
Distributed Finite-State Runtime Monitoring with
Aggregated Events?

Kevin Falzon1, Eric Bodden1, and Rahul Purandare2

1 European Center for Security and Privacy by Design (EC-SPRIDE)
{kevin.falzon, eric.bodden}@ec-spride.de

2 Department of Computer Science and Engineering
University of Nebraska-Lincoln

rpuranda@cse.unl.edu

Abstract. Security information and event management (SIEM) systems usually
consist of a centralized monitoring server that processes events sent from a large
number of hosts through a potentially slow network. In this work, we discuss how
monitoring efficiency can be increased by switching to a model of aggregated
traces, where monitored hosts buffer events into lossy but compact batches. In
our trace model, such batches retain the number and types of events processed,
but not their order.
We present an algorithm for automatically constructing, out of a regular finite-
state property definition, a monitor that can process such aggregated traces. We
discuss the resultant monitor’s complexity and prove that it determines the set of
possible next states without producing false negatives and with a precision that is
optimal given the reduced information the trace carries.

1 Introduction

In this work, we consider a common scenario to which runtime monitoring is nowa-
days often applied, namely that of security information and event management (SIEM)
systems [9]. Such systems, mainly designed for intrusion detection or the discovery of
insider attacks, usually comprise a centralized monitoring server that processes events
sent from a large number of hosts within a local company network. At peak times, these
hosts might be slowed down significantly, as they block while trying to synchronously
send off event information to an overloaded monitoring server [11].

We address this problem by proposing a trace model in which the monitored hosts
can aggregate parts of the event stream, retaining the number and types of events pro-
cessed, but not their order. Discarding ordering information allows event streams to be
compressed effectively, whilst retaining event frequencies and types maintains a certain
level of precision. In comparison to related work [5, 12], this trace model is not prob-
abilistic and does not allow for “gaps” in the event stream—every occurring event is

? This work was supported by the German Federal Ministry of Education and Research (BMBF)
within EC SPRIDE. (www.ec-spride.de)
This is a revised edition of the version presented at RV2013. The definition of modulo, and
consequently, the evaluation function, has been redefined. The transformation of constraint
expressions under unbounded iteration has also been modified to correctly handle star depth.

www.ec-spride.de

indeed accounted for. The aggregated trace rather provides an over-approximation that
implicitly includes all permutations of the original trace it represents.

As the main contribution of this paper, we define an algorithm to automatically de-
rive, from a finite-state property definition, a runtime monitor that can process such
aggregated traces. We prove that the current formulation of our algorithm produces
monitors that are guaranteed not to miss property violations. As we also show, the mon-
itor processes the compressed event stream in bounded time, while not producing more
false positives than a naı̈ve monitor that traverses the original property state machine
using all possible permutations of the original event trace. Our algorithm can be eas-
ily parameterized with different acceptance conditions that can decrease the number of
warnings further while allowing for some missed violations.

To summarize, this paper presents the following original contributions:

– a general trace model in which trace producers supply, for certain periods of time,
aggregated information about events that occurred during those periods,

– an algorithm that automatically constructs a monitor for such traces from a finite-
state property definition,

– a proof that the algorithm always converges and that the resulting monitor is guaran-
teed not to miss any actual violations and is optimally precise given the aggregated
trace information it receives, and

– a complexity estimation for the resulting monitoring algorithm.

The remainder of this paper is structured as follows. Section 2 presents a motivating
example, leading to a description of constraint automata in Section 3. Section 4 defines
a process for translating finite state automata into constraint automata, and Section 5 re-
gards complexity and implementation considerations. The paper discusses related work
in Section 6 and concludes in Section 7.

2 Introductory Example

S

A1 A2

B1 B2 B3

logout

login

login

logout logout

Fig. 1: A deterministic automaton.

Consider the automaton illustrated in Figure 1. We follow the model of a trace
classifier, where different accepting states can cause different error messages, for in-
stance as implemented through JavaMOP [8]. In this example, both the event sequences

2

logout ·login and login ·logout are in the language of the automaton, yet they lead
to different states, which in our model means that they would be classified differently.

In this work, we consider the situation where monitored hosts in a distributed system
wish to compress data to decrease the load on the network. One of the most effective
ways to compress an event trace is to aggregate all occurring events in a data structure
that captures the events’ types and frequencies but discards their order. In our example,
the host could retain the number of times that login and logout events were observed.
The monitor would then face the challenge that, on receiving a compressed batch of two
events, the next state would be uncertain (A2 or B2). Importantly, though, receiving a
subsequent logout event would confirm that the automaton must be in state B3, and
would cause the automaton to converge onto a single state.

A naı̈ve approach to processing such “compressed traces” with incomplete informa-
tion about ordering constraints would be to define a special transition procedure over an
unmodified finite-state property automaton. In such a model, on receiving an aggregated
batch of events, one would be able to determine the possible next states by traversing
the automaton with each legal permutation of events that satisfies the aggregated input,
be it through brute-force generation of traces, or by using the automaton as a genera-
tor. Using the example illustrated in Figure 1, consider the case where the monitor has
observed the following compressed batch of events:

{〈logout, 2〉 , 〈login, 1〉}

This signifies the arrival of two logout events and one login event, without any in-
formation on the order in which they were received. In a different scenario, one might
consider aggregate traces that only record N, that is, the number of events that occurred,
without even recording their type. For such a model, any state reachable within N steps
of the current state is a potential next state. Preserving the type restricts the possible
next state set to a subset of these states. In general, the larger the window and number
of aggregated events, the greater the uncertainty of the end state, as the automaton will
have potentially progressed to a greater depth.

The problem with determining the next state set via naı̈ve traversal is that the run-
ning time will grow exponentially with the number of observed events. Thus, this work
proposes an ahead-of-time automaton transformation of finite-state property automata
into a data structure which, on being presented with a current state and an input of ag-
gregated events, computes the set of possible and valid next states efficiently, within a
time bounded by the size of the structure rather than that of the input.

3 Constraint Automata

The following section introduces the notions of constraints and constraint automata,
defining their structure, evaluation and traversal.

3.1 Overview

The transitions in a finite-state automaton determine the number, type and order of input
elements required to move between states. In the scenario we consider, compressed in-
puts are unordered, containing information only pertaining to each element’s frequency.

3

The problem of computing the set of next states can be reformulated in terms of
reachability. Each state can be seen as having a set of associated conditions, or con-
straints, on the input. If a constraint evaluates to true, then the system can transition
into that state. To compute a complete set of next states, one has to check these condi-
tions for every reachable state.

S 0 S 1 S 2
a a

State Constraint
S 0 #v

a = 0
S 1 #v

a = 1
S 2 #v

a = 2

Fig. 2: A linear automaton with constraints on a trace v received at S 0.

Figure 2 illustrates a very simple linear automaton, and the conditions required for
entering each other state when starting from S 0. The function #v

a returns the frequency
with which symbol a appears in trace v. The constraints defined are strict and unam-
biguous, referring to specific frequencies. Thus, for example, if one a is observed at S 0,
then the system can only be in state S 1.

S 0 S 1 S 2
a a

a State Constraint
S 0 #v

a = 0
S 1 #v

a ≥ 1
S 2 #v

a ≥ 2

Fig. 3: Modified constraints on introducing a loop at S 1.

Precision becomes an issue once loops enter the equation. Figure 3 illustrates an au-
tomaton similar to that shown in Figure 2, yet the addition of a self-loop has weakened
the conditions, which can now only place a lower bound on the number of observed
events. However, as can be seen in the example illustrated in Figure 4, loops do not al-
ways introduce ambiguity; in this example, the automaton goes to a unique state under
any input despite the presence of loops.

In general, fixed sequences of transitions precisely define the number of elements
that must be observed for the end state to be reached. Loops consume elements in
multiples of the number of elements along their path. For instance, the self-loop on S 1
in Figure 3 consumes a symbols in multiples of one, while the loop formed between S 1
and S 2 in Figure 4 consumes a symbols in multiples of two. In the presence of loops,
fixed sequences outside of loops will set a lower bound on the number of elements that
must be consumed.

4

S 0 S 1 S 2
a

a

a

State Constraint
S 0 #v

a = 0
S 1 #v

a ≥ 1 ∧ (#v
a − 1) mod 2 = 0

S 2 #v
a ≥ 2 ∧ (#v

a − 2) mod 2 = 0

Fig. 4: A flip-flop automaton. Following a mandatory single input, the automaton os-
cillates between S 1 and S 2, with the final state depending on whether an even or odd
number of inputs has been received.

3.2 The Constraint Automaton Model

The examples illustrated defined constraints with respect to a single start state. By con-
sidering every state as an initial state, one may construct a constraint automaton that
accepts aggregated event sets instead of single event inputs. A constraint automaton has
a state for each state in the original automaton, and a transition (and consequently a
constraint) for each pair of connected states. This allows the constraint automaton to
deduce the next states from any configuration, facilitating the processing of sequences
of compressed traces.

A constraint automaton is evaluated as a subset automaton, i.e., the “next state” is
modelled as a set of states, as the loss of event ordering may lead to multiple valid
traversals. In general, shorter compressed traces leave less room for ambiguity. Vary-
ing the degree of compression may help re-converge the automaton in instances where
the current state set is large (note that a sequence of aggregated event sets that are all
singletons is essentially equivalent to a regular trace).

Losing event ordering makes analysis inherently incomplete. More specifically, if a
trace leads to a final state in a given finite-state automaton, then its compressed version
may lead to multiple states in the derived constraint automaton. As will be seen in
Section 6, while certain alternative approaches apply statistical methods to determine
the most likely next state, a loss of information will generally introduce uncertainty.
Given that this incompleteness cannot be eliminated, it is more relevant to reason in
terms of relative precision, that is, if the permutations of a given trace lead to a certain
set of next states in a finite state automaton, then that trace’s compressed version must
return exactly the same set of next states in the constraint automaton.

Before progressing any further, we first define the notion of an aggregated event set,
and transforming a trace into such a set, as follows:

Definition 1 (Aggregated Event Set). An aggregated event set for an alphabet Σ is a
set of pairs mapping elements to frequencies, with one pair defined for each element in
Σ. The set of possible aggregated events for alphabet Σ, denoted byAΣ , is defined as:

AΣ
def
= {s |s ∈ 2Σ×N, |s| = |Σ |,

c1 ∈ s, c2 ∈ s, c1 = 〈a1, n1〉 , c2 = 〈a2, n2〉 , (c1 , c2)→ (a1 , a2)}

Definition 2 (Trace to Aggregated Count). The aggregated event set for a trace v over
events Σ, denoted by ↓#v

Σ , is defined as:

↓#v
Σ

def
=

{〈
a, #v

a
〉
| a ∈ Σ

}
5

3.3 Regular Expressions as Constraints

Based on the defined constraint-automaton model, the next step is to devise a method for
representing, deriving and evaluating the constraints. One possible constraint represen-
tation would be as regular expressions. For each pair of states in the original automaton,
one would derive regular expressions that encompass all paths that lead from one state
to the other. Several algorithms for deriving regular expressions from automata exist,
such as the one described by Brzozowski [7]. Given any two states q and q′ in an au-
tomaton, regexD(q, q′) will return a regular expression for the set of strings which,
starting from q, lead to q′, or ⊥ if there are no paths between the two states.

To evaluate a compressed trace against a regular expression constraint, one would
check whether the expression matches at least one legal permutation of the elements in
the compressed trace. However, this procedure is computationally expensive, making
regular expressions inadequate for representing constraints in a monitoring context.

3.4 Constraints and Constraint Expressions

Given the inadequacy of regular expressions for representing constraints, the remain-
der of this section details constraint expressions, which are more amenable to direct
comparisons with compressed traces. Section 4 then describes a rewriting system for
converting regular expressions into such constraint expressions.

Definition 3 (Modulus). A modulus is a pair (m, k) ∈ N × N, which we denote as m·k.

Definition 4 (Basic Constraint). A basic constraint C is a tuple of the form 2M
N·Σ

consisting of a set of moduli, a numerical offset, and the symbol being constrained.

Example 1. The constraint on entering state S 1 from S 2 in the automaton illustrated in
Figure 4 would be expressed as the following basic constraint:

{2·0}1·a

For an observed aggregate input v, this constraint would be true when at least one a
symbol has been observed (denoted by the subscript), and when #v

a − 1 is a multiple of
2. The precise evaluation procedure will be described in Section 3.5.

Definition 5 (Well-formed Constraint Vector). A constraint vector
−→
C is a set of basic

constraints. For a constraint vector to be well-formed with respect to an automaton
with alphabet Σ, it must contain exactly one basic constraint for each element of Σ.

Example 2. A well-formed constraint vector for an automaton with Σ def
= {a, b}.{

{2·0}1·a, ∅3·b

}
Definition 6 (Constraint Expression). A constraint expression Ĉ is a logical formula
of the form

Ĉ :=
−→
C | Ĉ ∨ Ĉ | Ĉ · Ĉ | Ĉn | Ĉ∗ | ⊥

6

The empty constraint expression is represented by ⊥, and Ĉ ∨ ⊥ ≡ ⊥ ∨ Ĉ ≡ Ĉ · ⊥ ≡
⊥ · Ĉ ≡ Ĉ, whereas ⊥∗ ≡ ⊥n ≡ ⊥

Definition 7 (Disjunctive Constraint Expression). A Disjunctive Constraint Expres-
sion (DCE) is a constraint expression consisting solely of well-formed constraint vec-
tors and ∨ operators.

Example 3. Two examples of constraint expressions on an automaton with Σ def
= {a, b},

the latter being a DCE. {
{5·0}2·a, ∅3·b

}∗
(1){

{5·0}2·a, ∅3·b

}
∨

{
∅3·a, {2·1}2·b

}
(2)

3.5 Evaluating Constraints

The function evalv(Ċ) evaluates a DCE Ċ on an aggregated event input v, and is defined
as follows:

evalv(⊥) def
= false

evalv(
−→
C) def

= ∃ks ∈ N∗. ∀Mi·a ∈
−→
C .

(
M = ∅ ∧ #v

a = i
)
∨

(M =
{
m·z1

1 ,m
·z2
2 , . . .m

·zn
n

}
∧

∑n
j=1 ksz j × M j = #v

a − i)

evalv(
−→
C1 ∨

−→
C2 ∨ . . . ∨

−→
Cn) def

= evalv(
−→
C1) ∨ evalv(

−→
C2) ∨ . . . ∨ evalv(

−→
Cn)

Example 4. eval{〈a,9〉,〈b,10〉}({5·1, 2·2}0·a{3·1, 2·3}3·b) is true, as 5k1 + 2k2 = 9 and 3k1 +

2k3 = 7 for k1 = 1, k2 = 2 and k3 = 2.

3.6 Traversing a Constraint Automaton

Algorithm 1 details a general approach to traversing a constraint automaton. The algo-
rithm is designed for online use, with the blocking nextInputEventCount() function
returning aggregated event counts collected by the monitoring system. Naturally, this
can readily be adapted for offline inputs.

When traversing an automaton, the algorithm must evaluate the constraint expres-
sion for each transition leaving the current state (line 9). Multiple constraint expressions
may evaluate to true simultaneously, which results in a set of possible next states. Thus,
the current automaton state must be modelled as a set of states, with the automaton
potentially being in any of those states. This non-determinism may arise even if the
original automaton was deterministic. For example, while the automaton illustrated in
Figure 1 is deterministic, it has branches that accept two traces with differing order but
equal event frequencies. Its constraint automaton (Figure 5) is thus afflicted by ambigu-
ity, as an aggregated input of two events would lead to the automaton potentially being
in either A2 or B2. A subsequent event would cause the automaton to converge onto B3.
As we detail in Section 5, determinizing the constraint automaton would not help, as the

7

Algorithm 1 On-line Traversal of a Constraint Automaton 〈Q, q0, Σ, F, Γ〉
1: Current ← {q0} . Start at initial state
2: loop . Perpetual loop
3: if (Current ∩ F , ∅) then . Check if potentially in a final state
4: reportError(Current) . Report current state set
5: end if
6: v← nextInputEventCount() . Get next map of aggregated events
7: nextQ ← ∅ . Reset next state set
8: for all c ∈ Current do . Determine next states for each current state
9: nextQ ← nextQ ∪

{
c′ | (c, Ċ, c′) ∈ Γ, evalv(Ċ)

}
10: end for
11: Current ← nextQ . Update with computed next states
12: end loop

S

A1 A2

B1 B2 B3

{
∅1·logout, ∅0·login

}

{
∅0·logout, ∅1·login

}

{
∅1·logout, ∅1·login

}
{
∅1·logout, ∅1·login

}

{
∅0·logout, ∅1·login

}

{
∅1·logout, ∅0·login

} {
∅1·logout, ∅0·login

}

{
∅2·logout, ∅1·login

}

Fig. 5: The constraint automaton derived from the automaton in Figure 1.

resulting deterministic automaton would still require a transition function that evaluates
the same set of transition constraints.

The size of Current may grow as well as shrink, the latter occurring when parallel
traversals converge onto a state, or when members of the set do not lead to valid next
states under the observed input. As presented, the algorithm never halts, instead report-
ing an error whenever Current contains some final state. This policy over-approximates
error states, which may lead to false alarms. To reduce them, one may consider using
other policies, such as reporting errors only when Current is composed entirely of final
states. Alternatively, one may augment the automaton with probabilistic information,
terminating based on the likelihood that the system is in an actual error state.

4 Constructing a Constraint Automaton from a Property FSA

The following defines the process of deriving constraint automata from finite state prop-
erties. The transformation is performed in two phases. In the first phase, regular expres-
sions are constructed for every pair of states in the property. In the second phase, each
regular expression is subsequently transformed into a constraint on frequencies.

4.1 Translating Regular Expressions into Constraint Expressions

The process of translating a regular expression into a constraint expression involves
two steps. The first step transforms the regular expression into an initial constraint

8

expression, and is performed by applying the regex-to-constraint expression operator
Σ
−⇁, defined as follows.

Definition 8 (Regex-To-CE). Given a regular expression R, one can derive a con-
straint expression Ĉ, whose vectors are well-formed with respect to an alphabet Σ. This
is denoted by R Σ

−⇁ Ĉ
def
= Ĉ = ~R�Σ, where ~�Σ is defined as:

~R1R2�Σ → ~R1�Σ · ~R2�Σ ~R1 | R2�Σ → ~R1�Σ ∨ ~R2�Σ

~Rn�Σ → ~R�
n
Σ ~R∗�Σ → ~R�

∗

Σ

~an�Σ → {∅n·a} ∪
⋃

e∈Σ\{a}

∅0·e

The transformation replaces operators from the regex domain into that of constraint
expressions, and transforms alphabetic symbols into well-formed constraint vectors.

Example 5. a2b {a,b}
−−−⇁ ({∅2·a} ∪ {∅0·b}) · ({∅1·b} ∪ {∅0·a}) ≡ {∅2·a, ∅0·b} · {∅0·a, ∅1·b}

4.2 From Constraint Expressions to DCEs

As can be seen in Example 5, the constraint expression produced by Σ
−⇁ will not nec-

essarily be a DCE (in this case, because it contains a concatenation operator), yet the
constraint evaluation function described in Section 3.5 is only defined for DCEs. The
remainder of this section defines the� operator, which must be repeatedly applied to a
constraint expression until a DCE is obtained.

Definition 9 (Distribution of Concatenation over Disjunction). We define � such
that concatenation distributes over disjunctions of expressions:

Ĉ ·
(
Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)
�

(
Ĉ · Ĉ1

)
∨

(
Ĉ · Ĉ2

)
∨ . . . ∨

(
Ĉ · Ĉn

)
Definition 10 (Concatenating Constraints). Two constraint vectors can be concate-
nated by adding the corresponding basic constraints’ offsets and modulo sets:

−→
C1 ·
−→
C2 �

{
(m1 ∪ m2)(n1+n2)·a | a ∈ Σ,m1n1·a ∈

−→
C1,m2n2·a ∈

−→
C2

}
Definition 11 (Bounded Repetition). The reduction of expressions repeated for a fixed
number of times is defined for a single constraint vector and a disjunction of constraint
expressions, as follows:

−→
Ck �

{
m(n×k)·a | mn·a ∈

−→
C
}

(
Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)k
�

∨
i1+i2+...+in=k

Ĉ
i1
1 · Ĉ

i2
2 · . . . · Ĉ

in
n

9

Definition 12 (Unbounded Repetition). The reduction of expressions within unbounded
repetition is defined for a single constraint vector and a disjunction of constraint expres-
sions, as follows: (

Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)∗
� Ĉ

∗

1 · Ĉ
∗

2 · . . . · Ĉ
∗
n

−→
C∗ �

{
(m ∪ toMod(n, k))n·a | mn·a ∈

−→
C ∧ ∃m′n′·a′ ∈

−→
C . m′ , ∅

}
∨{

toMod(n, k)0·a | mn·a ∈
−→
C
}

[k = idx()]

When defining� over expressions containing unbounded repetition, we assume the
existence of a function idx() that returns a natural number which is unique for every
single application of�. The function toMod() is defined as:

toMod(n, k) 7→ ∅ if n = 0;
{
n·k

}
otherwise

4.3 Building the Constraint Automaton

Based on the previous definitions, we can now define a construction for transforming a
finite-state automaton into a constraint automaton.

Definition 13 (Regular Expression to Constraint Expression). Given a regular ex-
pression R, CΣ(R) will return a DCE Ċ whose vectors are well-formed with respect to
Σ, such that R Σ

−⇁ Ĉ�∗ Ċ.

Definition 14 (FSA to CA). Given a finite-state automaton D
def
= 〈Q, q0, Σ, F, Γ〉 with

Q states, initial state q0 ∈ Q, alphabet Σ, final states F ⊆ Q, and Γ ⊆ Q × Σ × Q, one
can construct a constraint automaton CA

def
= 〈Q, q0, Σ, F, Γ′〉, where

Γ′
def
=

{
(q, Ċ, q′) | q, q′ ∈ Q,R = regexD(q, q′),R , ⊥, Ċ = CΣ(R)

}
The construction considers each pair of states, deriving the regular expressions and

converting them into constraint expressions. Each state in CAwill thus have a transition
to every other state with the corresponding constraint expression, provided that a path
between those states exists inD.

S 0 S 1 S 2

{
{2·0}1·a

} {
{2·0}1·a

}

{
{2·0}1·a

}

{
{2·0}2·a

}

{
{2·0}0·a

}{
{2·0}0·a

}
Fig. 6: Unambiguous constraint automaton for the flip-flop defined in Figure 4.

10

4.4 Examples

Example 6. The following example shows the derivation of a constraint from state S 0
to S 2 in Figure 7, which involves a repeated set of identical transitions, equivalent to
the bounded iteration of a group of regular expressions related via concatenation. As
with multinomial expansion, raising a DCE with m terms to a power n will result in a
constraint expression of

(
n+m−1

n

)
terms. In this example, the terms are reduced further,

yet in general, bounded iteration will produce long DCEs.

S 0 S 1 S 2

a3b

a5b

a7b

a3b

a5b

a7b

Fig. 7: Automaton for (a3b | a5b | a7b)2

(a3b | a5b | a7b)2

Σ
−⇁ ({∅3·a, ∅1·b} ∨ {∅5·a, ∅1·b} ∨ {∅7·a, ∅1·b})2

Regex-to-CE, Bounded Repetition,
Concatenation (8, 11, 10)

� {∅3·a, ∅1·b}
0 · {∅5·a, ∅1·b}

0 · {∅7·a, ∅1·b}
2 ∨

{∅3·a, ∅1·b}
0 · {∅5·a, ∅1·b}

2 · {∅7·a, ∅1·b}
0 ∨

{∅3·a, ∅1·b}
2 · {∅5·a, ∅1·b}

0 · {∅7·a, ∅1·b}
0 ∨

{∅3·a, ∅1·b}
1 · {∅5·a, ∅1·b}

1 · {∅7·a, ∅1·b}
0 ∨

{∅3·a, ∅1·b}
1 · {∅5·a, ∅1·b}

0 · {∅7·a, ∅1·b}
1 ∨

{∅3·a, ∅1·b}
0 · {∅5·a, ∅1·b}

1 · {∅7·a, ∅1·b}
1 Bounded Repetition (11)

� {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨(
{∅3·a, ∅1·b} · {∅5·a, ∅1·b}

)
∨(

{∅3·a, ∅1·b} · {∅7·a, ∅1·b}
)
∨(

{∅5·a, ∅1·b} · {∅7·a, ∅1·b}
) Bounded Repetition,

Power0 elimination (11)

� {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨

{∅8·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅12·a, ∅2·b} Concatenation (10)

= {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨

{∅8·a, ∅2·b} ∨ {∅12·a, ∅2·b} Removal of duplicates

Example 7. The following example shows the derivation of a constraint from state S 0 to
S 2 in Figure 8a, involving a loop sandwiched between two compulsory single-element
transitions, thus demonstrating the use of modulo sets.

a(a5b3)∗a
Σ
−⇁ {∅1·a, ∅0·b} · {∅5·a, ∅3·b}

∗ · {∅1·a, ∅0·b} Regex-to-CE (8)

� {∅1·a, ∅0·b} ·
{{

5·0
}
0·a
,
{
3·0

}
0·b

}
· {∅1·a, ∅0·b} Unbounded Repetition (12)

�
{{

5·0
}
2·a
,
{
3·0

}
0·b

}
Concatenation (10)

11

S 0 S 1 S 2
a

a5b3

a

(a) Automaton for a(a5b3)∗a

S 0 S ′1

S 1

S 2
a

a a

a5b3

a

(b) Automaton for a(a(a5b3)∗a)∗a

Fig. 8: Example automata showing loops and nested repetition

Example 8. The final example shows the derivation of a constraint from state S 0 to
S 2 in Figure 8b, which showcases a nested repetition, demonstrating the effect of un-
bounded iteration on non-empty modulo sets.

a(a(a5b3)∗a)∗a
Σ
−⇁ {∅2·a, ∅0·b} ·

(
{∅2·a, ∅0·b} · {∅5·a, ∅3·b}

∗)∗ Regex-to-CE, Catenation (8, 10)

� {∅2·a, ∅0·b} · ({{5}2·a, {3}0·b})
∗ Result of Example 7

� {∅2·a, ∅0·b}·
({{

2·1
}
0·a
, ∅0·b

}
∨

{{
2·1, 5·0

}
2·a
,
{
3·0

}
0·b

})
Unbounded Repetition (12)

�
{{

2·1
}
2·a
, ∅0·b

}
∨

{{
2·1, 5·0

}
4·a
,
{
3·0

}
0·b

}
Concatenation (10)

5 Computational Complexity

The purpose of constraint automata is to determine the precise set of next states for un-
ordered input traces efficiently. Thus, it is important to analyze the computational cost
of using the involved structures.

Consider the conversion of an input automaton D, with states Q and an alphabet
Σ, into a constraint automaton CA. The size of the resultant constraint automaton is
influenced by three factors, namely (i) the connectivity ofD, with a fully connected au-
tomaton leading to an out-degree of |Q| for each state in CA, thus requiring a maximum
of |Q| constraint expressions to be evaluated with each step in the constraint automa-
ton, (ii) the number of choice operators in the regular expressions derived from the
automaton, which affects the number of constraint vectors in the derived constraint ex-
pressions, and (iii) the number of cycles in the regular expressions, which will cause
basic constraints’ modulo-set sizes to grow.

A sparsely-connected input automaton would tend to have fewer outgoing transi-
tions per state (as fewer states would be reachable from other states), whereas a densely-
connected automaton containing many loops of differing length would increase the size
of constraints’ modulo sets. As the constraint vectors in the automaton must be well-
formed, they will each contain |Σ | basic constraints.

Furthermore, as the current state is a set of possible states, the set of next states
would have to be computed whilst taking each current state into consideration. The size
of the current state set can be at most |Q|, which would only occur when the automaton

12

is potentially in any state. Hence, the number of operations performed when computing
the next state, assuming the worst-case scenario of a fully-connected aggregate automa-
ton and a full current state set, is:

|Q|︸︷︷︸
current
states

× |Q|︸︷︷︸
constraint

expressions

× vecs︸︷︷︸
vectors

/CE

× |Σ |︸︷︷︸
basic

constraints
/CV

× (mods!︸︷︷︸
modulo
set size

/BC

+ 1︸︷︷︸
offset

comparison

)

As noted earlier, the magnitude of mods and vecs is dependent on the form of the
extracted regular expressions, specifically the number of cycles and choice operators,
respectively. Evaluating the modulo set requires finding solutions to linear equations,
which has a worst-case running time depending on the input and number of terms. As
will be discussed in Section 6, in practice, one can lower the average running time
by ordering the evaluation of constraints based on their weakness, and by using more
sophisticated techniques for solving equations.

Implementation Considerations

The use of a set of current states could be eliminated by making the automaton de-
terministic, yet this generally results in an exponential growth in states, increasing the
number of constraint expressions to be evaluated at every state by an equivalent degree.
By maintaining a dynamic set of current states, one can thus reduce the average traversal
time, as only the outgoing transitions from potential current states are evaluated.

In this work, we have opted to use regular expressions to produce an initial con-
straint automaton so as to modularize the transformation stages. It is possible that
some performance gains may be obtained by generating constraint expressions directly
from the original automaton. More specifically, this may allow the detection of sub-
expressions that are shared across constraints, facilitating the caching and reuse of par-
tial results during constraint evaluation. Optimizations could also extract common sub-
expressions among constraint expressions emanating from states, rather than evaluating
each outgoing transition in isolation. Such considerations could give rise to interesting
future work.

A system implementing constraint automata would most likely benefit from chang-
ing the representation from the one used into one that is more amenable to comparisons.
For example, constraints could be organized in a tree structure based on their offset val-
ues, speeding up evaluation by excluding branches which do not meet the minimum.

6 Related Work

Instrumentation is recognized as a source of overhead in runtime verification. This over-
head can be reduced by decreasing the amount of instrumentation, or sampling, that is
performed. Statistical methods can then be employed to infer the most probable se-
quence of state transitions that occurred during the time in which sampling was sus-
pended. For instance, Stoller et al. [12] consider the scenario where instrumentation is
suspended for some period of time, leaving a gap in the sequence of observed events.

13

Their approach focused on reconstructing the missed events via probabilistic models,
which estimate the next state based on traces that were observed previously. This ap-
proach differs from that explored in this work, as the gaps are devoid of information,
not even specifying the number of missed events. In contrast, our work only considers
unordered traces, and still requires that the number and type of events be logged.

Bodden et al. [5,6] provide an implementation of efficient time-triggered automata,
which consider gaps of events during monitoring. The approach explored can report
false positives (but not false negatives) if continuously monitoring “skip” events that
prevent an error state from being reached.

Bartocci et al. [2] extend the concept of probabilistically monitoring gaps in events,
and introduce the notion of criticality levels, which vary based on the probability that
a system reaches an error state. Criticality levels can then be used to determine the
degree of instrumentation performed, with the system increasing sampling to determine
the precise system state. A similar concept could be integrated into the construction
examined in this work. For example, sampling could be increased on detecting that the
current state set contains a final state.

Another approach, adopted by Basin et al. [3], is to handle the uncertainty brought
about by incomplete traces using a three-valued logic, whereby the property’s evalua-
tion function is modified to also reason about indeterminate results.

Bauer et al. [4] present a multi-valued logic that is able to express not only whether
a violation has taken place, but also whether a violation would occur if the trace ter-
minated right now. One could easily combine such acceptance conditions with our ap-
proach.

The choice of algorithm when generating regular expressions from a finite-state au-
tomaton will affect the size and complexity of the resultant expressions [10]. Bounded
iteration with choice produces constraint expressions with multiple constraint vectors.
In broad terms, unbounded iteration will cause the offset value to be added to the mod-
ulo set. Subsequent nesting of an iterated expression within unbounded iterations with
no offset will have no further effect on the constraint expression’s size. Ideally, the al-
gorithm employed would thus minimize the number of choice operators in the output
expressions. By isolating the inefficient component of the constraints into modulo sets,
one may choose to apply existing results and libraries addressing the Satisfiability Mod-
ulo Theories problem [1] to speed up the computation.

7 Conclusion

We have presented a trace model that allows for the monitoring of distributed systems
by compressing partial event streams before they are sent to the monitoring server.
We described an algorithm for constructing ahead-of-time a monitor that can deal with
compressed event streams in such a way that it provably recognizes property violations
without false negatives. We have further shown that the resulting automaton is as precise
as possible, and has a complexity low enough to promise performance gains in practice.

14

References

1. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (smt-lib) (Apr
2013), http://smtlib.org/

2. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S., Stoller, S., Zadok, E., Seyster, J.: Adap-
tive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) Runtime Verification, Lecture
Notes in Computer Science, vol. 7687, pp. 168–182. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-35632-2_18

3. Basin, D., Klaedtke, F., Marinovic, S., Zlinescu, E.: Monitoring compliance policies over
incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) Runtime Verification, Lec-
ture Notes in Computer Science, vol. 7687, pp. 151–167. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-35632-2_17

4. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is
ugly? In: Sokolsky, O., TaÅran, S. (eds.) Runtime Verification, Lecture Notes in Computer
Science, vol. 4839, pp. 126–138. Springer Berlin Heidelberg (2007), http://dx.doi.org/
10.1007/978-3-540-77395-5_11

5. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime ver-
ification with tracematches. In: 7th workshop on Runtime Verification at the 6th In-
ternational Conference on Aspect-Oriented Software Development, Vancouver, Canada.
LNCS, vol. 4839, pp. 22–37. Springer (Mar 2007), http://www.bodden.de/pubs/bhl+
07collaborative.pdf

6. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime verifi-
cation with tracematches. Oxford Journal of Logics and Computation (Nov 2008), http:
//www.bodden.de/pubs/bhl+08collaborative.pdf

7. Brzozowski, J.A.: Derivatives of regular expressions. vol. 11, pp. 481–494. ACM, New York,
NY, USA (Oct 1964), http://doi.acm.org/10.1145/321239.321249

8. Chen, F., Roşu, G.: Mop: an efficient and generic runtime verification framework. In: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications. pp. 569–588. OOPSLA ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1297027.1297069

9. Miller, D., Pearson, B.: Security information and event management (SIEM) implementation.
McGraw-Hill (2011)

10. Neumann, C.: Converting deterministic finite automata to regular expressions (Mar 2005),
http://neumannhaus.com/christoph/papers/2005-03-16.DFA_to_RegEx.pdf

11. Steffens, S.: P3 consulting, personal communication. http://www.p3-consulting.de/
12. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.:

Runtime verification with state estimation. In: Proceedings of the Second international con-
ference on Runtime verification. pp. 193–207. RV’11, Springer-Verlag, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-29860-8_15

A Proofs

Theorem 1 (Convergence). Given an arbitrary finite state automatonD with Q states,
the transformation will always converge onto a constraint automaton whose constraint
expressions are all DCEs.

Proof. By definition, the function regex returns a regular expression of bounded size.
As Q is finite, and regex is computed pairwise for each state, the constraint automaton

15

http://smtlib.org/
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://www.bodden.de/pubs/bhl+07collaborative.pdf
http://www.bodden.de/pubs/bhl+07collaborative.pdf
http://www.bodden.de/pubs/bhl+08collaborative.pdf
http://www.bodden.de/pubs/bhl+08collaborative.pdf
http://doi.acm.org/10.1145/321239.321249
http://doi.acm.org/10.1145/1297027.1297069
http://neumannhaus.com/christoph/papers/2005-03-16.DFA_to_RegEx.pdf
http://www.p3-consulting.de/
http://dx.doi.org/10.1007/978-3-642-29860-8_15

will contain at most |Q|2 transitions. The task is thus to show that the conversion of
regular expressions into constraints always converges onto a DCE.

A regular expression R with N atoms of the form ak, P power operators, and C
concatenation operators, will produce an initial constraint expression Ĉ under Σ

−⇁ with
an equal number of P and C operators in the constraint expression domain, and each of
the N atoms will be replaced with a constraint vector. The number of disjunctions in the
expression is not directly relevant for the purposes of convergence.

The transformation� is defined for all constraint expression operators, only stop-
ping once a constraint expression is a DCE. In addition, � will itself produce a con-
straint expression, thus showing that the system will always progress while there are
operators left to be reduced. The next step is thus to demonstrate that repeated applica-
tions of�will reduce P and C to zero. This is done by case analysis on each constituent
definition of the operator, as follows:

– Concatenation of two vectors will reduce C by 1.
– Distributing · over ∨ has the immediate effect of increasing C by the number of

disjuncts, yet the composite expressions will subsequently undergo concatenation,
giving an overall reduction in C of 1.

– Bounded Repetition on constraint vectors will reduce P. Bounded repetition on a
disjunctions of constraint expressions will itself produce a disjunction of constraint
expressions. The index is transferred to the individual, simpler disjuncts. These dis-
juncts would either consist of constraint vectors, in which case P would be reduced,
or further disjunctions. Yet in the latter case, the nesting depth must be finite (due
to the expression being finite).

– Unbounded Repetition of a constraint vector leads to an immediate reduction of
1 from P. For a disjunction of constraint expressions, the transformation will result
in each disjunct being raised to an unbounded power, and hence an initial increase
in P and C by the number of disjuncts. Yet if the sub-terms are constraint vectors,
then P and C will be reduced, as per the previous definitions. If, alternatively, the
terms are themselves disjunctions of expressions, then the terms would be further
expanded until concatenations of basic vectors are reached, at which point P and C
will be reduced.

Theorem 2 (Equal Aggregate Event Vectors). Given that Perms(s) returns the set of
permutations of a trace s, if s ∈ Σ∗, then ∀p ∈ Perms(s). ↓#p

Σ = ↓#s
Σ

Proof. As the alphabet Σ is fixed for all the permutations of s, the function will always
return a set containing Σ maps, with one for each element of Σ. Since the permutation
operation only affects the order of symbols within a trace, the symbol counts remain
unaffected.

Theorem 3 (Equivalent Evaluations of Regex and Constraint Expressions). The
constraint automaton cannot produce false negatives, and is also maximally precise
given the reduced information it receives, i.e., won’t produce more false warnings than
a solution based on the explicit automaton traversal using all string permutations. It
holds that ∀s ∈ Σ∗.

[
eval↓#s

Σ
(CΣ(R))↔ (∃p ∈ Perms(s). match(p,R))

]
16

Each direction of the bi-implication is proven separately, and is presented as two
proofs. Prior to the proofs, we state the following lemmas:

Lemma 1 (Permutations of a regular expression). Given that Perms(R) returns all
permutations of the sub-expressions of a regular expression R such that any sub-
expressions R1 and R2 can be reordered using R1R2 ≡ R2R1 and R1|R2 ≡ R2|R1, it
holds that ∃p ∈ Perms(s). match(p,R)↔ ∃p ∈ Perms(s). ∃r ∈ Perms(R). match(p, r)

Lemma 2 (Regex decomposition). Decomposed strings match sub-expressions, that
is, ∀s ∈ Σ∗. match(s,R1 R2) → ∃p1 p2 = s. match(p1,R1) ∧ match(p2,R2), and
∀s ∈ Σ∗. match(s,R1|R2)→ match(s,R1) ∨ match(s,R2)

Proof (Evaluation → Match). Every basic constraint, constraint vector and DCE can
be reconstructed into a regular expression, as follows:

Rec({m1,m2, . . . ,mk}n·a) = an(am∗1 am∗2 . . . am∗k)∗

Rec({C1,C2, . . . ,Ck}) = Rec(C1) Rec(C2) . . . Rec(Ck)

Rec(
−→
C1 ∨

−→
C2 ∨ . . . ∨

−→
Ck) = Rec(

−→
C1) | Rec(

−→
C2) | . . . | Rec(

−→
Ck)

If Ċ is a DCE which holds for ↓#s
Σ , then one can rebuild a string a#s

a b#s
b . . . z#s

i , for
a, b . . . z ∈ Σ, that will contain a symbol for each element in Σ with a frequency
equal to its value in the aggregated input. Given the definition of Rec(), it follows
that ∃p ∈ Perms(a#s

a b#s
b . . . z#s

i). match(p, Rec(Ċ)). By using Lemma 1, the fact that
Perms(a#s

a b#s
b . . . z#s

i) = Perms(s), and by substituting Ċ with CΣ(R), the statement to be
proven can be reformulated as:

∃p ∈ Perms(s). match(p, Rec(CΣ(R)))→ ∃p ∈ Perms(s). ∃r ∈ Perms(R). match(p, r)

The relation will be demonstrated through case analysis on the different forms of
regular expressions. Given that Lemma 2 holds, it is sufficient to show that the operators
hold on the basic elements of regular expressions and then induce on the length of the
regular expression.

R CΣ(R) Rec(CΣ(R))
anbm {∅n·a, ∅m·b} anbm ∈ Perms(R)
an|bm {∅n·a, ∅0·b} ∨ {∅0·a, ∅m·b} an|bm ∈ Perms(R)
an∗ {{n·z}0·a} a0an∗ ∈ Perms(R)

(anbm)∗ {{n·z1 }0·a, {m·z1 }0·b} (anbm)∗ ∈ Perms(R)
(an|bm)∗ {{n·z1 }0·a, {m·z2 }0·b} (an)∗(bm)∗ Matches R for permutation of s

(an∗ |bm∗)k {{n·z1 }0·a, {m·z2 }0·b} (an)∗(bm)∗ Matches R for permutation of s

Proof (Match → Evaluation). Recall that CΣ() is evaluated in two phases, first trans-
forming the input into an initial constraint expression (Definition 8), and then iteratively
reducing the expression into a DCE. The initial transformation simply changes the op-
erators into those of the constraint-expression domain, whilst replacing alphabetic sym-
bols into basic constraints. It is evident that ∀a ∈ Σ. s ∈ Σ∗. ∀n ∈ N. match(s, an) ↔

17

eval↓#s
Σ
(∅n·a), since the LHS will only be true for sequences of as of length n, which

also holds for the RHS. The task is thus to demonstrate that expressions obtained by
reductions using � will also evaluate to true. This is done via case analysis on the
operators, as follows:

– Concatenation of two constraint vectors is performed by summing the offsets and
performing a union of modulo sets for every basic constraint. The result will thus
consume at least the same amount of input events as the constituent vectors would
in isolation.

– Distributing · over ∨ preserves truth due to the design of the eval() procedure, as
each disjunct will also include the concatenated outer disjunct.

– Bounded Repetition of a constraint vector
−→
C raised to a power k is equivalent to

concatenating a sequence of k consecutive
−→
C vectors. The modulo sets thus remains

unchanged, whilst the offsets of each basic constraint are multiplied by a factor k.
Bounded repetition of a disjunction of constraint is performed by expanding the
disjunction as a multinomial, discarding the coefficients. This produces a disjunc-
tion of sequences with every combination of the terms, essentially unravelling the
loop.

– Unbounded Repetition resolves to a concatenation of zero or more constraint ex-
pressions. If a single constraint vector is being raised to a power, then its offset is
added to its modulo set, thus matching when the original expression is taken one
or more times. In the case of an unbounded repetition of a DCE, each disjunct
can be taken an unbounded number of times, forming a sequence of constraint ex-
pressions. Equivalent sequences can be formed by changing the disjunctions into
concatenations, whilst simultaneously placing each concatenated expression in an
unbounded loop.

18

	Distributed Finite-State Runtime Monitoring with Aggregated Events

