Skip to main content

The Imbalance Network and Incremental Evolution for Mobile Robot Nervous System Design

  • Conference paper
  • 6108 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Abstract

Automatic design of neurocontrollers (as in Evoluationary Robotics) utilizes incremental evolution to solve for more complex behaviors. Also manual design techniques such as task decomposition are employed. Manual design itself can benefit from focusing on using incremental evolution to add more automatic design. The imbalance network is a neural network that integrates incremental evolution with an incremental design process without the need for task decomposition. Instead, the imbalance network uses the mechanism of the equilibrium-action cycle to structure the network while emphasizing behavior emergence. An example 11-step design (including a 5-step evolutionary process) is briefly mentioned to help ground the imbalance network concepts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

    Article  Google Scholar 

  2. Duarte, M., Oliveira, S., Christensen, A.L.: Hierarchical evolution of robotic controllers for complex tasks. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–6. IEEE (November 2012)

    Google Scholar 

  3. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

    Article  Google Scholar 

  4. Harvey, I., Husbands, P., Cliff, D., Thompson, A., Jakobi, N.: Evolutionary robotics: the Sussex approach. Robotics and Autonomous Systems 20(2), 205–224 (1997)

    Article  Google Scholar 

  5. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adaptive Behavior 5(3-4), 317–342 (1997)

    Article  Google Scholar 

  6. Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1161–1168. IEEE (May 2009)

    Google Scholar 

  7. Seth, A.K.: Evolving action selection and selective attention without actions, attention, or selection. In: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior on From Animals to Animats, vol. 5, pp. 139–146 (September 1998)

    Google Scholar 

  8. Togelius, J.: Evolution of a subsumption architecture neurocontroller. Journal of Intelligent and Fuzzy Systems 15(1), 15–20 (2004)

    Google Scholar 

  9. Harvey, I.: Cognition is not computation; evolution is not optimisation. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 685–690. Springer, Heidelberg (1997)

    Google Scholar 

  10. Olivier, P., Arostegui, J.M.M.: The Equilibrium-action cycle as a mechanism for design-evolution integration in autonomous behavior design. In: 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 190–197. IEEE (June 2012)

    Google Scholar 

  11. E-puck educational robot, http://www.e-puck.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olivier, P., Moreno Arostegui, J.M. (2013). The Imbalance Network and Incremental Evolution for Mobile Robot Nervous System Design. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics