
Reduction of Subtask Dispersion
in Fork-Join Systems

Iryna Tsimashenka and William J. Knottenbelt

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom,

Email: {it09,wjk}@doc.ic.ac.uk

Abstract. Fork-join and split-merge queueing systems are well-known abstrac-
tions of parallel systems in which each incoming task splits into subtasks that are
processed by a set of parallel servers. A task exits the system when all of its sub-
tasks have completed service. Two key metrics of interest in such systems are task
response time and subtask dispersion. This paper presents a technique applicable
to a class of fork-join systems with heterogeneous exponentially distributed ser-
vice times that is able to reduce subtask dispersion with only a marginal increase
in task response time. Achieving this is challenging since the unsynchronised op-
eration of fork-join systems naturally militates against low subtask dispersion.
Our approach builds on our earlier research examining subtask dispersion and
response time in split-merge systems, and involves the frequent application and
updating of delays to the subtasks at the head of the parallel service queues. Nu-
merical results show the ability to reduce dispersion in fork-join systems to levels
comparable with or below that observed in all varieties of split-merge systems
while retaining the response time and throughput benefits of a fork-join system.
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1 Introduction

Nowadays parallel systems are becoming more prevalent than ever, with large auto-
mated warehouses, concurrent computing systems and distributed storage systems tak-
ing centre stage in the world of industry. Despite the fact that performance and opera-
tional efficiency are primary concerns in these systems, there are significant challenges
from a modelling perspective in predicting and optimising their dynamic behaviour.

Queueing network models are natural abstractions for representing the flow and pro-
cessing of tasks in parallel systems in which high-level tasks split into subtasks which
are concurrently processed by a set of (heterogeneous) parallel servers. This paper fo-
cuses on two subclasses of queueing network models for parallel systems, namely fork-
join and split-merge systems [3]. Definitions and operational characteristics of each of
these two kinds of system are presented in the next section.

Two performance metrics of interest in these systems are task response time – that
is the time taken from the entry of a task into the system until its exit – and subtask
dispersion – that is the difference in time between the service completions of the first
and last subtasks originating from a given task. Since subtasks in a fork-join system
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are subject to less synchronisation than those in a split-merge system, the structure of
a fork-join system naturally yields lower response times but higher subtask dispersion
when compared to a split-merge system with similar parallel service time distributions.

In this paper we present an online technique for applying judiciously-chosen de-
lays to subtask processing times in elementary fork-join systems with heterogeneous
exponential service times. The technique reduces subtask dispersion significantly with
only a marginal impact on task response time. Our method assumes non-preemptive
scheduling; that is, once subtasks begin service they are executed to completion. Al-
though preemption gives more flexibility for scheduling from a theoretical perspective,
preemptive scheduling can lead to considerable overhead when applied in practice [12].

This paper makes the following specific contributions over our previous work ex-
ploring subtask dispersion and task response time in parallel systems [15, 24–26]:

1. We extend our modelling capability to fork-join systems, rather than split-merge
systems. Since fork-join systems are more widely deployed in practice owing to
their greater efficiency, this means our present technique is more applicable to the
realistic modelling of modern parallel systems.

2. In contrast to our previous algorithms which were static, the method we present
here is a dynamic online one that is sensitive to the current state of the system. Not
only is it to be expected that a dynamic method will outperform any static one – at
least in the absence of significant scheduling overhead (see e.g. [13,16,19,21]), but
also our dynamic method can support non-stationary workloads.

The remainder of the paper is organised as follows. Section 2 presents relevant pre-
liminaries including details of the parallel processing systems considered and the the-
ory of homogeneous and heterogenous order statistics (subsequently applied in com-
puting state-dependent subtask delays). Section 3 elaborates on the two performance
metrics we consider and recaps important results from the literature related to each
metric and the trade-off between them. Section 4 describes our method for the online
control of subtask dispersion. Section 5 presents numerical results showing the ability
of our methodology to simultaneously achieve low subtask dispersion (better even that
than achieved by the best static algorithm for reducing subtask dispersion in split-merge
systems), and low response time (only slightly higher than a fork-join system without
subtask delays). Section 6 concludes.

2 Preliminaries

2.1 Parallel Processing Systems

Fork-Join An elementary fork-join system (see Fig. 1) is composed of N parallel het-
erogeneous FCFS service queues, fork and join points and join queues (join buffers)
for completed subtasks [3]. When a task arrives in the system (usually assumed to hap-
pen according to a Poisson process with mean rate λ) it instantaneously enters the fork
point, where it forks into N independent subtasks. Each subtask enters the queue of its
corresponding parallel server. Here we assume parallel server i processes its queue of
subtasks according to an exponential service time distribution with mean service time
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Fig. 1: Fork–Join queueing model.

1/µi, i = 1, . . . , N . After service, a subtask enters a join queue. Only when all subtasks
(of a particular task) are present in the join queues does the original task instantaneously
exit the system via the join point.
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Fig. 2: Split–Merge queueing model.

Split-Merge A more synchronised type of parallel system is the split-merge system
(see Fig. 2), where the system processes only one task at a time. A split-merge system
consists of split and merge points, a FCFS queue before the split point (split queue) and
several heterogeneous parallel servers with queueing capability after service (merge
buffers). When a task arrives in the system (usually assumed to happen according to a
Poisson process with mean rate λ) it joins the split queue. Whenever all servers are idle
and the split queue is not empty, a task is taken from the head of the split queue and is
injected into the system, splitting into N subtasks at the split point. Each subtask enters
the queue of its corresponding parallel server (where it is served according to a service
time distribution with mean time 1/µi, i = 1, . . . , N ). After service, a subtask enters
a merge buffer. Only when all subtasks (of a particular task) are present in the merge
buffers does the original task instantaneously exit the system via the merge point.



4 Iryna Tsimashenka and William J. Knottenbelt

Join and Merge Buffers We note that in many real-life applications the join/merge
buffers are managed as a single shared physical space set aside for the storage of par-
tially completed subtasks. In such cases we term this space the output buffer. Careful
management of the arrival times of subtasks into the output buffer is vital especially
in circumstances where it occupies limited physical space and/or where it is highly
utilised. One way to achieve this is to maintain low levels of subtask dispersion.

2.2 Theory of Order Statistics

Ordinary (homogeneous) order statistics [6] enable reasoning about sorted samples
drawn from independent random variables having the same underlying distribution.

Definition 1. If iid random variables X1, X2, . . . , Xn each having distribution F (x)
are arranged in the increasing order X(1) ≤ X(2) ≤ . . . ≤ X(n), then X(i) is the ith
order statistic (1 ≤ i ≤ n).

The extremes are given by X(1) (the minimum order statistic), and X(n) (the maximum
order statistic). X(n) −X(1) is the range.

2.3 Theory of Heterogeneous Order Statistics

Heterogeneous order statistics [7] enable reasoning about sorted samples drawn from
independent, but not necessarily identically distributed (inid) random variables.

Definition 2. If inid random variablesX1, X2, . . . , Xn each having distribution Fi(x),
are arranged in the increasing order X(1) ≤ X(2) ≤ X(3) ≤ . . . ≤ X(n), then X(k) is
the kth heterogeneous order statistic having corresponding cdf F(k)(x) (1 ≤ k ≤ n).

The cumulative distribution functions of the minimum and maximum heterogeneous
order statistics are:

F(1)(t) = Pr{X(1) ≤ t} = 1−
n∏
i=1

[1− Fi(t)],

and

F(n)(t) = Pr{X(n) ≤ t} =
n∏
i=1

Fi(t).

The cumulative distribution function of the range X(n) −X(1) is [26]:

Frange(t) =

n∑
i=1

∫ ∞
−∞

fi(x)

n∏
j=1,j 6=i

[Fj(x+ t)− Fj(x)] dx (1)
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Fig. 3: Task response time vs. subtask dispersion of fork-join and split-merge queues
with and without optimised subtask delays.

3 Metrics

There are two important metrics in fork-join and split-merge systems:

– Task response time, that is the time taken from the entry of a task into the system
until its exit. This has been the primary focus of research effort over many decades
(see e.g. [1, 2, 4, 5, 8–11, 14, 17, 18, 20, 22, 23, 27–30]). The vast majority of this
work targets the mean (and rarely higher moments) of task response time and/or
the stationary distribution of the number of tasks queued at parallel servers.

– Subtask Dispersion, that is the difference in time between the service completions
of the first and last subtasks of a given task. This is an especially important metric
in the context of automated warehouses which process orders made up of multiple
items. In such systems the first arrival of a subtask in the output buffer triggers
reservation of physical space for that subtask and its siblings. Only when the fi-
nal subtask belonging to a task has arrived in the output buffer can the space be
freed. Efficient management of the output buffer space therefore requires the times
of arrival of a subtask and its siblings in the output buffer to be clustered as close
together as possible. It is also a consideration in other environments like full ser-
vice restaurants, where customer satisfaction requires that the food for each course
ordered by each table arrives at nearly the same time, and that each dish is hot
(if appropriate) and freshly prepared. Research interest in this metric is relatively
recent, see e.g. [24–26].



6 Iryna Tsimashenka and William J. Knottenbelt

As illustrated in Fig. 3 these metrics are in tension in the sense that taking action
to reduce one usually results in an increase in another; this is especially the case for
high-intensity workloads. Unmodified fork-join systems yield low task response times
(and therefore higher maximum sustainable system throughput), but subtask dispersion
is high under load. Conversely, unmodified split-merge systems are characterised by
low to moderate subtask dispersion, but can suffer from higher task response times (and
therefore reduced maximum sustainable system throughput) under load. As we have
shown in our previous work, adding delays to subtask processing times in split-merge
systems can help to reduce mean subtask dispersion [24] and/or percentiles of sub-
task dispersion [26], but the sole focus on subtask dispersion only serves to exacerbate
the problem of poor task response times under load. One solution is to apply load-
dependent subtask delays which minimise the product of expected task response time
and expected subtask dispersion [25]. This is highly effective at achieving a balance be-
tween the metrics; however, maximum sustainable system throughput is still limited to
that achievable under an unmodified split-merge system. Our goal in the present work
is to find a way to reduce dispersion in fork-join systems to levels comparable with or
below that observed in all varieties of split-merge systems while retaining the response
time and throughput benefits of a fork-join system.

4 On Online Technique for Reducing Subtask Dispersion in
Fork-Join Systems

In the following we consider a fork-join system with N parallel heterogeneous servers,
the ith of which has an exponential service time distribution with rate parameter µi, i.e.
Fi(x) = 1 − e−µix. To describe the state of the system at time t let ni(t) denote the
number subtasks present in parallel server queue i; as such N(maxi ni(t))−

∑
i ni(t)

subtasks will be present in the join queues (or output buffer) at time t.
Our strategy is to let the system operate in its normal fork-join fashion, but to delay

the start of service of certain of the subtasks that are at the head of the parallel service
queues. In particular, at every time instant at which a hitherto-unserviced subtask S
reaches the front of a parallel queue, we take the following control actions:

1. If any of the siblings of S have already completed service then the best mean sub-
task dispersion and task response time with respect to S’s task are simultaneously
achieved by immediately beginning service of S and also of any of its siblings that
are at the front of their parallel queue.

2. Otherwise all siblings are still present in the parallel queues and we apply delays
to S and its siblings that are at the front of their parallel queues and which have
not yet entered service. We choose appropriate delays (which may include zero
delays) by observing that, from the point of view of subtask S and its siblings,
the system at that instant is equivalent to an N -server split-merge system in which
parallel server i has service time distribution Erlang(qi(t) + 1, µi), where qi(t) is
a number of subtasks in front of S or its sibling subtask in parallel queue i at time
t. The qi(t) form vector q(t) =

(
q1(t), q2(t), . . . , qN (t)

)
. We can then exploit the

optimisation method we developed in our previous work [24–26] to determine a
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vector of (near-)optimal deterministic subtask delays d =
(
d1, d2, . . . , dN

)
. Here

element di denotes the deterministic delay which should notionally be applied to
parallel server i. In fact we only adopt the delays corresponding to S and its siblings
that are at the front of their parallel queues and which have not yet entered service
(note this may involve overwriting a currently pending delay).

Similarly at time instants at which a subtask S enters a join queue (or output buffer)
then we immediately begin service of any of the siblings of S that are at the front of
their parallel queues.

The objective function of the optimisation is mean subtask dispersion, computed
as the difference between the maximum and minimum heterogeneous order statistics
of the split-merge-equivalent system with delays. Utilising the linearity property of the
expectation operator over dependent variables, we have:

E[Dd] =
(
E[Xd

(N) −X
d
(1)]
)

=
(
E[Xd

(N)]− E[Xd
(1)]
)

=

∞∫
0

(
1−

N∏
i=1

Fi(x− di)
)
dx−

∞∫
0

(
1−

(
1−

N∏
i=1

(1− Fi(x− di))
))
dx (2)

where Fi(x− di) is a shifted Erlang(qi(t) + 1, µi) cumulative distribution function.
When optimising, we solve for:

dmin = arg min
d

E[Dd] (3)

while additionally applying the constraint (
∏
i

di = 0) to avoid the addition of superflu-

ous delays to bottleneck queues.
The optimisation procedure itself is based on Newton’s method. Practically, it utilises

numerical integration to evaluate the objective function and exploits a disk-based mem-
oisation technique to dramatically reduce the time cost of computing optimised delay
vectors for system states that have already been encountered in the current execution or
in some previous execution.

5 Numerical Results

In this section we present results from C++ simulations of fork-join and split-merge
queueing systems that employ the dynamic optimisation of the present paper for fork-
join systems and the static optimisation techniques developed in our previous work
[24,25] for split-merge systems. The simulations collect a range of performance-related
statistics, e.g. mean task response time, mean subtask dispersion, mean output utilisa-
tion of join/merge buffers, task throughput and distributions of subtask dispersion. The
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simulations were performed on a 3.5GHz Intel Core-i5 workstation with 8GB RAM.
Each simulation run is made up of 10 replicas, and each replica consists of a warm-up
period of the processing of 250 000 tasks followed by an measurement period of the
processing of 250 000 tasks. For the static optimisation techniques, it requires approx-
imately one second to run each replica, and for the dynamic optimisation of fork-join
simulator it takes around 7.5 minutes for each replica. The replicas are used to put 95%
confidence intervals (CIs) on all measures. Results are reported to three decimal places.

As our case study, consider a parallel system with Poisson arrivals with rate param-
eter λ = 0.78 tasks/time unit and 3 parallel service nodes with exponential service time
density functions: Exp(1), Exp(5), Exp(10).

In this context, we compute measures of subtask dispersion and of task response
time of five different types of fork-join and split-merge queueing systems:

1. A fork-join queueing system (without subtask delays). Here the mean task response
time is E[Rd=0] = 4.553 (95% CI [4.504, 4.602]) time units and mean subtask
dispersion E[Dd=0] = 4.490 (95% CI [4.429, 4.54]) time units. The mean number
of subtasks in the output buffer is 6.862 (95% CI [6.79, 6.93]).

2. A fork-join queueing system utilising our dynamic online algorithm for reducing
mean subtask dispersion. Here mean task response time is E[Rdmin

] = 4.703 (95%
CI [4.586, 4.819]) time units and mean subtask dispersion is E[Ddmin ] = 0.752(95%
CI [0.745, 0.759]) time units. The mean number of subtasks in the output buffer is
1.081 (95% CI [1.071, 1.091]). When compared with the fork-join system with-
out subtask delays, we observe mean task response time increased very slightly by
3.3% but mean subtask dispersion dropped very dramatically by 83%. Similarly,
the mean number of subtasks in the output buffer decreased by 84%.

3. A split-merge queueing system (without subtask delays). Mean task response time
is E
[
Rd=0,λ=0.78

]
= 5.212 (95% CI [5.1526, 5.271]) time units and mean subtask

dispersion is E[Dd=0] = 0.976 (95% CI [0.975, 0.977]) time units. The mean
number of subtasks in the output buffer is 1.416 (95% CI [1.415, 1.418]). This
method is thus completely dominated by our dynamic online algorithm for each of
these metrics, by factors of 11%, 30% and 31% respectively.

4. A split-merge queueing system with delays applied to reduce mean subtask disper-
stion [24]. The vector of optimised delays is:

dmin = (0, 0.553, 0.617)

Mean task response time is E
[
Rdmin,λ=0.78

]
= 63.02(95% CI [58.21, 67.83]) time

units and mean subtask dispersion is E[Ddmin ] = 0.783 (95% CI [0.780, 0.785])
time units. The mean number of subtasks in the output buffer is 1.029 (95% CI
[1.027, 1.031]). This method is dominated by our dynamic online algorithm with
respect to the mean task response time and mean subtask dispersion metrics, by
factors of 1240% and 4% respectively. There is however a 5% improvement with
respect to the mean number of subtasks in the output buffer.

5. A split-merge queueing system with delays applied to optimise the product of mean
task response time and mean subtask dispersion [25]. The vector of optimised de-
lays is:

dmin = (0.0, 0.0398, 0.0673)
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Mean task response time is E
[
Rdmin,λ=0.78

]
= 5.329(95% CI [5.272, 5.385]) time

units and mean subtask dispersion is E[Ddmin
] = 0.9343(95% CI [0.9336, 0.9349])

time units. The mean number of subtasks in the output buffer is 1.355 (95% CI
[1.353, 1.357]). While improving dramatically on the mean task response of the
previous case, the method is completely dominated by our dynamic online algo-
rithm for each metric, by factors of 13%, 24% and 25% respectively.
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Fig. 4: Distributions of task response time for fork-join and split-merge queueing sys-
tems with and without optimised subtask delays. λ = 0.78

Turning now to distributions of task response time, Fig. 4 demonstrates that the
task response time cdf of the fork-join system with dispersion-optimised delays is very
close to that of the fork-join system without subtask delays. Here, the response time cdf
of the split-merge system without subtask delays is marginally worse than that of the
fork-join system, but after applying dispersion-optimised delays response time suffers
heavily. Applying delays optimised for the subtask dispersion–task response time trade-
off impacts only marginally on task response time.

Fig. 5 shows the corresponding distributions of subtask dispersion. The poor sub-
task dispersion of the fork-join system without subtask delays is evident. Applying
subtask delays optimised for the subtask dispersion–task response time trade-off yields
a similar subtask dispersion profile to that of the split-merge system without delays. The
subtask dispersion profile of the fork-join system with dispersion-optimised delays is
competitive with that of the split-merge system with dispersion-optimised delays, and
even dominates it for percentiles of subtask dispersion below 70%.
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Fig. 6 shows how mean task response time varies with various task arrival rates un-
der the various policies. We observe the split-merge system with dispersion-optimised
delays has the lowest maximum sustainable system throughput, followed by the split-
merge system with delays optimised for the subtask dispersion–task response time
trade-off, and then the split-merge system without delays. The highest maximum sus-
tainable system throughput is provided by the fork-join system utilising dispersion-
optimised subtask delays and the fork-join system without subtask delays.

6 Conclusion

In this paper we considered the problem of reducing subtask dispersion in elemen-
tary fork-join queueing systems. To control this metric, we derived an online algorithm
which dynamically computes and applies state-dependent delays to subtasks and their
siblings at various time instants.

We demonstrated our algorithm on a case study parallel system subjected to five
different kinds of split-merge and fork-join queueing policies. The results show how
the technique proposed in the present paper is able to deliver low subtask dispersion
competitive with split-merge-based systems while simultaneously delivering low task
response times competitive with fork-join-based systems.

Our current research can no doubt be extended to apply to fork-join systems with
non-exponential services times. Certainly extension to Erlang and phase-type service
time distributions is likely to be straightforward given appropriate extensions to the
system state vector.
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