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Abstract. Policy Gradient methods that explore directly in parame-
ter space are among the most effective and robust direct policy search
methods and have drawn a lot of attention lately. The basic method from
this field, Policy Gradients with Parameter-based Exploration, uses two
samples that are symmetric around the current hypothesis to circumvent
misleading reward in asymmetrical reward distributed problems gath-
ered with the usual baseline approach. The exploration parameters are
still updated by a baseline approach - leaving the exploration prone to
asymmetric reward distributions. In this paper we will show how the
exploration parameters can be sampled quasi symmetric despite having
limited instead of free parameters for exploration. We give a transforma-
tion approximation to get quasi symmetric samples with respect to the
exploration without changing the overall sampling distribution. Finally
we will demonstrate that sampling symmetrically also for the exploration
parameters is superior in needs of samples and robustness than the orig-
inal sampling approach.

1 Introduction

Policy Gradient (PG) methods that explore directly in parameter space have
some major advantages over standard PG methods, like described in [1,2,3,4,5,6]
and [7] and have therefore drawn a lot of attention in the last years. The ba-
sic method from the field of Parameter Exploring Policy Gradients (PEPG) [8],
Policy Gradients with Parameter-based Exploration (PGPE) [1], uses two sam-
ples that are symmetric around the current hypothesis to circumvent misleading
reward in asymmetrical reward distributed problems, gathered with the usual
baseline approach. [4] shows that Symmetric Sampling (SyS) is superior even
to the optimal baseline. The exploration parameters, however, are still updated
by a baseline approach - leaving the exploration prone to asymmetric reward
distributions. While the optimal baseline improved this issue substantially, like
shown again by [4], it is likely that removing the baseline altogether by a SyS
wrt. the exploration parameters will be again superior. Because the exploration
parameters are standard deviations that are bounded between zero and infin-
ity, there exist no correct symmetric samples wrt. the exploration parameters.
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2 Frank Sehnke

We will, however, show how the exploration parameters can be sampled quasi
symmetric. We give therefore a transformation approximation to get quasi sym-
metric samples without changing the overall sampling distribution significantly,
so that the PGPE assumptions based on normal distributed samples still hold.
Finally we will demonstrate via experiments that sampling symmetrically also
for the exploration parameters is superior in needs of samples and robustness
compared to the original sampling approach, if confronted with search spaces
with significant amounts of local optima.

2 Method

In this section we derive the super-symmetric sampling (SupSyS) method. We
show how the method relates to SyS and sampling with a baseline, thereby
summarizing the derivation from [1] for SyS and baseline sampling PGPE.

2.1 Parameter-Based Exploration

To stay conform with the nomenclature of [1] and [4], we assume a Markovian
environment that produces a cumulative reward r for a fixed length episode,
history, trajectory or roll-out. In this setting, the goal of reinforcement learning
is to find the optimal policy parameters θ that maximize the agent’s expected
reward

J(θ) =

∫
H

p(h|θ)r(h)dh. (1)

An obvious way to maximize J(θ) is to estimate ∇θJ and use it to carry out
gradient ascent optimization. The probabilistic policy used in standard PG is
replaced with a probability distribution over the parameters θ for PGPE. The
advantage of this approach is that the actions are deterministic, and an entire
history can therefore be generated from a single parameter sample. This reduc-
tion in samples-per-history is what reduces the variance in the gradient estimate
(see [1] for details).

We name the distribution over parameters in accordance with [1] ρ. The
expected reward with a given ρ is

J(ρ) =

∫
Θ

∫
H

p(h,θ|ρ)r(h)dhdθ. (2)

Differentiating this form of the expected return with respect to ρ and apply-
ing sampling methods (first choosing θ from p(θ|ρ), then running the agent to
generate h from p(h|θ)) yields the following gradient estimator:

∇ρJ(ρ) ≈ 1

N

N∑
n=1

∇ρ log p(θ|ρ)r(hn). (3)

Assuming that ρ consists of a set of means {µi} and standard deviations {σi}
that determine an independent normal distribution for each parameter θi in
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θ gives the following forms for the derivative of the characteristic eligibility
log p(θ|ρ) with respect to µi and σi

∇µi log p(θ|ρ) =
(θi − µi)

σ2
i

, ∇σi log p(θ|ρ) =
(θi − µi)2 − σ2

i

σ3
i

, (4)

which can be substituted into Eq. (3) to approximate the µ and σ gradients.

2.2 Sampling with a Baseline

Given enough samples, Eq. (3) will determine the reward gradient to arbitrary
accuracy. However each sample requires rolling out an entire state-action his-
tory, which is expensive. Following [9], we obtain a cheaper gradient estimate
by drawing a single sample θ and comparing its reward r to a baseline reward
b given e.g. by a moving average over previous samples. Intuitively, if r > b we
adjust ρ so as to increase the probability of θ, and r < b we do the opposite. If,
as in [9], we use a step size αi = ασ2

i in the direction of positive gradient (where
α is a constant) we get the following parameter update equations:

∆µi = α(r − b)(θi − µi), ∆σi = α(r − b) (θi − µi)2 − σ2
i

σi
. (5)

Usually the baseline is realized as decaying or moving average baseline of the
form:

b(n) = γr(hn−1) + (1− γ)b(n− 1) or b(n) =

N∑
n=N−m

r(hn)/m (6)

[4] showed recently that an optimal baseline can be achieved for PGPE and the
algorithm converges significantly faster with an optimal baseline of the form:

b∗ =
E[r(h)||∇ρ log p(θ|ρ)||2]

E[||∇ρ log p(θ|ρ)||2]
. (7)

2.3 Symmetric Sampling

While sampling with a baseline is efficient and reasonably accurate for most
scenarios, it has several drawbacks. In particular, if the reward distribution is
strongly skewed then the comparison between the sample reward and the baseline
reward is misleading. A more robust gradient approximation can be found by
measuring the difference in reward between two symmetric samples on either
side of the current mean. That is, we pick a perturbation ε from the distribution
N (0,σ), then create symmetric parameter samples θ+ = µ+ ε and θ− = µ− ε.
Defining r+ as the reward given by θ+ and r− as the reward given by θ−. We
can insert the two samples into Eq. (3) and make use of Eq. (4) to obtain

∇µi
J(ρ) ≈ εi(r

+ − r−)

2σ2
i

, (8)
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Fig. 1. Normal distribution and the final
approximation of the ’mirrored’ distribu-
tion.

Fig. 2. Normal distribution and the re-
gions that are transfered into each other
by ’reflecting’ the samples on the other
side of the median deviation.

which resembles the central difference approximation used in finite difference
methods. Using the same step sizes as before gives the following update equation
for the µ terms

∆µi =
αεi(r

+ − r−)

2
. (9)

The updates for the standard deviations are more involved. As θ+ and θ− are
by construction equally probable under a given σ, the difference between them

cannot be used to estimate the σ gradient. Instead we take the mean r++ r−

2 of
the two rewards and compare it to the baseline reward b. This approach yields

∆σi = α

(
r+ + r−

2
− b
)(

ε2i − σ2
i

σi

)
(10)

SyS removes the problem of misleading baselines, and therefore improves the µ
gradient estimates. It also improves the σ gradient estimates, since both samples
are equally probable under the current distribution, and therefore reinforce each
other as predictors of the benefits of altering σ. Even though symmetric sampling
requires twice as many histories per update, [1] and [4] have shown that it gives
a considerable improvement in convergence quality and time.

2.4 Super-Symmetric Sampling

While SyS removes the misleading baseline problem for the µ gradient estimate,
the σ gradient still uses a baseline and is prone to this problem. On the other
hand there is no correct symmetric sample with respect to the standard devi-
ation, because the standard deviation is bounded on the one side to 0 and is
unbounded on the positive side. Another problem is that 2

3 of the samples are
on one side of the standard deviation and only 1

3 on the other - mirroring the
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samples to the opposite side of the standard deviation in some way, would there-
fore deform the normal distribution so much, that it would no longer be a close
enough approximation to fulfill the assumptions that lead to the PGPE update
rules.

We therefore chose to define the normal distribution via the mean and the
median deviation φ. The median deviation is due to the nice properties of the
normal distribution simply defined by: φ = 0.67449 · σ. We can therefore draw
samples from the new defined normal distribution: ε ∼ Nm(0,φ).

The median deviation has by construction an equal amount of samples on
either side and solves therefore the symmetry problem of mirroring samples.
The update rule Eq. (9) stays unchanged while Eq. (10) is only scaled by 1

0.67449
(the factor that transforms φ in σ) that can be substituted in ασ.

While the update rules stay the same for normal distributed sampling using
the median deviation (despite a larger ασ), the median deviation is still also
bounded on one side. Because the mirroring cannot be solved in closed form we
resort to approximation via a polynomial that can be transfered to an infinite
series. We found a good approximation for mirroring samples by:

ai =
φi− | εi |

φi
, ε∗i = sign(εi) · φi ·

{
e
c1
|ai|

3−|ai|
log(|ai|)

+c2|ai| if ai ≤ 0

eai/(1.− a3i )c3ai if ai > 0,
(11)

with the following constants: c1 = −0.06655, c2 = −0.9706, c3 = 0.124. This mir-
rored distribution has a standard deviation of 1.002 times the original standard
deviation and looks like depicted in Fig. 1. Fig. 2 shows the regions of sam-
ples that are transfered into each other while generating the quasi symmetric
samples.

Additional to the symmetric sample with respect to the mean hypothesis,
now we also can generate two quasi symmetric samples with respect to the
median deviation. We named this set of four samples super symmetric samples
(SupSyS-samples). They allow for completely baseline free update rules, not only
for the µ update but also for the σ updates.

Therefore the two symmetric sample pairs are used to update µ according
to Eq. (9). σ is updated in a similar way by using the mean reward of each
symmetric sample pair, there r++ is the mean reward of the original symmetric
sample pair and r−− is the mean reward of the mirrored sample pair. The SupSyS
update rule for the σ update is given by:

∆σi =
α
ε2i−σ

2
i

σi
(r++ − r−−)

2
. (12)

3 Experiments and Results

We use the square function as search space instance with no local optima and
the Rastrigin function (see Fig. 8) as search space with exponentially many local
optima, to test the different behavior of SupSyS- and SyS-PGPE. The two meta-
parameters connected with SyS-PGPE as well as with SupSyS-PGPE, namely
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Fig. 3. Convergence plots of PGPE and
SupSyS-PGPE on the 100 dimensional
square function. The mean and standard
deviation of 200 independent runs are
shown.

Fig. 4. Convergence plots of PGPE and
SupSyS-PGPE on the 10 dimensional Ras-
trigin function. The mean and standard
deviation of 200 independent runs are
shown.

the step sizes for the µ and σ updates, were optimized for every experiment via
a grid search. The Figures 3 to 6 show the means and standard deviations of
200 independent runs each. It can be seen in Fig. 3 that for a search space with
no local optima SupSyS-PGPE shows no advantage over standard SyS-PGPE.
However, despite using 4 samples per update the performance is also not reduced
by using SupSyS-PGPE — the two methods become merely equivalent. The
situation changes drastically if the Rastrigin function is used as test function.
Not only needs SupSyS-PGPE about half the samples compared to PGPE, the
effect seems also to become stronger the higher dimensional the search space

Fig. 5. Convergence plots of PGPE,
PGPE with 4 samples (PGPE4smp),
conditional SupSyS-PGPE (SupIf-PGPE)
and SupSyS-PGPE on the 100 dimen-
sional Rastrigin function. The mean and
standard deviation of 200 independent
runs are shown.

Fig. 6. Convergence plots of PGPE and
SupSyS-PGPE on the 1000 dimensional
Rastrigin function. The mean and stan-
dard deviation of 200 independent runs
are shown.
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Fig. 7. Optimal meta-parameters for the
multi-dimensional Rastrigin function for
PGPE and SupSyS-PGPE.

Fig. 8. Visualization of the 2D Rastrigin
function.

gets (see Fig. 4 to Fig. 6). We also added SupSyS-PGPE plots with the for SyS-
PGPE optimal (less greedy) meta parameters to show that the effect is not only
due to the more aggressive meta parameters. This runs were also more efficient
than for PGPE, the effect was however not so distinct.

In Fig. 5 we also show a standard PGPE experiment with 4 samples (2 SyS
samples — PGPE4smp) instead of 2 to show that the improved performance
is not due to the different samples per update. Fig. 5 additionally shows an
experiment (SupIf-PGPE) there symmetric samples are only drawn if the first
sample(s) result in worse reward than a decaying average baseline. The intuitive
idea behind symmetric samples was initially that changing the parameters away
from the current sample if the sample resulted in lower than average reward may
move the mean hypothesis still in a worse region of the parameter space. Search
spaces like the one given in the Rastrigin function can visualize this problem.
For SupIf-PGPE one Sample is drawn. If the reward is larger than the baseline
then an update is done immediately. If not, a symmetric sample is drawn. Is
the mean reward connected with both samples better than the baseline an SyS-
PGPE update is done. If also this mean reward is worse than the baseline, a
full SupSyS-PGPE update with 2 additional SyS samples is performed. As can
be seen in Fig. 5 the performance is worse by some degree — the difference is
however small enough that maybe the optimal baseline approach would improve
this method enough to be challenging to SupSyS-PGPE (see also Sec. 4).

The optimal meta-parameters are an exponential function of the search space
dimension, like to expect, so that we observe a line in the loglog-plot of Fig. 7.
For SupSyS-PGPE the meta-parameters are about 2 times larger than for SyS-
PGPE. This is partly because SupSyS-PGPE uses four samples per update in-
stead of two. But the optimal meta-parameters are also larger than for the
PGPE4smp experiment so that the symmetric nature of the four SupSyS sam-
ples obviously brings additional stability in the gradient estimate than a pure
averaging over 4 samples would.
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4 Conclusions and Future Work

We introduced SupSyS-PGPE, a completely baseline free PGPE that uses quasi-
symmetric samples wrt. the exploration parameters. We showed that on the
Rastrigin function, as example for a test function with exponentially many lo-
cal optima, this novel method is clearly superior to standard SyS-PGPE and
that both methods become equivalent in performance if the search space lack
distracting local optima.

For future work we want to highlight that SupSyS-PGPE can be easily com-
bined with other extensions of PGPE. Multi-modal PGPE [10] can be equipped
straight forward with SupSyS sampling. Also the natural gradient used for PGPE
in [3] can be defined over the SupSyS gradient instead over the vanilla gradient.
If the full 4 super symmetric sample set is only used if the first samples are worse
than a baseline (like described as SupIf-PGPE in Sec. 3) a combination with the
optimal baseline (described for PGPE in [4]) can yield a superior method to both
SupSyS-PGPE and optimal baseline PGPE. Also importance mixing introduced
for PGPE by [5] is applicable to SupSyS-PGPE.

Finally a big open point for future work is the validation of the mere the-
oretical findings on real world problems, e.g. robotic tasks, for SupSyS-PGPE
and its combination with other PGPE extensions.
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