Skip to main content

Using a Hybrid Cellular Automata Topology and Neighborhood in Rule Discovery

  • Conference paper
Book cover Hybrid Artificial Intelligent Systems (HAIS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8073))

Included in the following conference series:

Abstract

Cellular Automata are important tools in the study of complex interactions and analysis of emergent behaviour. They have the ability to generate highly complex behaviour starting from a simple initial configuration and set of update rules. Finding rules that exhibit a high degree of self-organization is a challenging task of major importance in the study of complex systems. In this paper, we propose a new cellular automaton (CA) topology and neighbourhood that can be used in the discovery of rules that trigger coordinated global information processing. In the introduced approach, the state of a cell changes according to the cell itself, the cells in the local neighborhood as well as some fixed long-distance cells. The proposed topology is engaged to detect new rules using an evolutionary search algorithm for the well-known density classification task. Experiments are performed for the one-dimensional binary-state CA and results indicate a good performance of the rules evolved by the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chira, C., Gog, A., Lung, R.I., Iclanzan, D.: Complex Systems and Cellular Automata Models in the Study of Complexity. Studia Informatica Series LV(4), 33–49 (2010)

    MathSciNet  Google Scholar 

  2. Crutchfield, J.P., Mitchell, M.: The evolution of emergent computation. Proceedings of the National Academy of Sciences, USA 92(23), 10742–10746 (1995)

    Article  MATH  Google Scholar 

  3. Darabos, C., Giacobini, M., Tomassini, M.: Performance and Robustness of Cellular Automata Computation on Irregular Networks. Advances in Complex Systems 10, 85–110 (2007)

    Article  MATH  Google Scholar 

  4. Darabos, C., Tomassini, M., Di Cunto, F., Provero, P., Moore, J.H., Giacobini, M.: Toward robust network based complex systems: from evolutionary cellular automata to biological models. Intelligenza Artificiale 5(1), 37–47 (2011)

    Google Scholar 

  5. Das, R., Mitchell, M., Crutchfield, J.P.: A genetic algorithm discovers particle-based computation in cellular automata. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 344–353. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Gog, A., Chira, C.: Dynamics of Networks Evolved for Cellular Automata Computation. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 359–368. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Hordijk, W., Crutchfield, J.P., Mitchell, M.: Mechanisms of Emergent Computation in Cellular Automata. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 613–622. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Juille, H., Pollack, J.B.: Coevolving the ‘ideal’ trainer: Application to the discovery of cellular automata rules. Genetic Programming 1998: Proceedings of the Third Annual Conference (1998)

    Google Scholar 

  10. Juille, H., Pollack, J.B.: Coevolutionary learning and the design of complex systems. Advances in Complex Systems 2(4), 371–394 (2000)

    Article  Google Scholar 

  11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Physical Review Letters 74(25), 5148–5150 (1995)

    Article  Google Scholar 

  13. Marques-Pita, M., Mitchell, M., Rocha, L.M.: The role of conceptual structure in designing cellular automata to perform collective computation. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 146–163. Springer, Heidelberg (2008)

    Google Scholar 

  14. Mitchell, M., Crutchfield, J.P., Das, R.: Evolving cellular automata with genetic algorithms: A review of recent work. In: Proceedings of the First International Conference on Evolutionary Computation and Its Applications, EvCA 1996. Russian Academy of Sciences (1996)

    Google Scholar 

  15. Mitchell, M., Thomure, M.D., Williams, N.L.: The role of space in the Success of Coevolutionary Learning. In: Proceedings of ALIFE X - The Tenth International Conference on the Simulation and Synthesis of Living Systems (2006)

    Google Scholar 

  16. Oliveira, G.M.B., Martins, L.G.A., de Carvalho, L.B., Fynn, E.: Some investigations about synchronization and density classification tasks in one-dimensional and two-dimensional cellular automata rule spaces. Electron. Notes Theor. Comput. Sci. 252, 121–142 (2009)

    Article  Google Scholar 

  17. Packard, N.H.: Adaptation toward the edge of chaos. In: Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific (1988)

    Google Scholar 

  18. Pagie, L., Mitchell, M.: A comparison of evolutionary and coevolutionary search. Int. J. Comput. Intell. Appl. 2(1), 53–69 (2002)

    Article  Google Scholar 

  19. Tomassini, M., Venzi, M.: Evolution of Asynchronous Cellular Automata for the Density Task. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 934–943. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Tomassini, M., Giacobini, M., Darabos, C.: Evolution and dynamics of small-world cellular automata. Complex Systems 15, 261–284 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘smallworld’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  22. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

  23. Wolfram, S., Theory and Applications of Cellular Automata. Advanced series on complex systems. World Scientific Publishing (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andreica, A., Chira, C. (2013). Using a Hybrid Cellular Automata Topology and Neighborhood in Rule Discovery. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40846-5_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40845-8

  • Online ISBN: 978-3-642-40846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics