Skip to main content

Estimating Shapley Values for Fair Profit Distribution in Power Planning Smart Grid Coalitions

  • Conference paper
Book cover Multiagent System Technologies (MATES 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8076))

Included in the following conference series:

Abstract

In future, highly dynamic energy grids a likely scenario is to have dynamically founded groups of distributed energy resources that are in charge of jointly delivering a demanded load schedule for a certain time horizon. In market based scenarios, such a demanded load schedule would be a (day ahead) product that is to be delivered by a coalition of energy resources. Computational aspects of the underlying optimization problem or of proper coalition formation are already subject to many research efforts. In this paper, we focus on the question of fairly sharing the profit among the members of such a coalition. Distributing the surplus merely based on the absolute (load) contribution does not take into account that smaller units maybe provide the means for fine grained control as they are able to modify their load on a smaller scale. Shapley values provide a concept for the decision on how the generated total surplus of an agent coalition should be spread. In this paper, we propose a scheme for efficiently estimating computationally intractable Shapley values as a prospective base for future surplus distribution schemes for smart grid coalitions and discuss some first ideas on how to use them for smart grid active power product coalitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market–based self–organized provision of active power and ancillary services. IEEE (June 2012)

    Google Scholar 

  2. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden (2010)

    Google Scholar 

  3. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the shapley value. Artif. Intell. 172(14), 1673–1699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mao, Y., Li, M.: Optimal reactive power planning based on simulated annealing particle swarm algorithm considering static voltage stability. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, vol. 1, pp. 106–110. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  5. Xiong, W., Li, M.: An improved particle swarm optimization algorithm for unit commitment. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, vol. 1, pp. 21–25. IEEE Computer Society, Washington, DC (2008)

    Google Scholar 

  6. Pereira, J., Viana, A., Lucus, B., Matos, M.: A meta-heuristic approach to the unit commitment problem under network constraints. International Journal of Energy Sector Management 2(3), 449–467 (2008)

    Article  Google Scholar 

  7. Guan, X., Zhai, Q., Papalexopoulos, A.: Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming, vol. 2, p. 1100 (2003)

    Google Scholar 

  8. Franch, T., Scheidt, M., Stock, G.: Current and future challenges for production planning systems. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M., Pardalos, P.M. (eds.) Optimization in the Energy Industry. Energy Systems, pp. 5–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Tröschel, M., Appelrath, H.-J.: Towards reactive scheduling for large-scale virtual power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 141–152. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Gatterbauer, W.: Economic efficiency of decentralized unit commitment from a generator’s perspective. In: Ilic, M. (ed.) Engineering Electricity Services of the Future. Springer (2010)

    Google Scholar 

  11. Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents (May 2007)

    Google Scholar 

  12. Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., Akkermans, H.: Agent-based electricity balancing with distributed energy resources, a multiperspective case study. In: Hawaii International Conference on System Sciences, p. 173 (2008)

    Google Scholar 

  13. Kamper, A., Eßer, A.: Strategies for decentralised balancing power. In: Lewis, A., Mostaghim, S., Randall, M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 261–289. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Mihailescu, R.C., Vasirani, M., Ossowski, S.: Dynamic coalition adaptation for efficient agent-based virtual power plants. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973, pp. 101–112. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based control for decentralised demand side management in the smart grid. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS, pp. 5–12. IFAAMAS (2011)

    Google Scholar 

  16. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press (June 1995)

    Google Scholar 

  17. Kahan, J., Rapoport, A.: Theories of coalition formation. Basic Studies in Human Behavior. L. Erlbaum Associates (1984)

    Google Scholar 

  18. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. 1st edn. The MIT Press (July 1994)

    Google Scholar 

  19. Hsu, M.C., Soo, V.W.: Fairness in cooperating multi-agent systems – using profit sharing as an example. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 153–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Friedman, E., Moulin, H.: Three methods to share joint costs or surplus. Journal of Economic Theory 87(2), 275–312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sen, A.K.: Labour allocation in a cooperative enterprise. The Review of Economic Studies 33(4), 361–371 (1966)

    Article  Google Scholar 

  22. Lima, J., Pereira, M., Pereira, J.: An integrated framework for cost allocation in a multi-owned transmission-system. IEEE Transactions on Power Systems 10(2), 971–977 (1995)

    Article  Google Scholar 

  23. Mas-Colell, A.: Remarks on the game-theoretic analysis of a simple distribution of surplus problem. International Journal of Game Theory 9, 125–140 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Champsaur, P.: How to share the cost of a public good? International Journal of Game Theory 4, 113–129 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saad, W., Han, Z., Poor, H.V., Basar, T.: Game theoretic methods for the smart grid. CoRR abs/1202.0452 (2012)

    Google Scholar 

  26. Yen, J., Yan, Y.H., Wang, B.J., Sin, P.K.H., Wu, F.F.: Multi-Agent Coalition Formation in Power Transmission Planning. In: Hawaii International Conference on System Sciences, pp. 433–443 (1998)

    Google Scholar 

  27. Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., Jennings, N.: Cooperatives of distributed energy resources for efficient virtual power plants. In: The Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), May 2011, pp. 787–794 (2011) (event dates: May 2-6, 2011)

    Google Scholar 

  28. Rapoport, A.: N-person game theory. Concepts and applications. Ann Arbor science library. Univ. of Michigan Pr. (1970)

    Google Scholar 

  29. Shapley, L.S.: A value for n-person games. Contributions to the theory of games 2, 307–317 (1953)

    MathSciNet  Google Scholar 

  30. Ma, R., Chiu, D., Lui, J., Misra, V., Rubenstein, D.: Internet economics: the use of shapley value for isp settlement. In: Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT 2007, pp. 6:1–6:12. ACM, New York (2007)

    Google Scholar 

  31. Liben-Nowell, D., Sharp, A., Wexler, T., Woods, K.: Computing shapley value in supermodular coalitional games. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 568–579. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theor. Comput. Sci. 263(1-2), 306–310 (2001)

    Article  MathSciNet  Google Scholar 

  34. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mann, I., Shapley, L.: Values of large games, iv: Evaluating the electoral college by montecarlo techniques. Technical report, Santa Monica, CA: RAND Corporation (1960)

    Google Scholar 

  36. Bachrach, Y., Markakis, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S., eds.: AAMAS (2), IFAAMAS, 943–950 (2008)

    Google Scholar 

  37. Owen, G.: Multilinear extension of games. Management Science 18(5–Part–2), 64–79 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leech, D.: Computing power indices for large voting games. Management Science 49(6), 831–837 (2003)

    Article  MATH  Google Scholar 

  39. Zlotkin, G., Rosenschein, J.S.: Coalition, cryptography, and stability: Mechanisms for coalition formation in task oriented domains. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 32–437. AAAI Press (1994)

    Google Scholar 

  40. Bremer, J., Sonnenschein, M.: A distributed greedy algorithm for constraint-based scheduling of energy resources. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS, pp. 1285–1292 (2012)

    Google Scholar 

  41. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft. Comput. 2010, 1–19 (2010)

    Article  Google Scholar 

  42. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), Paris, France (April 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremer, J., Sonnenschein, M. (2013). Estimating Shapley Values for Fair Profit Distribution in Power Planning Smart Grid Coalitions. In: Klusch, M., Thimm, M., Paprzycki, M. (eds) Multiagent System Technologies. MATES 2013. Lecture Notes in Computer Science(), vol 8076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40776-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40776-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40775-8

  • Online ISBN: 978-3-642-40776-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics