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Abstract: An artificial Ant Colony System (ACS) algorithm to solve general-
purpose combinatorial Optimization Problems (COP) that extends previous AC 
models [21] by the inclusion of a negative pheromone, is here described. Sever-
al Traveling Salesman Problem (TSP) were used as benchmark. We show that 
by using two different sets of pheromones, a second-order coevolved compro-
mise between positive and negative feedbacks achieves better results than sin-
gle positive feedback systems. The algorithm was tested against known NP-
complete combinatorial Optimization Problems, running on symmetrical TSPs. 
We show that the new algorithm compares favorably against these benchmarks, 
accordingly to recent biological findings by Robinson [26,27], and Grüter [28] 
where "No entry" signals and negative feedback allows a colony to quickly re-
allocate the majority of its foragers to superior food patches. This is the first 
time an extended ACS algorithm is implemented with these successful charac-
teristics. 
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1 Introduction 

Research over hard NP-complete Combinatorial Optimization Problems (COP’s) has, 
in recent years, been focused on several robust bio-inspired meta-heuristics, like those 
involving Evolutionary Computation (EC) algorithmic paradigms [1-3], as well as 
other kind of heuristics and approximation algorithms [4-5]. One particularly success-
ful well-know meta-heuristic [6] approach is based on Swarm Intelligence (SI) [7-8], 
i.e., the self-organized stigmergic-based [9-11] property of a complex system whereby 
the collective behaviors of (unsophisticated) entities interacting locally with their en-



vironment cause coherent functional global patterns to emerge [12]. This line of re-
search recognized as Ant Colony Optimization (ACO) [13-15], uses a set of stochastic 
cooperating ant-like agents to find good solutions, using self-organized Stigmergy 
[16-19] as an indirect form of communication mediated by an artificial pheromone, 
whereas agents deposit pheromone-signs on the edges of the problem-related complex 
network, encompassing a family of successful algorithmic variations such as: Ant 
Systems (AS) [20], Ant Colony Systems (ACS) [21], Max-Min Ant Systems (Max-Min 
AS) [22] and Ant-Q [23].  
  Albeit being extremely successful these algorithms mostly rely on positive feed-
backs [13], causing excessive algorithmic exploitation over the entire combinatorial 
search space. This is particularly evident over well-known benchmarks as the sym-
metrical Traveling Salesman Problem (TSP) [24]. Being these systems comprised of a 
large number of frequently similar components or events, the main challenge is to 
understand how the components interact to produce a complex pattern that is still a 
feasible solution [25] (in our case study, an optimal robust solution for hard NP-
complete dynamic TSP-like combinatorial problems).  

In order to overcome this hard search space exploitation-exploration compromise, 
our present algorithmic approach follows the route of very recent biological find-
ings [26-28] showing that forager ants lay attractive trail pheromones to guide nest 
mates to food, but where, the effectiveness of foraging networks were improved if 
pheromones could also be used to repel foragers from unrewarding routes. Increasing 
empirical evidences for such a negative trail pheromone exists, deployed by Phar-
aoh's ants (Monomorium pharaonis) as a 'no entry' signal to mark unrewarding forag-
ing paths.  

The new algorithm was exhaustively tested on a series of well-known benchmarks 
over hard NP-complete COP’s, running on symmetrical TSP [24]. Different network 
topologies and stress tests were conducted over low-size TSP's, medium-size TSP’s, 
and as well as large sized ones. We show that the new co-evolved stigmergic algo-
rithm compared favorably against the benchmark. In order to deeply understand how 
a second co-evolved pheromone was useful to drive the collective system into such 
results, the influence of negative pheromone was tracked (fig. 3-4-5), and as in previ-
ous tests [29-30], a refined phase-space map was produced mapping the pheromones 
ratio between a pure Ant Colony System and the present second-order approach. 

2 Towards a Co-Evolving Swarm-Intelligence 

In order to make use of co-evolution we created a double-pheromone model on top 
of the traditional ACS, thus allowing the comparison between the two, by having an 
additional parameter. Traditional approaches to the TSP via Ant Systems include only 
a positive reinforcement pheromone. Our approach uses a second negative phero-
mone, which acts as a marker for forbidden paths. These paths are obtained from the 
worse tour of the ants and this pheromone then blocks access of ants in subsequent 
tours. This blockade isn't permanent and as the pheromone evaporates it allows paths 



to be searched again for better solutions. This leads to equations 5-9 that expand equa-
tions 1-4 of the original ACS and AS approaches. 
 

Ant Colony System (ACS, [21]) state transition rule  

s =
argmaxu∈Jk (r ) τ (r,u)[ ] ⋅ η(r,u)[ ]β{ }, if q ≤ q0  (exploitation)

S, otherwise (biased exploration)
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Ant System (AS, [20]) random proportional rule  

pk =

τ (r, s)[ ] ⋅ η(r, s)[ ]β
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(2) 

Ant Colony System (ACS, [21]) local updating rule  
τ (r, s)← (1− ρ) ⋅τ (r, s)+ ρ ⋅ Δτ (r, s)  

 
(3) 

Ant Colony System (ACS, [21]) global updating rule  
τ (r, s)← (1−α) ⋅τ (r, s)+α ⋅ Δτ (r, s)  (4) 

2.1 ACS double-pheromone state transition rule 

Following the guidelines of Dorigo and Gambardella [21], in ACS the state transition 
rule is as follows: an ant positioned on node r chooses the city s to move to by apply-
ing the rule given in Eq.5 
 

s =
argmaxu∈Jk (r ) τ +(r, s)"# $%

α
⋅ η(r, s)[ ]β ⋅ τ −(r, s)"# $%

α−1{ }, if q ≤ q0

S, otherwise
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where q is a random number uniformly distributed in [0...1], q0 is a parameter 

(0<=q0<=1) and S is a random variable selected according to the probability distribu-
tion in Eq. 6. In Eq.5, the parameter q0 determines the relative importance of exploita-
tion versus exploration, that is, every time an ant in city r has to choose a city s to 
move to, it samples a random number between 0<=q0<=1. If q<=q0 then the best edge 
according to Eq.5 is chosen (exploitation), otherwise an edge is chosen according to 
Eq.6 (biased exploration) or random-proportional rule coming from the classic Ant 
System (AS), which follows: 
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Eq.6 gives the probability with which ant k in city r chooses to move to city s, 

where τ is the pheromone on the (r,s) network edge, η=1/δ is the inverse of the dis-
tance δ(r,s), Jk(r) is the set of cities that remain to be visited by ant k positioned on 
city r (in order to make the solution feasible), and β is a parameter which determines 
the relative importance of pheromone versus distance (β>0) and α controls the ratio 
between positive and negative pheromone influences. In Eq.6 the pheromones on 
edge (r,s) are multiplied by the corresponding heuristic value η(r,s), thus favoring the 
choice of edges which not only are shorter but also with a greater amount of positive 
pheromone and some amount of negative pheromone. 

The final ACS state transition rule resulting from Eqs. 5 and 6 is then called pseu-
do-random-proportional rule. This state transition rule, as with the previous AS ran-
dom-proportional rule, favors transitions towards nodes connected by short edges and 
with a large amount of pheromone. 

2.2  ACS double-pheromone global updating rule 

While AS used Lk, the length of the tour performed by every ant k, as a heuristic 
measure for the pheromone global updating rule, ACS instead focus only in the glob-
ally best ant, among all m, i.e. the ant which constructed the shortest tour from the 
beginning of the trial is allowed to deposit pheromone. This choice, along with the 
use of the pseudo-random-proportional state transition rule (above) was intended to 
make the search more directed: ants search in a neighborhood of the best tour found 
up to the current iteration of the algorithm. Global updating is performed after all ants 
have completed their tours. The pheromone level is then updated by applying the 
global updating rule of Eq.7 and 8 below: 

τ +(r, s)← (1− ρ+ ) ⋅τ +(r, s)+ ρ+ ⋅ Δτ +(r, s)

Δτ +(r, s) =
(Lgb )−1,  if (r, s)∈  Global best tour

0,         otherwise
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where 0< ρ± <1 is the pheromone decay parameter (evaporation) and Lgb the length 

of the globally best tour from the beginning of the trial. As it was the case in AS, the 
ACS global pheromone updating provides a greater amount of pheromone to shorter 
tours. Eq.7 dictates that only those edges belonging to the global best tour will receive 
reinforcement while Eq.8 dictates that only those edges that belong to the worse tour 
receive negative pheromone deposition. 



2.3 ACS double-pheromone local updating rule 

In order for the 2nd order algorithm (as in ACS) to build a solution, i.e. a TSP tour, 
ants visit edges and change their pheromone level by applying a local updating rule 
given by Eq.9: 
 

τ −(r, s)← (1− ρ− ) ⋅τ −(r, s)+ ρ− ⋅ Δτ −(r, s)

Δτ −(r, s) =
(nLgb )−1,  if (r, s)∈  Global worse tour

0,         otherwise
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τ +(r, s)← (1− ρ+ ) ⋅τ +(r, s)+ ρ+ ⋅ Δτ +(r, s)
τ −(r, s)← (1− ρ− ) ⋅τ −(r, s)+ ρ− ⋅ Δτ −(r, s)

 
(9) 

          
where 0<ρ<1 is a parameter. From here several options are possible where, Δτ(r,s) 

could assume the form of Δτ(r,s)=γ. max τ(s,z) [z  Jk(S) ]  similarly to a reinforcement 
learning problem, onto which ants have to learn which city to move to as a function of 
their current location. This first option assumes Q-learning, an algorithm which al-
lows an agent to learn such an optimal policy by the recursive application of a rule 
similar to that in Eq.4, giving rise to the first Ant-Q ant systems. In fact, Δτ(r,s)=γ. 
max τ(s,z) is exactly the same formula used in Q-learning where 0<γ<1 is a parameter. 
The other two choices are normally: (1) setting Δτ(r,s)=τ0, being τ0  the initial phero-
mone level, or (2) simply setting Δτ(r,s)=0. Finally, experiments could also be ran in 
which local-updating are not applied at all, that is, where the local updating rule is not 
used as in the case of the older and previous AS). 

Current research work however, suggests that local-updating is not only definitely 
useful, but that the pheromone local updating rule with Δτ(r,s)=0 yields worse per-
formance than Δτ(r,s)=τ0  or even Ant-Q. In fact, Δτ(r,s)=τ0  was chosen for the stand-
ard ACS, from the beginning [13-15][20,21,23]. Since the ACS local updating rules 
not only requires less computation than Ant-Q as well as achieving better results, we 
chose to focus our attention on ACS, which will be used, along others, to run the 
comparison experiments against our new co-evolved pheromone-based algorithm in 
the following paper sections. 

3 Results 

 The new algorithm was exhaustively tested on a series of well-known 
benchmarks over hard NP-complete COP’s) running on symmetrical TSP’s. Different 
network topologies and stress tests were conducted over low-size TSP's (eil51.tsp; 
eil78.tsp; kroA100.tsp), medium-size (d198.tsp; lin318.tsp; pcb442.tsp; rat783.tsp) as 
well as large sized ones (fl1577.tsp; d2103.tsp) [numbers here referring to the number 



of nodes in each network]. 
 
Table 1. Comparison of Standard ACS with the 2nd order AS algorithm 

problem n.º of nodes Standard ACS 2nd order+ AS optimal tour 

eil51.tsp 51 427.96 428.87 426 
eil78.tsp 78 ** 544.65 538 

kroA100.tsp 100 21285.44 21285.44 21282 
d198.tsp 198 16054 15900.2 15780 

lin318.tsp 318 42029*** 42683.90 42029 
pcb442.tsp 442 51690 51464.48 50778 
rat783.tsp 783 9066 8910.48 8806 
fl1577.tsp 1577 23163 22518 22249 
d2103.tsp 2103 - 81151.9 80450 
All optimal tours from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html 

+ Average over 20 runs and limited to 1000 iterations 
** Value for similar problem eil75,.tsp - 542.37 *** uses 3-opt local search 

Comparing Traditional AS Models with 2nd Order 
 
It is clear from table 1 that the 2nd order AS performs at least equally, if not better, 

than the standard ACS. It is clearly seen the averages of the runs (bold) that are better 
than the traditional ACS. 

 

 
Fig. 1. Influence of negative pheromone on kroA100.tsp problem 

(values on lines represent 1-ALPHA)  



We investigated the evolution of different ratios of negative pheromone and found 
that a small amount of negative pheromone applied as a non-entry signal indeed pro-
duces better results, but the effect is cancelled if the ratio of the negative pheromone 
is high when compared to the positive pheromone.  

 

 
Fig. 2. Best tour of the 2nd order AS for different ratios of negative pheromone in the 

rat783.tsp problem 
 
The effect of negative pheromone can be observed both in figure 1 and figure 2 

where one can observe that small amounts of negative pheromone produce better re-
sults and quicker convergence to those results. On the other hand if one increases the 
ratio of negative pheromone to higher values then it isn’t possible to ripe the benefits 
of the no-entry signal and the system performs worse.  

 
Fig. 3. Influence of negative pheromone on kroA100.tsp problem. 

 
The detailed analysis of the kroA100.tsp problem showed that this effect is statisti-

cally significant. Comparing 120 runs with alpha=1 (equivalent to traditional ACS) 
and alpha=0.94, we obtained a p-value of 3x10-4. This result is summarized in fig-
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ure 3, where one compares traditional ACS with our 2nd order approach.  
 

 
Fig. 4. Influence of negative pheromone on rat783.tsp problem. 

 
The same results where observed for problem rat783.tsp when comparing 70 runs 

of the ACS (alpha=1) with 70 runs of the 2nd order approach (with alpha=0.94) in 
figure 4. The two samples means were tested for statistical significance resulting in a 
p-value of 2.2x10-3.  

Both these examples show that on average the 2nd order approach performs better 
than traditional ACS. This effect of the negative pheromone is important but cannot 
be extended further as to dominate the solving strategy, making results worse. This 
can be seen clearly on figure 5 where further diminishing of alpha (giving more 
weight to negative pheromone as a consequence) produces worse results. 

 

 
Fig. 5. If dominant, negative pheromone has negative impact (problem rat783.tsp) 

4  Conclusion 

We show that the new co-evolved stigmergic algorithm compared favorably against 
the benchmark. The inclusion of a negative pheromone acting as a `non-entry’ signal 
in the strategy of construction of solutions is beneficial as the convergence to optimal 
solutions is quicker, as shown in figure 2, while achieving better results (figures 3 and 
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4). The algorithm was able to equal or majorly improve every instance of those stand-
ard algorithms. 

The new algorithm comprises a second order approach to Swarm Intelligence, as 
pheromone-based no entry-signals cues, were introduced, coevolving with the stand-
ard pheromone distributions (collective cognitive maps [12]) in the aforementioned 
known algorithms.  

The use of the negative pheromone is limited to small quantities (alpha close to 1, 
but not 1, in which case we would end up with a pure ACS) and cannot be extended to 
a point of dominance in the search strategy as shown in figure 5. The results found for 
the TSP problems in that case are severely worse. This implies that the use of a nega-
tive pheromone strategy has to be fine tuned as not to dominate the search strategy. 
This is done with the introduction of the parameter alpha that balances the weight of 
the two pheromones deposition in equations 5 and 6. 

This work has implications in the way large combinatorial problems are addressed 
as the double feedback mechanism shows improvements over the single-positive 
feedback mechanisms in terms of convergence speed and of major results.  

References 

1. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, MI, 
USA, (1975). 

2. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, USA, (1989). 

3. Fogel, D.B., Evolutionary Computation, IEEE Press, Piscataway, NJ, USA, (1995). 
4. 106 - Siarry, P. and Michalewicz, Z. Advances in Metaheuristics for Hard Optimization, Spring-

er, (2008). 
5. Gonzalez, T. F. (Ed.), Approximation Algorithms and Metaheuristics, CRC Press, (2007). 
6. 44 - Alba, E., Parallel Metaheuristics. A New Class of Algorithms, Wiley, Cambridge, NJ, USA, 

(2005). 
7. Bonabeau, E., Dorigo, M., Theraulaz, G., Swarm Intelligence: From Natural to Artificial Sys-

tems, Santa Fe Institute series in the Sciences of Complexity, Oxford Univ. Press, New York, 
NY, (1999). 

8. Blum, C. and Merkle, D. (Eds.), Swarm Intelligence: Introduction and Applications, Natural 
Computing Series, Springer-Verlag, Heidelberg, (2008).  

9. Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G. and Bonabeau, E., Self-
Organization in Biological Systems, Princeton University Press, Princeton, NJ, USA, (2003). 

10. Chialvo, D.R., Millonas, M.M., How Swarms build Cognitive Maps, In Steels, L. (Ed.): The Bi-
ology and Technology of Intelligent Autonomous Agents, 144, NATO ASI Series, 439-450, 
(1995). 

11. Millonas, M.M., A Connectionist-type model of Self-Organized Foraging and Emergent Behav-
ior in Ant Swarms, J. Theor. Biol., nº 159, 529, (1992). 

12. Ramos, V., Fernandes, C., Rosa, A.C., On Self-Regulated Swarms, Societal Memory, Speed and 
Dynamics, in Artificial Life X - Proc. of the Tenth Int. Conf. on the Simulation and Synthesis of 
Living Systems, L.M. Rocha, L.S. Yaeger, M.A. Bedau, D. Floreano, R.L. Goldstone and A. 
Vespignani (Eds.), MIT Press, pp. 393-399, Bloomington, Indiana, USA (2006). 

13. Dorigo, M., Maniezzo, V. and Colorni, A., Positive Feedback as a Search Strategy, Technical 
report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, (1991). 

14. Dorigo, M. and Di Caro, G.: The Ant Colony Optimization Meta-heuristic, in New Ideas in Op-



timization, Corne, D., Dorigo, M, and Glover, F. Eds., McGraw-Hill, New York, p.11 (1999). 
15. Dorigo, M., Di Caro, G. and Gambardella, L.M., Ant algorithms for Discrete Optimization, Arti-

ficial Life, 5(2), p. 137 (1999). 
16. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositer-

mes natalensis et Cubitermes sp. La théorie de la Stigmergie : Essai d’interpretation des termites 
constructeurs. Insect Sociaux, 6, 41-83 (1959). 

17. Theraulaz, G., Bonabeau, E., A Brief History of Stigmergy, Artificial Life, special issue dedicat-
ed to Stigmergy, Vol. 5, n. 2, MIT Press, pp. 97-116, (1999). 

18. Abraham, A, Grosan, C., and Ramos, V. (Eds.), Stigmergic Optimization, Studies in Computa-
tional Intelligence (series), Vol. 31, Springer-Verlag, 295 p., Hardcover, (2006). 

19. Diaf, M., Hammouche, K., Siarry, P., From the Real Ant to the Artificial Ant. Nature-Inspired 
Informatics for Intelligent Applications and Knowledge Discovery, 298-322, (2010). 

20. Dorigo, M., Maniezzo, V. and Colorni, A., Ant System: Optimization by a Colony of Cooperat-
ing Agents, IEEE Trans. Syst., Man, and Cybern. - Part B, 26(1), 29, (1996). 

21. Dorigo, M. and Gambardella, L.M.: Ant Colony System: A Cooperative Learning approach to 
the Travelling Salesman Problem, IEEE Trans. Evol. Computation, 1(1), 53 (1997). 

22. Stützle, T. and Hoos, H.H., MAX-MIN Ant System, Future Generation Comput. Syst., 16(8), p. 
889 (2000). 

23. Gambardella, L.M. and Dorigo, M. Ant-Q: A Reinforcement Learning Approach to the Travel-
ing Salesman Problem. Proceedings of ML-95, Twelfth International Conference on Machine 
Learning, Tahoe City, CA, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann, 252-
260, (1995). 

24. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., and Shmoys, D.B., The Travelling Salesman 
Problem, Wiley, New York, NY, (1985). 

25. Ramos, V., Almeida, F., Artificial Ant Colonies in Digital Image Habitats: A Mass Behavior Ef-
fect Study on Pattern Recognition, in Dorigo, M., Middendorf, M., Stützle, T. (Eds.): From Ant 
Colonies to Artificial Ants – ANTS 2000 - 2nd Int. Wkshp on Ant Algorithms, 113-116, (2000). 

26. Robinson, E.J.H et al. “Insect communication - ‘No entry’ signal in ant foraging.” Nature 
438.7067 (2005): 442-442.  

27. Robinson, E.J.H; Jackson, D; Hocombe, Mike; and Ratnieks, F.L.W, No entry signal in ant for-
aging (Hymenoptera: Formicidae): new insights from an agent-based model, Myrmecological 
News, 10: 120, Vienna, Sept. (2007) 

28. Grüter C, Schürch R, Czaczkes TJ, Taylor K, Durance T, et al. (2012) Negative Feedback Ena-
bles Fast and Flexible Collective Decision-Making in Ants. PLoS ONE 7(9): e44501. 
doi:10.1371/journal.pone.0044501 

29. Rodrigues, D.M.S., Louçã, J., Ramos, V., From Standard to Second-Order Swarm Intelligence 
Phase-space Maps, in 8th European Conference on Complex Systems, Stefan Thurner (Eds.), 
poster, Vienna, Austria, Sept. (2011). 

30. Ramos, V., Rodrigues, D.M.S., Louçã, J., Spatio-Temporal Dynamics on Co-Evolved Stigmer-
gy, in 8th European Conference on Complex Systems, Stefan Thurner (Eds.), poster, Vienna, 
Austria, Sept. (2011). 
 

 


