hérder

queries which mix JSON and XML data sources, and because arbitrary items
can be nested inside JSON objects, queries can also generate JSON documents
or relational tables which contain embedded XML data.

BrackitMR, however, only supports XML data stored in collections, because
they exhibit the degree of data parallelism required in MR processing. If large
distributed XML documents are to be processed in MR, we need to provide
the query engine with knowledge about how XML fragments are partitioned.
Such partitioning strategies heavily depend on the particular structure of each
document, and the absence of schema information complicates the problem even
further. Even if the partitioning scheme is provided, the query still needs to be
checked at compile time to detect paths that cross partition boundaries. Given
the management complexity, large XML data sources rarely occur as a single
document, but this does not represent a major limitation for BrackitMR. If we
consider the domain of MR processing, this becomes an even smaller concern,
because typical MR tasks like log processing or document crawling usually deal
with large collections of small and independent items.

3.5 Limitations

XQuery is in fact a Turing-complete functional programming language, and thus
it provides general recursive functions, arbitrarily nested FLWOR expressions,
as well as several constructs that rely on strict sequential processing. Because
MR provides a simple programming model, suited only for data-parallel compu-
tations, it is not possible to cover the complete XQuery standard in BrackitMR.
Obvious limitations are, for instance, expressions that depend on sequential eval-
uation, like the count clause in FLWOR expressions or the position variable
binding using the at keyword inside for clauses.

A further limitation of our current prototype is related to dependent sub-
queries. When evaluated naively, a nested-loops computation is required, which
is catastrophic in the MR scenario, given the extremely high latencies intrinsic
to the batch processing model. The Brackit query engine extracts arbitrarily
nested sub-queries into a single unnested pipeline, using a technique referred
to as pipeline unnesting. Using this feature, described in detail in [2], nested
query semantics is simulated by left outer joins and grouping operations on
additional count variables, which keep track of the position of a tuple within an
iteration. Furthermore, it requires operators to keep track of “empty” iterations
that emerge when sub-queries do not deliver any tuples. The unnesting feature
is currently not supported in BrackitMR, but because the rewrite rules of the
standard Brackit engine can be simply reused, it is not a conceptual limitation.

A further use case in XQuery is the use of recursive functions. Such func-
tions which access collections require an evaluation model that supports fixed
point computations. The technique required to implement recursive queries is
essentially the same used in recursive SQL, and one approach for XQuery was
proposed in [I]. Our current prototype does not implement the technique. How-
ever, none of the related approaches support recursive queries, and so the use
case remains a corner stone for MR processing.

Versatile XQuery Processing in MapReduce 215

Aggregate task:

for $1 in collection('lineitem')
let $month :=
substring($l=>shipdate, 1, 7)
group by $month
return { month: $month,
price: sum($l=>extendedprice) }

Join task:

for $1 in collection('lineitem'),
$0 in collection('orders')
where $1=>orderkey eq $o=>orderkey
and $l=>shipdate gt '1994-12-31'
and $o=>totalprice gt 70000.00
return { o: $o=>orderkey,

TPC-H Q3 Task:

for $c in collection("customer"),
$0 in collection("orders"),
$1 in collection("lineitem")
where $c=>custkey = $o=>custkey
and $l=>orderkey = $o=>orderkey
and $o=>orderdate < "1995-09-15"
and $l=>shipdate > "1995-09-15"
let $orderkey := $1=>orderkey,
$orderdate := $o=>orderdate,
$shippriority := $o=>shippriority,
$discounted := $l=>extendedprice
* (1 - $l=>discount)
group by $orderkey,
$orderdate,
$shippriority
let $revenue := sum($discounted)
order by $revenue
return { order_key: $orderkey,

revenue: $revenue,
order_date: $orderdate,
ship_priority: $shippriority }

1: $l=>linenumber }

Fig. 3. Queries used in the experiments

4 Experiments

To measure the performance of BrackitMR, we ran experiments based on the
TPC-H dataset with a size of 10 GB, stored in plain CSV files. The experiments
were run on a small cluster with 5 worker nodes and a separate master. In order
to ensure similar conditions, we have tuned the Hadoop jobs to use the same
number of Mapper and Reducer tasks. We also disabled compression of data
shipped between Mapper and Reducer tasks.

We compared the execution times with Pig and Hive. JAQL was not included
because its development was moved to a proprietary data warehouse system, and
thus its open-source release is not being maintained anymore. It also depends on
a discontinued version of Hadoop. However, published measurements comparing
JAQL with Pig and Hive have shown that it is outperformed in all tests [10].

We used three queries in our experiments, shown in Figure Bl The first one
is an aggregation task on the lineitem table, which computes the sum of item
prices for each month. The second is a Join task, which filters and joins the
lineitem and orders tables. Last, we ran a slightly modified version of the official
TPC-H query number 3. Figure d] shows the queries expressed in XQuery and
the measured execution times in seconds.

The optimization techniques implemented in BrackitMR make use of the col-
lection framework to push down filters and projections. After close inspection of
the data produced at each phase of the computation, we conclude that the same

216 C. Sauer, S. Béchle, and T. Hérder

600
W ErackitMR
W Hive
500 7 DPig
400 -|
Brackit Hive Pig
E Aggregate 228 225 339
e Join 326 318 366
E TPC-H Q3 466 433 486
T Measured times in seconds
100
0 1]
Aggregate Jain TPC-HQ3

Fig. 4. Query execution times in seconds

techniques are employed by Hive. Pig, however, does not perform automatic pro-
jection, and so the queries were manually modified so that unused columns were
discarded.

The experiments show that Hive is the fastest system for the three tasks,
followed closely by BrackitMR and then by Pig. However, the difference be-
tween BrackitMR and Hive for each of the queries was 1.3%, 2,5%, and 7.6%,
respectively. Thus, it empirically confirms our claim that despite having a more
generic data model and more expressiveness in the query language, BrackitMR
does exhibit the same performance as the state-of-the art approaches.

5 Conclusion

We have developed BrackitMR, an extension of the Brackit query engine which
executes XQuery FLWOR expressions in the MR framework. In comparison to
existing approaches for query processing in MR, our system relies on an already
established, flexible query language. Despite having similar characteristics, such
as a semi-structured data model and a more flexible means to compose oper-
ations, languages like Hive or Piglatin are currently only used in the context
of MR, whereas XQuery is widespread on varying application scenarios from
database systems to the Web. Our approach of query engine reuse represents an
elegant solution, which simplifies the MR computational model, making greater
use of long-established query processing logic.

As a model for distributed query processing, MR actually has significant draw-
backs, especially if we consider complex queries with multiple non-blocking op-
erators. The main reason is that it simulates the GMR model using identity
Mapper tasks. These tasks represent a major performance bottleneck, because

Versatile XQuery Processing in MapReduce 217

the output of a Reducer phase is always written to the distributed file system,
which in most scenarios has a replication factor of three. This output is then fed
into the identity Mapper tasks, which simply write the whole data unmodified
to the local file systems of the worker nodes. Only then a Shuffle phase can start
to group data and perform the operation required by the non-blocking operator.
Note that a much more efficient variant would allow the Reducer output to stay
within local file system boundaries and be fetched directly by the shuffle tasks.

BrackitMR is at an early stage, and the goal of this paper was simply to show
the flexibility potential of XQuery combined with our modular architecture.
A crucial requirement, however, is that the higher flexibility does not incur a
higher cost in performance. Our goal is that whenever the conditions for efficient
data processing are met—in this case, relational structures with full schema
information—the query engine must perform as fast as an approach designed
specifically for those conditions. We believe this has been achieved so far, as
reported in our experiments.

References

1. Afanasiev, L., Grust, T., Marx, M., Rittinger, J., Teubner, J.: An Inflationary Fixed
Point Operator in XQuery. In: ICDE Conference, pp. 1504-1506. IEEE (2008)

2. Béchle, S.: Separating Key Concerns in Query Processing — Set Orientation, Physi-
cal Data Independence, and Parallelism. Ph.D. thesis, University of Kaiserslautern,
Germany (2012)

3. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., Kanne, C.C.,
Ozcan, F., Shekita, E.J.: Jagl: A Scripting Language for Large-Scale Semistruc-
tured Data Analysis. PVLDB 4(12), 1272-1283 (2011)

4. Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool. Commun.
ACM 53(1), 72-77 (2010)

5. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comput.
Surv. 25(2), 73-170 (1993)

6. Lammel, R.: Google’s MapReduce Programming Model — Revisited. Sci. Comput.
Program. 70(1), 1-30 (2008)

7. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-
So-Foreign Language for Data Processing. In: SIGMOD Conference, pp. 1099-1110

2008)

8. %iobie, J., Brantner, M., Florescu, D., Fourny, G., Westmann, T.: JSONiq: XQuery
for JSON, JSON for XQuery, pp. 63-72 (2012)

9. Sauer, C., Harder, T.: Compilation of Query Languages into MapReduce.
Datenbank-Spektrum 13(1), 5-15 (2013)

10. Stewart, R.J., Trinder, P.W., Loidl, H.-W.: Comparing High Level MapReduce
Query Languages. In: Temam, O., Yew, P.-C., Zang, B. (eds.) APPT 2011. LNCS,
vol. 6965, pp. 58-72. Springer, Heidelberg (2011)

11. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S.,
Liu, H., Murthy, R.: Hive — A Petabyte Scale Data Warehouse using Hadoop. In:
ICDE Conference, pp. 996-1005 (2010)

12. W3C: XQuery 3.0: An XML Query Language (2011),
http://www.w3.0rg/TR/xquery-30/

13. White, T.: Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale,
2nd edn. O’Reilly (2011)

http://www.w3.org/TR/xquery-30/

	Versatile XQuery Processing in MapReduce
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 DataModel
	2.1 Motivation
	2.2 JSON Support
	2.3 Collection Framework

	3 Compilation and Execution
	3.1 Query Plans
	3.2 Generalized MapReduce Model
	3.3 Mapping Query Plans to GMR
	3.4 Processing XML Data
	3.5 Limitations

	4 Experiments
	5 Conclusion
	References

