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Abstract. Simulations have become key in many scientific disciplines
to better understand natural phenomena. Neuroscientists, for example,
build and simulate increasingly fine-grained models (including subcellu-
lar details, e.g., neurotransmitter) of the neocortex to understand the
mechanisms causing brain diseases and to test new treatments in-silico.
The sheer size and, more importantly, the level of detail of their models
challenges today’s spatial data management techniques. In collaboration
with the Blue Brain project (BBP) we develop new approaches that effi-
ciently enable analysis, navigation and discovery in spatial models of the
brain. More precisely, we develop an index for the scalable and efficient
execution of spatial range queries supporting model building and anal-
ysis. Furthermore, we enable navigational access to the brain models,
i.e., the execution of of series of range queries where he location of each
query depends on the previous ones. To efficiently support navigational
access, we develop a method that uses previous query results to prefetch
spatial data with high accuracy and therefore speeds up navigation. Fi-
nally, to enable discovery based on the range queries, we conceive a novel
in-memory spatial join.

The methods we develop considerably outperform the state of the art,
but more importantly, they enable the neuroscientists to scale to build-
ing, simulating and analyzing massively bigger and more detailed brain
models.

1 Introduction

Scientists across many different fields have started to complement their tradi-
tional methods for understanding a phenomena in nature with the simulation of
spatial models of it. Simulating spatial models has become standard practice in
many disciplines and applications. Examples include the simulation of peptide
folding [1], star formation in astronomy [2], earthquakes in geology [3], fluid dy-
namics as well as the brain in neuroscience [4]. To develop a better understanding
the scientists continuously increase the size and complexity of the simulations
as much as their hardware allows.
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Today’s tools and algorithms required to cope with the data at the core of
simulations, however, cannot cope with the data deluge resulting from bigger
and more detailed simulations. While the many spatial indexes [5] developed in
the past are of great help to scientists in analyzing and building models, many
cannot deal with the complexity and size of today’s spatial models.

A particular example of scientists who simulate a detailed model on a mas-
sive scale are the neuroscientists of the Blue Brain Project (BBP [4]). In their
attempt to understand the brain, i.e., what gives rise to cognition and what
mechanisms lead to brain disease, they model and simulate the rat brain (and
later the human brain) in great detail. To this end, the neuroscientists build
models of the neocortex in unprecedented detail and simulate electrical activity
on a supercomputer (BlueGene/P with 16K cores).

Fig. 1. A visualization of a model microcircuit comprised of thousands of neurons (left)
and a schema of a neuron morphology modeled with cylinders (right).

To build detailed models, the neuroscientists in the BBP have analyzed the
rat brain tissue in the wet lab over several years and have identified the exact
electrophysiological properties and the precise morphological structure of neu-
rons. The neuron morphology defines the branches that extend into large parts
of the tissue in order to receive and send out information to other neurons. To
obtain a biorealistic model (an example is illustrated in Figure 1, left) the neu-
roscientists put together thousands or millions of neuron morphologies, each of
which is represented by thousands of small cylinders (a morphology is shown in
Figure 1, right).

The models built in the BBP have quickly grown in recent years and feature
several million neurons today. Although the current model size is still far from
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their ultimate goal of building and simulating models as big as the human brain
(~10! neurons), today’s size already seriously challenges state-of-the-art spatial
data management tools.

More important than only the size (number of cylinders) of the models, how-
ever, is their level of detail: to build more detailed and biorealistic models the
neuroscientists pack more and smaller elements into the same volume. Analyz-
ing the detailed models with current methods is becoming a challenge because
the state of the art like the R-Tree [6] do not scale to the increasingly fine-
grained /dense models. To address the challenge of increasingly detailed models,
we develop a new query execution strategy for dense datasets. At its core is a
novel two-phased range query execution strategy where each phase is indepen-
dent of data density.

The ability to efficiently execute range queries on dense data greatly speeds
up building and analyzing of models. Crucial for the further analysis, however, is
navigational access to the brain models, i.e., the interactive execution of series of
range queries where the location of the next query depends on the result of the
previous query. The neuroscientists frequently follow a branch of a neuron and
execute spatial range queries for detailed analysis to validate the model. At each
location, a query is executed, the data is retrieved as well as visualized before
the scientist decides on the next location where a query is executed. Because
spatial range query execution is disk bound, executing range query series is a
very time-consuming process.

To speed up the execution of interactive range query series, data can be
prefetched. State-of-the-art approaches, however, do not prefetch spatial data
with high accuracy because they rely on limited information, e.g., previous query
positions. We therefore develop a novel approach that prefetches spatial data
with a considerably higher accuracy by using the content of previous queries
(instead of only their position) and thereby achieve substantially higher prefetch
accuracy.

A particular computation that needs to be run based on the query results
of each spatial range query and that enables neuroscientific discovery, is placing
the synapses in the model. Synapses, i.e., the structures where impulses leap
over between neurons, are placed wherever two cylinder of different neurons
intersect [7]. Placing synapses therefore is equivalent to an in-memory spatial
join where all neurons are tested for intersection.

Given the absence of efficient spatial join methods for memory, we develop
a novel in-memory spatial join. The design of our new approach considerably
departs from the state of the art and avoids the overlap problem of data-
oriented approaches [8,9] as well as the replication problem of space-oriented
approaches [10,11]. Replication has to be avoided because it (a) increases the
memory footprint, (b) requires multiple comparisons and (c) removal of dupli-
cate results. Combining the best of both worlds, our new approach is one order
of magnitude faster than known approaches and two orders of magnitude faster
than known approaches with a memory footprint of the same size.
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In the remainder of this paper we discuss the spatial indexing algorithms
we develop in collaboration with the neuroscientists of the Blue brain project
to advance computational neuroscience. We describe the three approaches we
develop, FLAT [12] for efficient range query execution, SCOUT [13] for the
accurate prefetching of spatial data and TOUCH [14] for efficient and scalable
in-memory joins, discuss how neuroscientists use them and we demonstrate the
considerable impact they have on the process of building the models.

2 Retrieving Dense Neuroscience Data

A crucial type of query in the model building process in the BBP is the spatial
range query. Range queries are repeatedly used to visualize parts of the models
or to ensure that the models built are biorealistic (testing the tissue density,
synapse density or other statistics).

Because today’s models of the brain are already very detailed and dense,
state-of-the-art indexes to execute range queries [5] are not efficient. The efficient
execution of range queries to build and validate models, however, is pivotal
today and will become even more important in the future where the models
will be increasingly biorealistic and thus dense as the neuroscientists will model
phenomena on the subcellular level.

2.1 Motivation

Several spatial access methods supporting the execution of spatial range queries [5]

have been developed in the past. While these approaches execute range queries

efficiently on many datasets, they unfortunately do not do so on dense or de-

tailed neuroscience models. To make matters worse, they will only scale poorly
to more dense and detailed models built in the future.
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MBRs lead to ambiguity in the tree, i.e., to execute a range query several paths
in the tree need to be followed, leading to the retrieval of an excessive number
of nodes. To make matters worse, overlap becomes substantially worse with in-
creasing density of the dataset: as the number of spatial elements in the same
unit of space increases, so does the overlap of tree-based indexes.

The experiment shown in Figure 2 where we increase the density of the
dataset and measure point query performance of different R-tree based ap-
proaches [16-18] clearly demonstrates the problem of overlap. Point queries are
a good indicator of overlap in R-Trees: the number of nodes retrieved from disk
should be in the order of the height of the tree (five in this case) in the absence
of overlap. As the results in Figure 2 show, however, the overlap grows rapidly
with increasing dataset density, translating into a higher execution time and
thus degraded performance.

Despite numerous proposed improvements, e.g., reducing overlap through
splitting and replicating elements [15] (thereby increasing the number of nodes
in the tree and also its size on disk considerably), the fundamental problem
remains the same and needs to be addressed to enable the neuroscientists to
build, analyze and validate more detailed and biorealistic models.

2.2 FLAT Query Execution

To enable the neuroscientists in the BBP to build and analyze models of the
brain on an unprecedented detailed level, we develop FLAT [12] with a two
phased query execution at its core. The key insight we use is that while find-
ing all elements in a particular range query in an R-Tree-like index suffers
from overlap, finding an arbitrary element in a range query on the other hand
is independent of overlap and therefore is a comparatively cheap operation.
Because only one path
in the tree has to be
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neighborhood information, i.e., what element is next to what other elements.
Both phases are independent of overlap and density as the first only depends
on the height of the R-tree-like structure and the second only depends on the
number of elements in the range query. With both phases avoiding the problem
of overlap and only depending on the result size of the query, FLAT will scale
to much denser/detailed models.

To limit the amount of information stored, FLAT stores the neighborhood
information on the level of groups of elements instead of on the level of sin-
gle elements, i.e., what spatial element neighbors what other spatial elements.
FLAT groups spatially close elements together (and stores them on the same disk
page), indexes the groups with an R-Tree index, called the seed tree, and finally
computes the neighborhood information between the groups. The neighborhood
information itself is stored in the leaf nodes of the R-Tree (seed tree).

Figure 3 illustrates how queries are executed using the groups of elements
and the neighborhood information: first FLAT retrieves an arbitrary group in
the query range and then recursively retrieves all neighboring elements in the
query range.

While some datasets may contain inherent neighborhood information (e.g.,
in meshes the neighborhood is stored in the edges), many (and in particular
the neuroscience datasets) do not have any or only limited neighborhood infor-
mation. As a consequence, to make FLAT work on arbitrary datasets, we add
neighborhood information to the index in a preprocessing phase. Computing
and storing neighborhood information is not an undue burden as the increase
in index building time is below 10% and the space increases by only 12% (both
compared to the STR [16] bulkloading approach).

2.3 Impact of FLAT

The impact FLAT on the work of the neuroscientists is considerable. Until re-
cently they have not been able to build, analyze and validate models exceeding
one million neurons. With FLAT they now have the ability
to scale to bigger and, more
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As Figure 4 impressively demonstrates, FLAT already today considerably
outperforms R-Tree based approaches by a factor of 8 for the densest model (with
450 million elements). More importantly, however, the trend clearly shows that
FLAT will scale better to more detailed and dense models in the future. This is
pivotal as it finally enables the neuroscientists to build more bio-realistic models
where subcellular elements (e.g., neurotransmitters) can be precisely replicated
for a more accurate simulation of brain activity.

3 Prefetching for Structure Following Spatial Queries

FLAT enables the neuroscientists to efficiently execute spatial range queries on
todays models and also on future, even more dense & detailed spatial models.
More important for many of their analysis, however, is it to execute a series of
range queries: following a structure in the model, e.g., a neuron branch, they need
to execute several range queries to assess the quality or validity of the model. On
the result of each range query they compute different types of statistics (tissue
density, synapse placement, synapse count, etc). Series of range queries are not
only crucial for the neuroscientists, but also for other scientists who analyze road
networks, arterial trees and others.

Executing a series of range queries is an interactive process where the user
follows a structure, executes a query, computes one or several statistics, analyzes
the statistics and then decides on the location of the next query and executes
it. Because the series is interactive, the disk is idle during the computation of
statistics (between two range queries) and data can be prefetched to speed up
the series. State-of-the-art approaches, however, rely on limited information to
predict the next query location and thus prefetch with low accuracy.

3.1 Motivation

Known approaches used to prefetch spatial data do not have good enough ac-
curacy as they only use limited information of previous queries to predict the
location of the next query. Several state-of-the-art approaches rely on the posi-
tions of past queries. One particular approach [19] uses the last query position
and prefetches around it. More sophisticated approaches [20] use the last few
positions, fit a polynomial into them and extrapolate the polynomial to predict
the next query location. Series of range queries on neuron structures, however,
are very jagged and not smooth at all. The irregular structure makes it very
hard to interpolate accurately with a polynomial and consequently this class of
prediction approaches does not prefetch with good accuracy.

Another class of approaches [21] attempts to learn from past user behavior
by keeping track of all paths visited in the past. Prefetching, i.e., predicting the
next query location, is based on the history. Because the models in our scenario
are so massive, it is unlikely that any path will be visited twice, therefore making
prefetching strategies based on past paths visited inaccurate.
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3.2 Content-Aware Prefetching

To prefetch more accurately and to considerably speed up the execution of series
of range queries and therefore analysis, we develop SCOUT [13]. SCOUT departs
form previous approaches as it does not only consider previous query positions,
but also takes into account the previous query content, knowing that the scientist
follows one of the structures in the previous queries. As a consequence, SCOUT
prefetches with a considerably higher accuracy, speeding up query series by a
factor of up to 15x.

e SCOUT summarizes the content of the

\

most recent query ¢, i.e., it identifies the topo-
logical skeleton in ¢ and approximates it with
a graph. The graph of ¢ represents all the
structures the neuroscientist is potentially fol-
lowing and SCOUT therefore prefetches data
at all locations where the graph leaves q
(exit locations). Range queries are executed to
prefetch data at these locations until the user
executes a new query in the series. Figure 5
shows how small range queries are executed
at the exit locations of the last query.

Fig. 5. Prefetching of spatial data As the example in Figure 5 shows, in some
at the exit locations of the struc-  cases SCOUT has to prefetch in multiple lo-
ture. cations. This is the case at the beginning of a
series of queries where SCOUT cannot yet identify the one structure the neu-
roscientist follows. By using iterative candidate pruning, however, SCOUT can
reliably identify the neuron branch followed after a few queries already.
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Fig. 6. Pruning the irrelevant structures (solid lines) from the candidate set (dashed
lines) in subsequent queries (solid squares) of the series.

Iterative candidate pruning exploits that all previous queries must contain
the branch the scientist follows. To prefetch for the n'* query, SCOUT thus only
needs to consider the set of branches leaving the (n — 2)!" query and the set
of branches entering the n — 1** (most recent) query. The branch followed is in
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the intersection of both sets. As the number of queries in a series increases, the
number of branches in the intersection between two consecutive queries decreases
continuously and the branch the user follows can be identified reliably. Figure 6
illustrates how through iteratively reducing the set of candidates, SCOUT can
reliably identify the structure the scientist follows after only a few queries.

3.3 Impact of SCOUT

SCOUT helps the neuroscientists to make building and analyzing models sub-
stantially faster. The speedup for different types of analysis ranges between 4x
and 15x and enables a significantly faster turnaround from model building to
analysis.

The experiment in Figure 7 100, EEWMA (A=0.3) [MStraight Line @ Hilbert = SCOUT
shows this impressively by
comparing the cache hit rate
and the speedup with state-
of-the-art approaches. In this
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of-the-art approach (based on polynomial extrapolation). Like FLAT, SCOUT
also speeds up the model building process and allows the neuroscientists to build
bigger models considerably faster.

Fig.7. Accuracy of the approaches for all mi-
crobenchmarks (a) and speedup of the approaches

4 In-Memory Spatial Join for Model Building

A particular computation the neuroscientists need to execute on the result of
each of the queries in a series is the touch detection. In this computation the
neuroscientists determine where to place synapses, the structure thats permit an
electrical impulse to leap over between neurons, in the model. Experiments in the
wet lab have shown that it suffices to place synapses where branches of neurons
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intersect [7] to obtain a biorealisitc model of the brain. Touch detection therefore
needs to find cylinders (compare with Figure 1, left) of different neurons that
overlap/intersect with each other, translating this process into an in-memory
spatial join. While many spatial join methods have been developed for disk in
recent years, no scalable in-memory approach exists.

4.1 Challenge

For the touch detection, the
neuroscientists need to exe- neth
cute a spatial join on every D =
result of the query series. Be- : 0
cause the result of each query | D D

fits into the memory of even ! —
desktop machines, the spatial '

join needs to be performed in- (a) The datasets A and B
memory.

Despite decades of re-
search into spatial joins, only
two algorithms have been de-
veloped to join two datasets
in memory: the nested loop Level0 | _
join [23] and the sweep line
approach [24]. Neither of the
two scales well: the nested
loop join has a complexity of =
O(n?) whereas the sweep line level1 |-
approach becomes inefficient
when too many elements are
on the sweep line (very likely
in case of dense data/detailed
neuroscience models).

Approaches primarily de- Level 2 >/
. iltere
veloped for disk [25] can Tree Building (based on | Assignment (of dataset B)
of course also be used in dataset A)

memory. Existing work can (b) Tree building, assignment and joining phases
be categorized into space- or

disk-oriented partitioning ap-  pig. 8. The three phases of : building the tree, as-
proaches. Besides advantages, signment and joining.

both classes also have clear

disadvantages: space-oriented approaches [10, 11] generally need to replicate ele-
ments (elements that intersect with two partitions are copied to both) leading to
considerable overhead and multiple detection of the same intersections whereas
data-oriented approaches [8] suffer from the overlap problem of R-Trees which
degrades performance considerably, particularly when used with dense datasets.
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4.2 TOUCH: Efficient In-Memory Spatial Join

Given the lack of in-memory spatial join approaches as well as the challenges of
either data- and space oriented approaches, we have developed TOUCH [14], a
novel in-memory spatial join algorithm. With TOUCH we want to avoid space-
oriented partitioning because it typically leads to replication of elements. Repli-
cation has to be avoided because it (a) increases the memory footprint and (b)
requires multiple comparisons between copies of elements (as well as making the
removal of duplicate results necessary). Data-oriented partitioning on the other
hand has the problem of overlap resulting in degraded performance, particularly
on dense datasets.

With TOUCH we want to combine the best of both, space- as well as data-
oriented partitioning, while avoiding the pitfalls. We use data-oriented parti-
tioning to avoid the replication problem of space-oriented partitioning and build
an index based on data-oriented partitioning (similar to an R-Tree) on the first
dataset A (all elements of A are in the leaf nodes). To avoid the issue of overlap,
we do not probe the data-oriented index for every element of the second dataset
B. Instead, we assign each element b of B to the lowest (closest to the leafs)
internal node of the index that fully contains b. Once all elements of B are as-
signed to the R-Tree, they are joined: the elements of B in a particular internal
node n are joined with with all leaf nodes (containing elements of A) reachable
from n. Figure 8 shows the process, i.e., how an index is built based on dataset
A, how the elements of dataset B are assigned to internal nodes and finally, how
internal nodes are joined with leaf nodes.

We further improve TOUCH’S 1000 -
performance by using the fil- 16000 |
tering concept from space- 14000 |
oriented partitioning. When
indexing dataset A, i.e, build-
ing an index on A, some space
may not be covered by the leaf
nodes. Consequently, if any

Clustered ME=5 E=10

Gaussian  mE=5 FE=10

Uniform  mE=5 AE=10

12000 -

Execution time [s]
5 3 g B8
g 8 8 §

element of B falls into this 2000 |
empty space, it cannot inter- R 2 7/ 4 % 7
sect with any element of A HIDOP  PBSM s3 RTree  Indexed NL

and thus does not have to be

considered. Depending on the Fig. 9. Comparing the approaches for two different
distribution of the dataset, distance predicates € on all datasets.

filtering can considerably re-

duce the number intersection tests between elements.

4.3 Impact of TOUCH

TOUCH is one order of magnitude faster than known approaches and two or-
ders of magnitude faster than known approaches with an equally small memory
footprint. An experiment with neuroscience data shows this in Figure 9: in this
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experiment we measure how fast the spatial join can be computed on datasets of
size 50 millions with disk-based join methods used in memory for two different
distance predicates (we exclude the two in-memory join methods because they
are too slow). We use three different datasets where the locations of the objects
are distributed uniform, gaussian and clustered (100 clusters, each with a gaus-
sian distribution). Clearly TOUCH is the fastest for either distance predicate,
followed by PBSM [11]. Although PBSM is the fastest competitor, it is still one
order of magnitude slower and uses considerable more memory (a factor of 8 x
more).

TOUCH makes a considerable difference in the work of the neuroscientists.
Without TOUCH, the biggest model they touch detected was 1 million neurons
big. Today with TOUCH, they are able to touch detect a model of 10 millions
and they are working on touch detecting a 33 million neuron model. Although
TOUCH is very conservative with respect to memory, running touch detection
on bigger models is not possible because a 33 million neuron model entirely fills
the memory of their current infrastructure. We are currently investigating out
of core methods where disk capacity is the bottleneck and no longer memory.

5 Conclusions

To gain a better understanding of how the brain works, what gives rise to cog-
nition and what mechanisms govern dementia, the researchers of the Blue Brain
Project build increasingly big, complex and detailed models of the brain. Be-
cause their models are so big and detailed, state-of-the-art methods no longer
can be used to efficiently build, analyze and validate them. We have therefore
developed FLAT, a method for the scalable execution of spatial range queries
on dense spatial models, TOUCH, a prefetching method for spatial data used
to speed up series of spatial range queries and finally TOUCH, an efficient in-
memory spatial join approach.

The impact of the methods we have developed on the Blue Brain project
are substantial: the neuroscientists can build bigger and more detailed models
faster. The limit of models they can build has grown considerably to 33 million
neurons today. Dealing with increasingly detailed and complex spatial models is
not just a problem of neuroscientists, but is shared in many scientific disciplines
that simulate natural phenomena and the algorithms we developed thus have
impact beyond neuroscience.

Our results also demonstrate that despite decades of research in spatial data
management, many problems still remain open. Increasing main memory as well
as novel storage technology (in the memory hierarchy), for example, means that
several spatial indexes need to be redesigned as we have shown with TOUCH.
The execution of spatial range queries or nearest neighbor queries, for example,
needs to be supported with radically different indexes optimized for memory.

New types of datasets (e.g., dense, complex spatial datasets) make new in-
dexes necessary (FLAT) and new types of queries (e.g., series of range queries)
also call for the development of new indexes. Nearest neighbor queries with con-



Data-driven Neuroscience 13

straints (find the nearest neuron with a given voltage), for example, are not yet
supported efficiently.

Finally, also the massive scale of the brain models as well as the size of

the simulation results mandates new methods for data management. Analyzing
the models with spatial queries as well as the simulation output with spatio-
temporal queries to find interesting phenomena needs to be supported with
scalable methods. Large-scale parallel approaches to analyze massive spatial or
spatio-temporal therefore will have to be developed.
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